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We present a method to integrate the equations of motion that govern bound, accelerated orbits in
Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference
geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to
the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition
between osculating orbits corresponds to an evolution of the elements. In this paper we derive the
evolution equations for a convenient set of orbital elements, assuming that the force acts only within the
orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the
force must be small. As an application of our method, we analyze the relative motion of two massive
bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-
Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed
motion as geodesic in a Schwarzschild spacetime with a mass parameter equal to the system’s total mass.
The force then consists of terms that depend on the system’s reduced mass. We highlight the importance of
conservative terms in this force, which cause significant long-term changes in the time dependence and
phase of the relative orbit. From our results we infer some general limitations of the radiative
approximation to the gravitational self-force, which uses only the dissipative terms in the force.
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I. INTRODUCTION

A. Orbital motion in curved spacetime

Analysis of accelerated orbits in curved spacetime has
historically focused on the post-Newtonian regime (see
Refs. [1–3] for general reviews of the post-Newtonian
formalism), since observations of orbital motion have his-
torically been limited to weak-field systems such as the
solar neighborhood and binary pulsars. However, the ad-
vent of gravitational-wave astronomy has recently neces-
sitated an analysis of accelerated orbits in strongly-curved
spacetimes. The primary examples of such orbits are ex-
treme mass-ratio inspirals (EMRIs), in which a small com-
pact body of massm spirals into a supermassive black hole
of mass M� m. Such systems promise to be excellent
sources of gravitational waves for the space-based detector
LISA [4]. However, accurate predictions of the emitted
waveforms must account for the effect of the compact
body’s gravitational field on its own motion. The compact
body induces a metric perturbation h�� � �m=M�h

�1�
�� �

O��m=M�2�. Although the motion of the particle may be
described as a geodesic in the perturbed spacetime, it is
more simply treated as an accelerated worldline in the
background spacetime of the unperturbed black hole. The
cause of the acceleration is thus interpreted as a gravita-
tional self-force derived from a regularized form of the
field h��. This force was first formally calculated to first
order in m=M by Mino, Sasaki, and Tanaka [5], and later
by Quinn and Wald [6] (see Ref. [7] for a review of recent
developments). Other possible effects on the inspiraling
particle, such as tidal perturbations of the central black
hole, spin-orbit and spin-spin couplings, electromagnetic

interactions, and so on, can also be treated as forces acting
on the body.

Although significant progress has been made in calcu-
lating these effects (see Ref. [8] for a recent review of work
on EMRIs), there has been no attempt to formulate a
general method of determining and characterizing the re-
sulting motion. Implementing the first-order gravitational
self-force brings a particular difficulty: The self-force on a
particle is a functional of the particle’s worldline, which for
the first-order calculation is assumed to be a geodesic.
However, the true motion is never geodesic, because of
the self-force. Thus, the effect of the self-force must some-
how be determined with reference to a fictitious geodesic
worldline.

In this paper we present a method to integrate the
equations of motion that govern accelerated motion in
Schwarzschild spacetime. The method can be used for a
wide class of perturbing forces; the only restrictions are
that the force must keep the orbital motion bounded be-
tween a minimum and a maximum radius (the method is
not suitable for the final portion of an orbit that plunges
into the black hole), and that it must be acting within the
plane of the orbit (although the method could be easily
extended to accommodate nonplanar motion). Within these
restrictions the force is arbitrary, and, in particular, it is not
assumed to be small. Our method is a relativistic extension
of the traditional method of osculating orbits, also called
the method of variation of constants, in Newtonian celes-
tial mechanics (see, e.g., Refs. [9,10]). In this method the
true worldline z��� is taken to lie tangent to a geodesic
zG��� at each value of the orbital parameter �, such that the
true orbit moves smoothly from one geodesic to the next.
The instantaneously tangential geodesics are referred to as
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osculating orbits (meaning ‘‘kissing orbits’’). A geodesic is
characterized by a set of constants IA, called orbital ele-
ments, and the transition between osculating orbits corre-
sponds to changes in these elements; thus, the method of
osculating orbits amounts to parametrizing the true world-
line as an evolving geodesic with dynamical orbital ele-
ments IA���.

Because it explicitly determines the position and veloc-
ity of a tangential geodesic at each instant, this method
explicitly provides the information necessary to calculate
the first-order gravitational self-force at each instant. Our
method is therefore very well suited to the gravitational
self-force problem. It also has several more general advan-
tages. First, because the orbital elements are constant on a
geodesic, the method clearly separates perturbative from
nonperturbative effects. (Throughout this paper the accel-
erated motion of the particle is referred to as a perturbation
of the geodesic motion. However, this is only to distinguish
effects of acceleration from effects on a geodesic; the
‘‘perturbation’’ need not be small.) Second, although the
orbital elements are equivalent to the set of initial condi-
tions, they are typically chosen so as to provide direct
geometric information about the orbit. If the perturbing
force is very weak, then the perturbed orbit will lie very
close to a geodesic for a long period of time, and changes in
the orbital elements will characterize changes in the ge-
ometry of the orbit. Thus, although our method is exact, it
is perhaps most useful in the context of small perturbations.
Third, the orbital elements divide into two classes. The first
class includes the principal orbital elements; these are
equivalent to constants of the motion such as energy and
angular momentum, and they determine the geodesic on
which the particle is moving. The second class includes the
positional orbital elements, which determines the particle’s
initial position on the selected geodesic, as well as the
geodesic’s spatial orientation. Generally speaking, long-
term changes in the principal orbital elements are produced
by dissipative terms in the perturbing force, while long-
term changes in the positional elements are produced by
conservative terms. Thus, this division into two classes
allows one to easily separate conservative from dissipative
effects of the perturbing force.

We note that this general idea of characterizing orbital
evolutions by changes in the ‘‘constants’’ of motion has
been used frequently in analyzing the effects of radiation
reaction. Such analyses have typically focused on changes
in the principal elements alone, neglecting the changes in
positional elements, and rarely mentioning the general
framework of osculating orbits. However, there have
been at least two notable generalizations of the method
of osculating orbits from Newtonian to relativistic mechan-
ics: the adaptation of the method by Damour et al. to post-
Newtonian binary systems [11,12], and the formulation
proposed by Mino for orbits around a Kerr black hole
[13]. The formulation by Damour et al. is complete and

easy to implement, but it is limited to the post-Newtonian
regime. Mino’s formulation is valid for arbitrary bound
orbits in Kerr, and it was undoubtedly useful for Mino’s
own purposes, but we believe that a concrete implementa-
tion of his method would not be very practical. The reason
is that Mino expresses the orbits as formal Fourier expan-
sions with unknown convergence behavior, in terms of
coefficients that would be difficult to calculate in practice.
It may well be that the complexity of geodesics in Kerr
make a more practical parametrization impossible, but as
we shall demonstrate in this paper, we can do much better
for orbits in Schwarzschild spacetime. Given the limita-
tions of previous work, we believe that it is timely to
present here a practical formulation of the method of
osculating orbits for bound motion in Schwarzschild
spacetime. We shall first present an outline of the general
method in relativistic mechanics and its connection to the
traditional method in Newtonian mechanics, and we shall
next specialize the method to the case of bound orbital
motion in Schwarzschild spacetime.

B. Test case: Post-Newtonian binaries

We demonstrate the usefulness of our method by apply-
ing it to the relatively simple system of two compact bodies
of mass m1 and m2 � m1 in the post-Newtonian regime.
The equations of motion for the spatial positions xa1 and xa2
of the bodies have been determined in harmonic coordi-
nates to 3.5PN order (i.e., of order �v=c�7 beyond the
Newtonian description) [3]. Conservative terms appear at
1PN, 2PN, and 3PN orders, and dissipative terms appear at
2.5PN and 3.5PN orders. Since the essential features of the
problem are already present at 2.5PN order, we truncate the
equations at that order for simplicity. These equations are
valid for arbitrary mass ratios, but we focus on the extreme
case in order to link our results to the self-force problem.

In order to analyze this system of equations with our
method of osculating orbits, we use the hybrid equations of
motion constructed by Kidder, Will, and Wiseman [14].
These equations take the schematic form

 

d2xa

dt2
� �

M

r2 �1� SCHW��PF�: (1)

The spatial separation vector xa � xa1 � x
a
2 connects the

two bodies, and M � m1 �m2 and � � m1m2=M are,
respectively, the total mass and reduced mass of the sys-
tem. The terms in SCHW are the exact relativistic correc-
tions to Newton’s law in a Schwarzschild spacetime of
massM, so that d

2xa

dt2
� �M

r2 �1� SCHW� is the exact equa-
tion for a test particle in that spacetime. The terms in �PF
are those in the post-Newtonian expansion that depend
explicitly on the reduced mass of the system (PF stands
for ‘‘perturbing force’’). Since the extra terms introduced
within SCHW are of 3PN order and higher, the hybrid
equations remain correct at 2.5PN order. However, they
differ from the usual post-Newtonian equations in that they
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become exact in the test-mass limit �! 0. This allows us
to apply our method to the post-Newtonian system by
taking our osculating orbits to be geodesics in the fictitious
Schwarzschild spacetime of mass M, and by deriving our
perturbing force from �PF.

The force derived in this way is a form of the gravita-
tional self-force, since it is produced by finite-mass effects.
However, it differs nontrivially from the post-Newtonian
limit of the relativistic self-force: First, the self-force is a
gauge-dependent quantity which is typically calculated in
the Lorenz gauge, while the hybrid equations of motion are
derived within the harmonic gauge of post-Newtonian
theory. Second, the Lorenz gauge ensures that the coordi-
nates of the small body are defined in relation to the
system’s center of mass [15], while here we use coordi-
nates relative to the large mass. And third, our geodesics
are in a fictitious Schwarzschild spacetime of mass M �
m1 �m2 and not in the background spacetime of the
second body (of mass m2). The last two differences could
be easily removed by formulating an alternative set of
hybrid equations, but the gauge difference cannot be easily
dealt with.

Given these differences, our method of osculating ele-
ments is used in this paper primarily as a practical means to
integrate the hybrid equations of motion. Nevertheless, the
perturbing force that we derive and the gravitational self-
force share many essential features. In particular, the self-
force can be expected to have conservative terms at 0PN
(the Newtonian level), 1PN, and 2PN orders, etc., and
dissipative terms at 2.5PN (corresponding to quadrupole
radiation) and 3.5PN orders, etc.; our perturbing force has
exactly the same features, except for the Newtonian cor-
rection, which is implicitly accounted for by working in
terms of total and reduced masses. Thus, we can hope to
draw some reasonable conclusions about the action of the
gravitational self-force from our simplified analysis.

Our focus will be on detailing the limitations and ambi-
guities of two approximation schemes, following our
analysis of the post-Newtonian electromagnetic self-force
in Refs. [16,17]. The first scheme of interest lies within the
broad class of adiabatic approximations, which rest on the
assumption that the accelerated orbit deviates only
‘‘slowly’’ from the geodesic orbit. In particular, they com-
monly assume that any period of the motion is much
shorter than the radiation-reaction timescale of the inspiral,
allowing one to eliminate irrelevant short-term oscillations
and keep only secular effects. Based on this assumption, an
explicit implementation of such an approximation will
typically involve some type of averaging, either in the
form of direct averaging of the equations of motion or
via a two-timescale expansion. For clarity, we will refer
to this averaging method, which is just a specific type of
adiabatic approximation, as a secular approximation.
Using the hybrid equations of motion, we show in
Sec. III B that the secular approximation introduces ambi-

guities in the choice of (a) initial conditions and (b) the
variable to be averaged over. Our results suggest that
different choices can significantly affect long-term behav-
ior, and our conclusion is that while the idea of a secular
approximation is attractive, the precise construction of one
presents significant difficulties.

We shall also examine the (pseudoadiabatic) radiative
approximation, which uses the radiative (half-retarded mi-
nus half-advanced) solution to the linearized Einstein
equation. As shown by Mino [18], the self-force calculated
from the radiative field approximately reproduces the long-
term dissipative effects of the true self-force. Largely based
on this result, it was believed that the radiative approxi-
mation would produce a valid adiabatic approximation to
the true evolution. This notion has led to a confusing
nomenclature in the literature, in which adiabatic and
radiative approximations are treated synonymously. Since
the radiative approximation introduces errors beyond those
of an adiabatic approximation [16,17], we find it mislead-
ing to identify the two. We insist here that the radiative
approximation is logically distinct from the class of
adiabatic approximations introduced in the preceding
paragraph.

Because of its simplicity, the radiative approximation
has been utilized by several groups in analyzing EMRIs
[19,20]. Unfortunately, the radiative self-force neglects all
conservative effects of the true self-force. In the framework
of osculating orbits, this translates into neglecting long-
term changes in the positional orbital elements. (Although
Mino has given prescriptions for finding these long-term
changes using only the radiative self-force [13,18], his
prescriptions are highly ambiguous in practice [21].) As
pointed out in Ref. [20], the radiative approximation may
have some utility despite this error, and, in particular, it
may be sufficient to generate templates for the detection of
a gravitational-wave signal. But it is unlikely that it will be
sufficiently accurate for reliable parameter estimation.
Because of the potential usefulness of the approximation,
determining its limitations is quite important. In this paper
we find that neglecting conservative effects leads to long-
term errors in the phase and time dependence of the orbit;
this agrees with and extends our earlier results [16,17]. The
errors in the time dependence are of particular importance,
as they apply even to the evolution of the principal orbital
elements.

C. Organization of this paper

In Sec. II A we introduce the general method of osculat-
ing orbits. We then restrict our analysis in Secs. II B and
II C to bound planar orbits in Schwarzschild spacetime.
Section II B presents a parametrization of bound geodesics
in terms of five orbital elements, and Sec. II C uses the
osculation condition to find evolution equations for these
orbital elements. In the second part of our paper, we apply
our method to the hybrid Schwarzschild/post-Newtonian
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equations of motion, which are presented in Sec. III A. The
results of using a secular or radiative approximation are
then displayed and discussed in Sec. III B.

II. METHOD OF OSCULATING ORBITS

A. Osculation condition

We first consider the completely general situation of a
point particle moving on an arbitrary worldline z����
parametrized by �. We define the acceleration f�, or force
per unit mass, acting on the particle via the equation of
motion

 �z � � ���� _z� _z� � f�; (2)

where an overdot indicates a derivative with respect to the
proper time � on the worldline. The normalization condi-
tion _z� _z� � �1 implies the orthogonality condition
f� _z� � 0, which will be essential for later calculations.
The relation between f� and the Newtonian perturbing
force is discussed in Appendix A.

Using the relations _z� � dz�
d�

_� and �z� � d2z�

d�2
_�2 � dz�

d�
��,

the equation of motion becomes

 

d2z�

d�2
� ����

dz�

d�
dz�

d�
� f�

�
d�
d�

�
2
� ����

dz�

d�
; (3)

where � � � ��= _�2. The first term on the right-hand side is
due to the force acting on the particle, while the second
term is present whenever � is a nonaffine parameter.

Our goal is to transform the equation of motion (3) into
evolution equations for a set of orbital elements IA. That is,
we seek a transformation fz�; _z�g ! IA. Letting z�G�I

A; ��
be a geodesic with orbital elements IA, the osculation
condition states the following:

 z���� � z�G�I
A���; ��; (4)

 

dz�

d�
��� �

@z�G
@�
�IA���; ��; (5)

where the partial derivative in the second equation holds IA

fixed. These two equations assert that at each value of �we
can find a set of orbital elements IA��� such that the
geodesic with those elements has the same position and
velocity as the accelerated orbit. We can freely make this
assertion because the number of orbital elements is equal to
the number of degrees of freedom on the orbit.

As a consequence of the osculation condition, all rela-
tions that are obtained using only algebraic manipulations
of coordinates and velocities on a geodesic are also valid
on the true orbit. However, it is important to note that � is
altered by the acceleration of the worldline, because it
involves second derivatives. Hence, an expression for
���� that is valid on an osculating geodesic will not be
valid on the tangential accelerated orbit. Nevertheless, �� �
0 for an affine parameter � on both orbits, so affine
parameters remain affine.

Now, combining the osculation condition with the equa-
tions of motion generates evolution equations for IA. From
Eq. (4) we have that dz

�

d� �
dz�G
d� , which implies dz�

d� �
@z�G
@� �

@z�G
@IA

dIA
d� , where the index A is summed over. Comparing this

result with Eq. (5), we find

 

@z�G
@IA

dIA

d�
� 0: (6)

Furthermore, z�G satisfies the geodesic equation

 

@2z�G
@�2

� ����
@z�G
@�

@z�G
@�
� �G���

@z�G
@�

; (7)

where �G��� is the measure of nonaffinity of � on the
geodesic. Subtracting this geodesic equation from the
equation of motion (3) and using Eq. (5) to remove the
Christoffel terms, we obtain

 

d2z�

d�2
�
@2z�G
@�2 � f

�
�
d�
d�

�
2
� ����� � �G����

@z�G
@�

: (8)

But differentiating Eq. (5) yields d
2z�

d�2 �
@2z�G
@�2 � �

@
@IA

@z�G
@� �

dIA
d� .

Comparing these results, we find

 

�
@

@IA
@z�G
@�

�
dIA

d�
� f�

�
d�
d�

�
2
� ����� � �G����

@z�G
@�

: (9)

Equations (6) and (9) form a closed system of first-order
differential equations for the orbital elements IA. Two
sources of change in the orbital elements are apparent: a
direct source due to the perturbing force f�, and an indirect
source due to the change in the affinity of the parametri-
zation of the accelerated orbit. Determining this second
effect in practice may be somewhat difficult. However, if
we use the affine parameter � � � then the equations
simplify to

 

@z�G
@IA

_IA � 0; (10)

 

@ _z�G
@IA

_IA � f�: (11)

These equations can be easily inverted to solve for the
derivatives _IA, which is done in Sec. II C. If a nonaffine
parameter � is required in a specific application, one may
easily find dIA

d� by multiplying the above equations by d�
d� ,

which will also be done in Sec. II C.

B. Geodesics in Schwarzschild spacetime

We now focus on the specific case of bound orbits in
Schwarzschild spacetime. The osculating orbits in this case
are bound geodesics, for which we use the parametrization
presented in the text by Chandrasekhar [22] and described
in detail in Ref. [23]. This parametrization is given in
Schwarzschild coordinates and can be easily derived as
follows.
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Because of the spherical symmetry of the Schwarzschild
spacetime, we can freely set � � 	=2. The geodesic equa-
tions in a Schwarzschild spacetime with mass parameter M
can be easily solved for the remaining coordinates to find

 

_t � E=F; (12)

 

_r 2 � E2 �Ueff ; (13)

 

_
 �
L

r2 ; (14)

where F � 1� 2M=r, E, and L are constants equal to
energy and angular momentum per unit mass, respectively,
the effective potential is Ueff � F�1� L=r2�, and an over-
dot represents a derivative with respect to the proper time �
on the orbit.

We are interested in bound orbits that oscillate between a
minimal radius r1 and a maximal radius r2, respectively
referred to as periapsis and apoapsis. Adapting the tradition
of celestial mechanics, we define the (dimensionless) semi-
latus rectum p and the eccentricity e such that the turning
points are given by

 r1 �
pM

1� e
; (15)

 r2 �
pM

1� e
; (16)

where 0 	 e < 1. These two constants describe the geome-
try of the orbit, just as in Keplerian orbits: p is a measure of
the radial extension of the orbit, while e is a measure of its
deviation from circularity. These constants can be related
to E and L by letting _r � 0 in Eq. (13), which leads to

 E2 �
�p� 2� 2e��p� 2� 2e�

p�p� 3� e2�
; (17)

 L2 �
p2M2

p� 3� e2 : (18)

Continuing to exploit the analogy with Keplerian orbits,
we introduce a parameter � that runs from 0 to 2	 over one
radial cycle, such that r��� takes the elliptical form

 r��� �
pM

1� e cos��� w�
; (19)

where w is the value of � at periapsis, referred to as the
argument of periapsis. The radial component of the veloc-
ity is hence

 r0��� �
pMe sin��� w�

�1� e cos��� w��2
; (20)

where a prime henceforth indicates a derivative with re-
spect to �.

From these results we can relate the parameter � to the
proper time � using d�

d� �
r0
_r , which yields

 

d�
d�
�

p3=2M�p� 3� e2�1=2

�p� 6� 2e cosv�1=2�1� e cosv�2
; (21)

where we have introduced the variable

 v 
 �� w (22)

for brevity. Along with Eqs. (12), (14), (17), and (18), this
leads to the following parametrizations for t��� and 
���:

 
��� � ��
Z �

w

0�~��d~�; (23)

 
0��� �

�����������������������������������
p

p� 6� 2e cosv

s
; (24)

 t��� � T �
Z �

w
t0�~��d~�; (25)

 t0��� �
p2M

�p� 2� 2e cosv��1� e cosv�2

�

������������������������������������������������������
�p� 2� 2e��p� 2� 2e�

p� 6� 2e cosv

s
; (26)

where we have defined the constants T and � as the values
of t and 
 at periapsis, respectively.

Our parametrization of bound geodesics consists of
Eqs. (19), (20), and (23)–(26). We see that a geodesic is
uniquely specified by the orbital elements IA �
fp; e;w; T;�g. The principal elements p and e determine
the spatial shape of the orbit and are equivalent to speci-
fications of energy and angular momentum; they determine
the choice of geodesic. The positional elements w, T, and
� determine the spatial orientation and time dependence of
the orbit; they determine the starting point of the particle
on the selected geodesic. All together, the specification of
the orbital elements is equivalent to the specification of
initial values for the position and velocity of the particle.
We need three initial positions for a planar orbit, and we
need two initial velocities (three minus one, by virtue of the
normalization condition on the velocity vector); this count-
ing matches the number of orbital elements.

We note that our choice of orbital elements is closely
related to Mino’s in Ref. [13]. When the orbital motion is
restricted to the equatorial plane of a Kerr black hole, Mino
uses the principal elements E and L and positional ele-
ments that are identical to our w, T, and �. To use �p; e�
instead of �E;L� is mostly a matter of taste; we believe that
the set �p; e� is more useful than �E;L� because it gives a
simpler parametrization, and because p and e are geomet-
rically more informative. In the following subsection we
will deviate more strongly from Mino’s parametrization:
for reasons that will be explained, we shall avoid directly
evolving the elements T and �.

All the equations presented in this section remain valid
for a perturbed orbit, with the exception of Eqs. (15) and
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(16), which lose their meaning. The alteration that we shall
make to account for the perturbation is that in each equa-
tion, the orbital elements will become functions of �.

C. Evolution equations

If we restrict the perturbing force to lie in the plane of
the orbit, and assume that the orbit remains bound, then the
geodesics described in the last section form a sufficient set
of osculating orbits. Using our parametrization of these
geodesics, along with the results of our general analysis in
Sec. II A, we can now find evolution equations for the
orbital elements. Multiplying both sides of Eq. (10) by
d�
d� , we find

 

@r
@p

p0 �
@r
@e
e0 �

@r
@w

w0 � 0; (27)

 

@t
@p

p0 �
@t
@e
e0 �

@t
@w

w0 � T0 � 0; (28)

 

@

@p

p0 �
@

@e

e0 �
@

@w

w0 ��0 � 0: (29)

Similarly, from Eq. (11) we find

 

@ _t
@p

p0 �
@ _t
@e
e0 �

@ _t
@w

w0 � ft�0; (30)

 

@ _r
@p

p0 �
@ _r
@e
e0 �

@ _r
@w

w0 � fr�0; (31)

 

@ _

@p

p0 �
@ _

@e

e0 �
@ _

@w

w0 � f
�0: (32)

The orthogonality condition f� _z� � 0 allows us to re-
move one component of Eq. (11) from the set of equations;
we use this freedom to remove Eq. (30). The remaining
equations decouple into a closed system of ordinary dif-
ferential equations for p, e, and w and two auxiliary
equations for T and �. We shall find that the evolution
equations for p, e, and w are simple. The equations for T
and �, however, are not: Factors such as @t

@p in Eqs. (28) and

(29) introduce elliptic integrals of the form
R
�
w
@t0
@p �~��d~�

into the expressions for T0 and �0. These integrals would

have to be evaluated at each time step in a numerical
evolution, and they would create an excessive computa-
tional cost. Additionally, the integrals generally grow lin-
early with�, and this produces terms in T��� and ���� that
grow quadratically with �, as well as terms that oscillate
with a linearly increasing amplitude. Such terms greatly
confuse both numerical and analytical descriptions, and
they are largely an artifact of our parametrization. (This
statement applies also to Mino’s parametrization [13].)
We note that similar (though less severe) difficulties arise
also in the method of osculating orbits in Newtonian
celestial mechanics; refer, for example, to the discussion
on pp. 248–250 in the text by Beutler [10]. In the
Newtonian context, alternative orbital elements are typi-
cally selected so as to overcome these problems. With no
obvious choice of alternative elements in the relativistic
context, we opt instead to directly evolve the coordinates t
and 
 rather than the elements T and �.

Our phase space thus consists of fp; e;w; t;
g. This
choice of phase space does not allow an easy separation
of perturbative from geodesic effects in the evolutions of t
and 
, nor does it allow a clean separation of conservative
from dissipative effects. But it is overwhelmingly more
convenient than the alternative choice fp; e;w; T;�g. If T
and � are required in an application, they may be found as,
e.g., T � t�

R
�
w t
0�~��d~�. This may be necessary if initial

conditions are required on an osculating orbit, or if one
wishes to fully isolate perturbative effects.

Solving for w0 from Eq. (27), and noting that @r
@w � �r

0,
we find

 w0 �
1

r0

�
@r
@p

p0 �
@r
@e
e0
�
: (33)

Substituting this into Eqs. (30) and (32), we can solve for
p0 and e0 to find

 p0 �
Le�
�fr �Le�r�f


Le�
�Lp�r� �Le�r�Lp�
�
�0; (34)

 e0 �
Lp�r�f


 �Lp�
�f
r

Le�
�Lp�r� �Le�r�Lp�
�
�0; (35)

where La�x� 

@ _x
@a�

1
r0
@r
@a

@ _x
@w . Explicitly, the results are

 p0 �
2p7=2M2�p� 3� e2��p� 6� 2e cosv�1=2�p� 3� e2cos2v�

�p� 6� 2e��p� 6� 2e��1� e cosv�4
f
 �

2p3Me�p� 3� e2� sinv

�p� 6� 2e��p� 6� 2e��1� e cosv�2
fr;

(36)

 

e0 �
p5=2M2�p� 3� e2�f�p� 6� 2e2���p� 6� 2e cosv�e cosv� 2�p� 3�� cosv� e�p2 � 10p� 12� 4e2�g

�p� 6� 2e��p� 6� 2e��p� 6� 2e cosv�1=2�1� e cosv�4
f


�
p2M�p� 3� e2��p� 6� 2e2� sinv

�p� 6� 2e��p� 6� 2e��1� e cosv�2
fr; (37)
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 w0 �
p5=2M2�p� 3� e2�f�p� 6���p� 6� 2e cosv�e cosv� 2�p� 3�� � 4e3 cosvg sinv

e�p� 6� 2e��p� 6� 2e��p� 6� 2e cosv�1=2�1� e cosv�4
f


�
p2M�p� 3� e2���p� 6� cosv� 2e�

e�p� 6� 2e��p� 6� 2e��1� e cosv�2
fr: (38)

These equations could be rewritten in any number of ways,
in terms of alternative linear combinations of ft, fr, and
f
, by using the orthogonality relation f� _z� � 0, which
has the explicit form

 Ft0ft � F�1r0fr � r2
0f
 � 0: (39)

The result of such a rearrangement might in fact be sim-
pler, but it may also be ill behaved from a numerical point
of view. One such alternative combination is given in
Appendix B.

Our first formulation of the method of osculating orbits
is complete. We have first-order evolution equations for
each one of the dynamical variables in the set
fp; e;w; t; 
g; the equations for t and 
 were obtained in
the preceding subsection, and for convenience they are
reproduced here:

 t0 �
p2M

�p� 2� 2e cosv��1� e cosv�2

�

������������������������������������������������������
�p� 2� 2e��p� 2� 2e�

p� 6� 2e cosv

s
; (40)

 
0 �

�����������������������������������
p

p� 6� 2e cosv

s
: (41)

Equations (36)–(38), form a complete set of equations for
p���, e���, andw���; once these functions are known, t���
and 
��� can be obtained from the remaining two equa-
tions. We recall that v � �� w���.

One may note that w0 diverges as e! 0. This corre-
sponds to the fact that w loses its geometric meaning for
circular orbits. To overcome this difficulty we can again
follow celestial mechanics and define alternative orbital
elements � � e sinw and � � e cosw. The radial coordi-
nate in terms of these elements is

 r �
pM

1����
; (42)

where � � � sin� and � � � cos� are introduced for the
sake of brevity in later expressions. While � and � do not
possess a clear geometric meaning, which limits their
usefulness for generic orbits, they do allow one to analyze
small-eccentricity or quasicircular orbits. Their evolution
equations can be easily calculated as �0 � e0 sinw�
ew0 cosw and �0 � e0 cosw� ew0 sinw. Using the identi-
ties e cosv � � sin�� � cos� and e sinv � � sin��
� cos� to simplify the results, we find

 

�0 �
p5=2M2�p� 3� �2 � �2�f
����������������������������������������

p� 6� 2�����
p

��p� 6�2 � 4��2 � �2���1�����4
�

�
�4�

�
�� cos2��

1

2
��2 � �2� sin2�

�

� �2�p� 3� � �p� 6������ � 2�����2���p� 6� cos�� 2������� � ��p2 � 10p� 12� 4��2 � �2��

�

�
p2M�p� 3� �2 � �2���p� 6� 2�2� sin�� 2��1����fr

��p� 6�2 � 4��2 � �2���1�����2
; (43)

 

�0 �
p5=2M2�p� 3� �2 � �2�f
����������������������������������������

p� 6� 2�����
p

��p� 6�2 � 4��2 � �2���1�����4
�

�
4�
�
�� cos2��

1

2
��2 � �2� sin2�

�

� �2�p� 3� � �p� 6������ � 2�����2���p� 6� sin�� 2������� � ��p2 � 10p� 12� 4��2 � �2��

�

�
p2M�p� 3� �2 � �2���p� 6� 2�2� cos�� 2��1����fr

��p� 6�2 � 4��2 � �2���1�����2
: (44)

To evolve our full system we must also express p0, t0, and 
0 in terms of � and �:
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 p0 �
2p7=2M2

����������������������������������������
p� 6� 2�����

p
�p� 3� �2 � �2��p� 3� �����2�f


��p� 6�2 � 4��2 � �2���1�����4

�
2p3M�p� 3� �2 � �2��� sin�� � cos��fr

��p� 6�2 � 4��2 � �2���1�����2
; (45)

 t0��� �
p2M

������������������������������������������������
�p� 2�2 � 4��2 � �2�

p
�p� 2� 2������

����������������������������������������
p� 6� 2�����

p
�1�����2

; (46)

 
0��� �

����������������������������������������
p

p� 6� 2�����

s
: (47)

This is our second formulation of the method of osculating
orbits. The first formulation involves shorter equations, but
it becomes ill behaved when e is small. The second for-
mulation is well behaved, but it involves longer equations.

III. POST-NEWTONIAN BINARIES

A. Hybrid equations of motion

We now move on to a concrete application of our
method by considering the post-Newtonian binary system
introduced in Sec. I B. This system consists of two
gravitationally-bound bodies of mass m1 and m2, with
equations of motion derived to 2.5PN order in a post-
Newtonian expansion; because we are interested in self-
force effects, we take the ratio m1=m2 to be small, and we
neglect the spin of the bodies. In this section we explain
how such a system can be analyzed with our method of
osculating orbits.

Our analysis is based upon the hybrid equations of
motion presented in Ref. [14]. These equations begin
with the 2.5PN equations of motion for each one of the
two bodies. Within the center-of-mass frame the relative
motion of the two bodies is governed by the closed system
of equations [24]

 

d2xah
dt2

� �
M

r2
h

�
A
xah
rh
� B

dxah
dt

�
; (48)

where xah 
 xa1 � x
a
2 is a Cartesian spatial vector from m2

to m1 in harmonic coordinates, r2
h � �abxaxb is the square

of the vector’s Euclidean magnitude, t is a harmonic time
coordinate, and M � m1 �m2 is the total mass of the
system. The functions A and B depend only on the total
mass M, the reduced mass � � m1m2=M, and the relative
coordinates and velocities. They can be written as A �
AM �  ~A and B � BM �  ~B, where  � �=M and terms
with a subscriptM are independent of�. The�-dependent
terms are quadratic in , and they can be further decom-
posed into post-Newtonian orders as ~A � ~A1 � ~A2 � ~A2:5
and ~B � ~B1 � ~B2 � ~B2:5. Explicitly, these have the form

 AM � 1� 4
M
rh
� v2 � 9

�
M
rh

�
2
� 2

M
rh

�
drh
dt

�
2
; (49)

  ~A1 � �
�

2
M
rh
� 3v2 �

3

2

�
drh
dt

�
2
�
; (50)

 

 ~A2 � 
�

87

4

�
M
rh

�
2
� �3� 4�v4 �

1

2
�13� 4�

M
rh
v2

�
3

2
�3� 4�v2

�
drh
dt

�
2
�

15

8
�1� 3�

�
drh
dt

�
4

� �25� 2�
M
rh

�
drh
dt

�
2
�
; (51)

  ~A2:5 � �
8

5

M
rh

drh
dt

�
3v2 �

17

3

M
rh

�
; (52)

 BM � �
drh
dt

�
4� 2

M
rh

�
; (53)

  ~B1 � 2
drh
dt
; (54)

 

 ~B2 � �
1

2

drh
dt

�
�15� 4�v2 � �41� 8�

M
rh

� 3�3� 2�
�
drh
dt

�
2
�
; (55)

  ~B2:5 �
8

5

M
rh

�
v2 � 3

M
rh

�
; (56)

where v2 
 �ab
dxah
dt

dxbh
dt is the square of the velocity vector

in harmonic coordinates.
The hybrid equations are inspired by the fact that when

 � 0, Eq. (48) becomes identical to a 2PN expansion of
the geodesic equation in a Schwarzschild spacetime with
mass parameter M. Building on this fact, Kidder, Will, and
Wiseman [14] replaced AM and BM with their exact geo-
desic expressions AS and BS in the fictitious Schwarzschild
spacetime. In other words, the hybrid equations of motion
are given by Eq. (48) after substituting A � AS �  ~A and
B � BS �  ~B, where

 AS �
1�M=rh
�1�M=rh�

3 �
2�M=rh
1�M2=r2

h

M
rh

�
drh
dt

�
2
� v2; (57)
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 BS � �
4� 2M=rh
1�M2=r2

h

drh
dt
: (58)

The resulting equations are accurate to 2.5PN order, but in
the test-mass limit m1 ! 0 they exactly describe the orbit
of the test mass in the Schwarzschild spacetime of the other
body. These equations form an ideal test case for our
method of osculating orbits because, besides their relative
simplicity, they explicitly split into geodesic terms and
perturbation terms. This allows us to construct osculating
orbits as geodesics in the fictitious Schwarzschild space-
time of mass M. We can then easily derive the perturbing
force from the terms ~A and ~B.

The first step in this process is to write the equations of
motion in plane polar coordinates �rh;
�, which are de-
fined by x1

h � rh cos�
� and x2
h � rh sin�
�. In terms of

these coordinates, Eq. (48) becomes

 

d2rh
dt2

� �
M

r2
h

�
A� B

drh
dt

�
� rh

�
d

dt

�
2
; (59)

 

d2


dt2
� �

M

r2
h

B
d

dt
�

2

rh

drh
dt

d

dt
: (60)

The harmonic coordinates used here are related to
Schwarzschild coordinates by the simple transformation
rh � r�M. Since M is constant, the subscript h can be
safely dropped within derivatives. Expressing rh in terms
of r, the above equations are transformed into
Schwarzschild coordinates.

We derive f� from these equations as follows. From
Eq. (3) we have

 f� � _t2
�
d2z�

dt2
� ����

dz�

dt
dz�

dt
� ��t�

dz�

dt

�
: (61)

Although we could calculate ��t� directly from its defini-
tion, the result would be unwieldy. We instead use the
equation of motion for t,

 

d2t

dt2
� �t��

dz�

dt
dz�

dt
� ft _t�2 � �

dt
dt
; (62)

to replace � with

 � � �t��
dz�

dt
dz�

dt
� ft _t�2: (63)

Substituting this expression for � into Eq. (61), we find

 f� � _t2a�p �
dz�

dt
ft; (64)

where

 a�p 

d2z�

dt2
�

�
���� �

dz�

dt
�t��

�
dz�

dt
dz�

dt
: (65)

The subscript p refers to the fact that a�p involves only the
perturbative terms in d2z�=dt2. Indeed, a simple calcula-

tion based on the preceding equations for d2r=dt2 and
d2
=dt2, as well as the Christoffel symbols obtained
from the Schwarzschild metric, reveals that

 arp � �
M

r2
h

�
 ~A�  ~B

dr
dt

�
; (66)

 a
p � �
M

r2
h

 ~B
d

dt
: (67)

Equation (64) determines fr and f
 in terms of ft. The
orthogonality condition (39) then allows us to find all three
components of the force. The result is

 ft �
_t2�arp

dr
dt � a



p r2F d


dt �

F2 � �drdt�
2 � Fr2�d
dt �

2
; (68)

 fr �
_t2�arp�F� r2�d
dt �

2� � a
p r2 dr
dt

d

dt �

F�1�F2 � �drdt�
2 � Fr2�d
dt �

2�
; (69)

 f
 �
_t2�arp

dr
dt

d

dt � a



p �F2 � �drdt�

2��

F2 � �drdt�
2 � Fr2�d
dt �

2
: (70)

Substituting a�p into the above results, and using the nor-
malization condition �1 � _z� _z� � �F _t2 � F�1 _r2 �

r2 _
2, leads to
 

fr � �
M _t4

r2
h

f�F� r2�d
=dt�2� ~A� F�dr=dt� ~Bg;

f
 � �
M _t4

r2
h

d

dt
fF�1�dr=dt� ~A� F ~Bg:

(71)

Since ft is not required in our formalism, we will not
provide an explicit expression for it.

We can recast these equations in a form analogous to
that of Eqs. (59) and (60),

 fr � �
�

r2

�
A�B

dr
dt

�
; (72)

 f
 � �
�

r2 B
d

dt
; (73)

by defining A and B as

 A �
_t2

�1�M=r�2
~A; (74)

 B �
_t4

�1�M=r�2

�
1

F
dr
dt

~A� F ~B
�
: (75)

The factors of _t convert the ‘‘time’’ variable in the accel-
eration from coordinate time to proper time; this is given
by
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_t 2 �
1

F� F�1�dr=dt�2 � r2�d
=dt�2
; (76)

where, we recall, F � 1� 2M=r. The factors of 1=�1�
M=r�2, on the other hand, convert from harmonic coordi-
nates to Schwarzschild coordinates. One could incorporate
these factors into each ~Ai and ~Bi and then reexpand these in
powers of M=r to find new expressions for Ai and Bi,
neglecting terms of 3PN order and higher; but since the
hybrid equations already introduce errors above 2.5PN
order, doing so is unnecessary. Thus, for simplicity we
shall use the force in its above form.

The final expression for the perturbing force is obtained
by substituting the post-Newtonian expansions for ~A and ~B
into Eqs. (74) and (75); the relevant equations are listed
near the beginning of Sec. III A. In these equations we must
make the substitution rh � r�M, and convert t deriva-
tives into � derivatives by employing Eq. (26). In these
final forms, the expressions for fr and f
 are ready to be
inserted within the evolution equations for the orbital
elements.

B. Results

1. Adiabatic, secular, and radiative approximations

We are primarily interested in determining the types of
errors introduced by the adiabatic and radiative approxi-
mations. We should first clarify the meaning of these
approximations. The basis of both approximations in the
context of osculating orbits is the separation of orbital
elements into secular and oscillating parts, i.e., IA � IAsec �
IAosc. The particular adiabatic approximation that we are
concerned with, which we have titled ‘‘secular approxima-
tion,’’ is one which eliminates the oscillations and keeps
only the secular behavior; that is, it uses an approximate
orbital evolution with IAadb � IAsec. A radiative approxima-
tion uses only dissipative terms in the perturbing force,
with orbital elements IAr , with the hope that the secular part
IAr sec of this evolution reproduces IAsec.

Unfortunately, these general definitions are somewhat
ambiguous. We examine first the case of the secular ap-
proximation. The main source of ambiguity associated
with the general idea of removing oscillations is that it is
not clear which oscillations are intended to be removed.
For example, in the formalism presented in this paper,
removing the oscillations with respect to �will not remove
the oscillations with respect to t, and vice versa. This
failure is caused by the zeroth-order (i.e., geodesic) oscil-
lations in time as a function of �. Consequently, a secular
evolution defined by an average over the orbital parameter
�, such as

 IAsec � hIAi� 

1

2	

Z ��	

��	
IA��0�d�0; (77)

will differ from that defined by an average over time, such
as

 IAsec � hI
Ait 


R
��	
��	 I

A dt
d� d�

0R
��	
��	

dt
d� d�

0
: (78)

A precise definition of a secular approximation would have
to specify which averaging procedure is to be selected.

A second source of ambiguity concerns the choice of
initial conditions. We desire that our secular evolution
reproduces the average of the true evolution, and this
means that in general, the initial conditions placed on the
approximate solution will have to differ from the exact
initial conditions. This is because the exact solution con-
tains the secular approximation plus oscillations, and the
oscillations may not vanish at the initial time. Identifying
the correct initial conditions for the approximate evolution
therefore requires knowledge of the oscillations; in the
absence of such information—that is, when the exact
solution is not known—the initial conditions remain un-
known and the procedure is ambiguous. The ambiguity
persists even when the exact solution is known, because
it is then inherited from the first source of ambiguity, the
question as to which oscillations are to be removed. The
ambiguity associated with the initial conditions is lifted
only when the averaging procedure is selected, and when
the exact solution is known; the approximate initial con-
ditions are then calculated by averaging the exact evolution
over the first radial cycle. For example, in the case of an
averaging over � we would set IAsec�0� � �2	�

�1�R
2	
0 IA���d�.
We shall not pursue a detailed exploration of the ambi-

guities associated with the secular approximation in this
paper, although they are quite important; they are the focus
of a companion paper [17]. Our focus here will be instead
on the limitations and ambiguities of the radiative approxi-
mation. As was indicated previously, a radiative evolution
switches off all conservative terms in the perturbing force
( ~A1 � ~A2 � ~B1 � ~B2 � 0), and retains only the radiative
terms at 2.5PN order ( ~A2:5 � 0 and ~B2:5 � 0). This ap-
proximation is logically distinct from adiabatic approxi-
mations in general, but the hope formulated in the literature
(for example in Refs. [18–20]) is that the radiative evolu-
tion will reproduce the secular changes of the orbital
elements. We shall see that while the radiative approxima-
tion captures the secular changes in p��� and e���, it fails
to account for secular changes inw���, t���, and
���; this
conclusion confirms and extends those of our previous
work [16,17].

In addition, the radiative approximation is subject to the
same ambiguities regarding the choice of initial conditions
as the secular approximation. Writing the radiative evolu-
tion as the sum of its secular and oscillatory parts, IAr ��� �
IAr sec � I

A
r osc, we shall consider three possible candidates

for IAr �0�. The first is IAr �0� � IA�0�, the exact initial data
that is selected for the true evolution of the orbital elements
under the action of the full perturbing force. The second is
IAr sec � hIAi��0�, the �-averaged initial data, which iden-
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tifies the initial secular part of the radiative evolution with
the initial �-averaged part of the true evolution. The third
choice is IAr sec�0� � hIAit�0�, the t-averaged initial data,
which identifies the initial secular part of the radiative
evolution with the initial t-averaged part of the true evo-
lution. (We note that for both the second and third choices
of initial conditions, the initial value IAr �0� is not fixed by
IAr sec�0� alone, since we also require the initial value of
IAr osc. Although we do not have a priori access to this
oscillatory part, we can assign it an approximate initial
value based on the results of the radiative evolution with
exact initial conditions. This introduces a negligible error,
since the oscillations in the radiative evolution are ex-
tremely small in practice.) These three choices of initial
data are distinct, and they lead to different evolutions. We
shall see that the accuracy of the evolution (relative to the
true evolution) depends strongly on the choice of initial
data.

2. Orbital evolution

A typical inspiral of interest for LISA will form in a
highly eccentric state. Over the course of the inspiral the
system will emit gravitational radiation carrying away
energy and angular momentum, shrinking and circulariz-
ing the orbit over time. Thus, the inspiral will evolve from a
highly eccentric orbit to a quasicircular one, and it will end
in a rapid plunge. We shall now determine the validity of
the radiative approximation for this class of orbits. Since

our perturbing force is valid only in the post-Newtonian
regime, we always ensure that v2 & 0:1.

The general limitations of the radiative approximation
are demonstrated in Fig. 1, which displays the spatial
trajectories of a highly eccentric orbit and a quasicircular
orbit, along with corresponding radiative approximations.
In each case the true and approximate orbits are terminated
at identical final times, at which point the radiative ap-
proximation lags behind the true orbit. With a mass ratio of
�=M � 0:01, this dephasing of the two orbits is noticeable
after only 15 radial cycles in the eccentric case, while
several dozen revolutions are required in the quasicircular
case. Since the dephasing is apparent before any nongeo-
desic precession occurs, we interpret its cause to be con-
servative effects in the time dependence of the orbit. That
is, the error in t��� dominates over the errors in w��� and

���, such that the particle lies at the wrong spatial point at
a given time, even before r��� and 
��� have deviated
significantly from the true orbit.

For the plots in Fig. 1 we have chosen exact initial
conditions IA�0� for the approximate orbit. By choosing
averaged initial conditions we obtain better results in the
eccentric case: as shown in Fig. 2, using time-averaged
initial conditions hIAit�0� eliminates the dephasing on the
timescale of the plot. Using �-averaged initial conditions
hIAi��0� results in a smaller improvement, as we will
discuss below. However, in the quasicircular case all initial
conditions fare equally well.

 600

 400

 200

 0

 200

 400

 600

 600  400  200  0  200  400  600

y/
M

x/M

 10

 7.5

 5

 2.5

 0

 2.5

 5

 7.5

 10

 10  7.5  5  2.5  0  2.5  5  7.5  10

y/
M

x/M

FIG. 1 (color online). Comparisons of true orbits (solid black curves) and radiative approximation orbits (dashed green curve) with
identical initial conditions and with a mass ratio �=M � 0:01. In each case the two orbits begin at periapsis and are terminated at the
same final time. Left plot: highly eccentric orbits with p0 � 50 and e0 � 0:9. At the end of the simulation the approximate orbit lags
behind the true orbit by approximately one-half radial cycle out of a total of 15. Right plot: quasicircular orbits with identical initial
conditions p0 � 10 and e0 � 0. Again, the approximate orbit lags behind the true orbit.
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The evolution of the orbital elements over a complete
inspiral, beginning with the initial conditions of the eccen-
tric orbit in Fig. 1 and continuing to quasicircularity, is

displayed in Fig. 3. Insets in the plots display the same
range of time covered by Fig. 1. The orbit stops before the
final plunge of the small body into the large black hole.
There are two reasons for this truncation. First, our method
of osculating orbits cannot cover the final plunge, because
of the underlying restriction that the orbit must be bounded
between a minimum radius pM=�1� e� and a maximum
radius pM=�1� e�; this is reflected mathematically by the
condition p > 6� 2e, which is violated during plunge.
Second, we should in any case leave this portion of the
orbit alone, because the velocities and fields therein are
highly relativistic; in this regime the post-Newtonian ex-
pansion of the perturbing force becomes inaccurate. In
Fig. 3 we display results of the numerical evolution for
the principal element p and positional element w only; the
evolution of e is qualitatively similar to that of p. It is
worth noting, however, that the eccentricity never quite
reaches e � 0; instead, quasicircularity is manifested by
the condition �� w � 0, which equally well ensures that
r0 � 0. This observation agrees with the results of
Ref. [24].

The results for all three choices of initial conditions are
plotted in Fig. 3. As we see from these plots, the radiative
approximation qualitatively matches the true secular evo-
lution for the principal element p, but neglects all secular
changes in the positional element w. This is the expected
result. However, we also see that the radiative approxima-
tion deviates from the true evolution even for the principal
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FIG. 3 (color online). The principal element p and positional element w as functions of time for a complete inspiral, beginning with
the initial conditions of the eccentric orbit in Fig. 1. In each plot the true curve is in solid black, the radiative curve with the same initial
conditions is long-dashed in green (the uppermost curve in the p plot), the radiative curve with �-averaged initial conditions is short-
dashed in blue (middle curve in p plot), and the radiative curve with time-averaged initial conditions is dotted in black (lowest curve in
p plot). The insets display the early behavior of the curves, covering the same range of time as in Fig. 1.
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FIG. 2 (color online). The same eccentric orbit as shown in
Fig. 1, but now using time-averaged initial conditions for the
radiative approximation. In this case the approximate orbit is
indistinguishable from the true orbit on the timescale of the plot
(fifteen orbital cycles).
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element. The extent of this deviation depends on the choice
of initial conditions, with the time-averaged initial condi-
tions faring the best and exact initial conditions the worst.

An essential aspect of our results is that the errors in the
principal elements produced by the radiative approxima-
tion are mostly due to errors in t���. As we see in Fig. 4, the
errors almost completely vanish when the principal ele-
ments are plotted as functions of �; significant errors arise
only in the conversion between � and t.

3. Errors in orbital phase

The errors in which we are most interested are errors in
orbital phase, since they will lead directly to errors in the
phase of the emitted gravitational radiation. Figure 5 dis-
plays the phase
 versus time, again using all three choices
of initial conditions for the radiative approximation. Once
again we see that the time-averaged conditions produce the
smallest error.

Figure 6 shows the dependence of the dephasing �
 �

�
rad on the parameters of the problem. We plot the
dephasing for a ‘‘radiation-reaction’’ time defined by p!
0:9p0, rather than a complete inspiral, since gravitational-
wave data analysis may require only a portion of a com-
plete inspiral. We see that the dephasing is independent of
� for sufficiently small values of �. This is an expected
result, since the radiation-reaction time at leading order in
� varies as 1=�, while the rate of dephasing varies as �,
leading to a net cancellation in the total dephasing.
However, terms in the perturbing force that are quadratic
in � alter this result when �=M is sufficiently large.
Somewhat surprisingly, these quadratic terms actually

serve to decrease the dephasing, lowering the impact of
conservative terms in the force.

As expected, the dephasing decreases at lower values of
e, although the eccentricity seems to have negligible im-
pact in the case of time-averaged initial conditions. Also as
expected, the dephasing varies as p3=2, regardless of initial
conditions. This scaling follows from the form of the post-
Newtonian force: the leading-order conservative term en-
ters at 1PN order, which scales as a p�1 correction to
Newtonian gravitation, while the leading-order dissipative
term enters at 2.5PN order, which scales as a p�5=2 cor-
rection. The dephasing is governed by the relative strength
of the conservative terms, leading to a scaling of
p�1=p�5=2 � p3=2.

In all cases the time-averaged initial conditions yield the
best results. Indeed, the efficacy of these initial conditions
is almost surprising. One way of understanding their im-
pact is to examine the insets in Fig. 3. Peaks in the true
curve correspond to the short periods of time near periap-
sis, while relatively flat regions correspond to the long
periods of time around apoapsis. Thus, choosing exact
initial conditions matches the true and approximate orbits
for the minimal amount of time, as well as in the region of
strongest fields, leading to the largest possible deviation.
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FIG. 5 (color online). The orbital phase 
, with curves as
described in Fig. 3. The scale of the plot suggests that the
radiative evolution with time-averaged initial data (the upper-
most curve in dotted black) gives an accurate approximation of
the true evolution. The vertical scale, however, is large, and this
is a false impression. At the late time t=M � 2:345� 107, the
error in phase is �
 � 4520 rad for the exact initial data, �
 �
1830 rad for the �-averaged initial data, and �
 � 655 rad for
the t-averaged initial data. This last choice fares best, but its
accuracy is poor over a complete inspiral.
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FIG. 4 (color online). The principal element p as a function of
the orbital parameter �. The curves are as described in Fig. 3.
The radiative curves do deviate secularly from the true curve, but
the errors are too small to appear on the scale of the graph.
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Choosing time-averaged initial conditions matches the
orbits near apoapsis, for the longest time and with the
weakest fields, leading to the least possible deviation.
The �-averaged initial conditions are then in some sense
the average of all the incorrect choices. An implication of
this is that in some circumstances the �-averaged initial
conditions could turn out to be even worse than the exact
initial conditions. For example, choosing exact initial con-
ditions at apoapsis would closely approximate the time-
averaged initial conditions, which would then fare much
better than the �-averaged initial conditions.

We can explain the long-term impact of the initial con-
ditions by considering the time dependence of an orbit. The
secular time function hti��� can be written in terms of
the orbital period P��� �

R
��	
��	 t

0�~��d~� as hti��� �

R�
0 P�~��d~�. As we see from the insets in Fig. 3, the

changes in initial conditions bring the initial orbital period
of the radiative approximation closer to that of the true
orbit; and as we would intuitively expect, the time-
averaged initial conditions best reproduce the initial tem-
poral period. This correction, �P, to the initial period then
induces a long-term correction to hti��� of the form �hti 
� � �P. (Such an effect can be calculated explicitly for the
electromagnetic self-force considered in Ref. [17]: refer to
Eqs. (4.7) and (4.8) therein.) In essence, the time-averaged
initial conditions carry information about the initial con-
servative correction to the true orbital period, and they thus
implicitly insert a conservative correction into the radiative
approximation. This serves to remind us that we would
have difficulty choosing suitable initial conditions for the
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FIG. 6 (color online). The difference in orbital phase 
 between the true orbit and approximate orbits after a radiation-reaction time
(defined by p! 0:9p0 on the true orbit). Open squares indicate results for identical initial conditions, open triangles for matching
�-averaged initial conditions, and open circles for matching t-averaged initial conditions. Top left: dephasing as a function of the mass
ratio �=M, with fixed true initial values p0 � 50 and e0 � 0:9. The dephasing becomes � independent for sufficiently small �, when
second-order effects become negligible. Top right: dephasing as a function of initial value p0, with fixed e0 � 0:9 and �=M � 0:1.
Bottom: dephasing as a function of initial eccentricity e0, with fixed p0 � 50 and �=M � 0:1. The error in the case of time-averaged
initial conditions is approximately independent of e.
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radiative approximation if we did not have prior access to
the true evolution.

Regardless of the choice of initial conditions, one should
note that the errors accumulated over a complete inspiral
are much larger than those shown in Fig. 6. (Refer to the
caption of Fig. 5 for actual values.) Also, the plots of �

versus p and e are for  � 0:1, leading to a smaller
dephasing than would occur if  were in the region of
linear dominance. Thus, even if ideal initial conditions
could be found without reference to the exact solution,
the radiative approximation would generically fail over a
complete inspiral.

4. Gauge dependence

As is well-known, the gravitational self-force is a gauge-
dependent quantity: it is not invariant under a change of
coordinates x� ! x� � ��, where �� is a ‘‘small’’ vector
field. The equations of motion that we have used in this
paper were calculated within the harmonic gauge of post-
Newtonian theory, and the magnitudes of the conservative
effects that we have displayed refer to this particular gauge
choice; different gauges would necessarily lead to different
results. Indeed, Mino has argued in favor of constructing a
physically meaningful ‘‘radiation-reaction gauge’’ in
which the conservative effects of the self-force are set to
zero over a finite radiation-reaction time, making the ra-
diative approximation exact over that interval [13,25].
Mino has also argued that this gauge choice induces a
change in initial conditions that partially absorbs conser-
vative effects [13], and this statement agrees with our result
that long-term conservative effects can be mimicked by a
small change in initial conditions. We would like to point
out, however, that a rigorous construction and implemen-
tation of such a gauge choice have yet to be performed, and
that the impact of making this choice on quantities other
than the self-force has yet to be determined.

It is known, for example, that in the harmonic gauge of
post-Newtonian theory, the equations of motion contain
both radiative and conservative terms, and that the gravi-
tational potentials are well-behaved everywhere, except at
the position of each (pointlike) body where they diverge
with an expected power ofm=r. What is the behavior of the
gravitational potentials in Mino’s radiation-reaction
gauge? The answer is not known, and it would be interest-
ing to investigate the issue in post-Newtonian theory. For
example, one could determine the effect on the potentials
of making a coordinate transformation that would turn off
some of the conservative terms in the equations of motion
(those that depend on  in Sec. III A); would this spoil the
behavior of the potentials near the bodies, or perhaps else-
where in the spacetime? Such an analysis would be reveal-
ing, and it would give indication as to whether Mino’s
scheme is likely to be successfully implemented.

We believe that the Lorenz gauge of the gravitational
self-force problem, which is in close mathematical analogy
with the harmonic gauge of post-Newtonian theory, is also

in close physical analogy: it produces conservative terms in
the self-force, and it produces gravitational potentials that
are well behaved everywhere (except at the position of the
orbiting body). Given the successes of post-Newtonian
theory in its harmonic-gauge formulation, we feel confi-
dent that the Lorenz gauge is ultimately a better choice of
gauge for the gravitational self-force problem, in spite of
the presence of conservative terms in the equations of
motion. We shall therefore defer our judgment on the
advantages of Mino’s radiation-reaction gauge, and reiter-
ate the importance of the conservative terms in the
harmonic-gauge (or Lorenz-gauge) self-force. Our conclu-
sions, to be sure, apply within the confines of the post-
Newtonian harmonic gauge. But we contend that our con-
clusions are in fact generic: Outside of a finely-tuned gauge
choice, one should expect the conservative part of the self-
force to produce large secular effects.

IV. CONCLUSION

The first part of this paper was devoted to the develop-
ment of a method of osculating orbits to integrate the
equations of motion that govern bound, accelerated orbits
in Schwarzschild spacetime. The method involves the
phase-space variables fp; e;w; t;
g, which are expressed
as functions of an orbital parameter �; each variable sat-
isfies a first-order differential equation, and knowledge of
these variables is sufficient to determine the worldline in
spacetime. Although the method is limited to situations in
which the force acts within the orbital plane, this limitation
can be overcome; in addition, the force is not assumed to be
small. We show in Appendix A that for large values of p,
our equations reduce to the standard perturbation equations
of Newtonian celestial mechanics. The method has many
potential applications, including the important one of per-
mitting an implementation of the gravitational self-force.
Most immediately, it provides an attractive conceptual and
mathematical foundation for a perturbative approach to
weakly accelerated orbits. And furthermore, the method
is easy to implement in practice in a numerical code.

In the second part of the paper we applied the method of
osculating orbits to the inspiral of a small body into a
Schwarzschild black hole of much larger mass. The per-
turbing force was calculated on the basis of the hybrid
Schwarzschild/post-Newtonian equations of motion of
Kidder, Will, and Wiseman [14], and its effect on the
orbiting body was obtained by numerical integration of
our evolution equations for the dynamical variables
fp; e;w; t;
g. This approach is well suited to a study of
the limitations and ambiguities of adiabatic and radiative
approximations, which was carried out next. Specifically,
we have illustrated the importance of conservative effects
in the time dependence of the orbit, and we have estab-
lished the advantage of choosing time-averaged initial
conditions for the approximated orbital elements. This
problem differs in many respects from the fully relativistic
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self-force problem, but it nevertheless captures many of its
essential features. Our conclusions, therefore, might be
expected to hold in the fully relativistic case for most
choices of gauge.
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APPENDIX A: NEWTONIAN LIMIT

Since our work extends the standard methods of
Newtonian celestial mechanics, it is a worthwhile endeavor
to show that our equations reduce to those for perturbed
Keplerian orbits in Newtonian mechanics. In this
Appendix we derive the Newtonian limit of our expres-
sions by expanding in powers p�1; since p�1 / r�1  v2,
this is equivalent to a post-Newtonian expansion. We shall
first describe the general relationship between the
Newtonian and relativistic perturbing forces. Next we shall
show that our geodesic parametrization reduces to
Keplerian ellipses and that our evolution equations for
the orbital elements p, e, and w reduce to Gauss’ pertur-
bation equations of celestial mechanics.

Substituting the Christoffel symbols of the
Schwarzschild metric into the equations of motion (2)
yields the following equations for the force:

 fr � �r� F
M

r2
_t2 � F�1 M

r2
_r2 � F _
2; (A1)

 f
 � �
� 2
_r _

r
; (A2)

 ft � �t� F�1 2M

r2
_r2; (A3)

where F � 1� 2M=r. The time component of the force
can be written in a more useful form using the orthogonal-
ity relation (39).

These expressions for the relativistic force differ non-
trivially from those in the Newtonian case. We define ~F,
the Newtonian perturbing force per unit mass, via
Newton’s second law

 

�x � g� ~F; (A4)

where x is a 3-vector representing the spatial coordinates of
the particle and g � �M

r2 r̂ is the Newtonian gravitational
acceleration. For convenience we have defined the
Newtonian acceleration as the second derivative of x
with respect to proper time rather than coordinate time.
We also define the radial and tangential components of the
perturbing force via

 

~F 
 ~Frr̂� ~F
�̂; (A5)

where r̂ and �̂ form an orthonormal basis in the orbital
plane. Given these definitions, writing �x in polar coordi-
nates �r;
� leads to

 

~F r � �r� r _
2 �
M

r2 (A6)

 

~F
 � r �
� 2 _r _
 : (A7)

Comparing the Newtonian and relativistic expressions
for the perturbing force, we see they are related by the
equations

 fr � ~Fr � r�1� F� _
2 �
M

r2 �F _t2 � F�1 _r2 � 1�; (A8)

 f
 �
~F


r
: (A9)

Thus, fr differs from ~Fr by relativistic corrections, while
f
 differs from ~F
 only by a factor of the orbital radius.

We next consider our parametrization of geodesics.
From Eqs. (21), (24), and (26), one trivially finds the
leading-order terms in 
0, t0, and _� to be

 
0 � 1; (A10)

 t0 �
p3=2M

�1� e cos��� w��2
; (A11)

 _� �
�1� e cos��� w��2

p3=2M
: (A12)

Thus, in the Newtonian limit we have 
 � � and t � �
and the resulting parametrization

 r �
pM

1� e cos�
� w�
; (A13)

 

d

dt
�
�1� e cos�
� w��2

p3=2M
: (A14)

In terms of the orbital elements, we see that w � � in
the Newtonian limit. This corresponds to the loss of 1
degree of freedom, as we would expect from the fact that
t in Newtonian physics is a universal parameter rather than
a coordinate. We can also easily find that the energy and
angular momentum per unit mass reduces to E � 1� 1�e2

2p

and L �
����
p
p

M, respectively. The first term in E is the rest
energy of the particle, while the second term is the
Newtonian energy 1

2v
2 � M

r .
With the exception of the inclusion of the rest mass, the

above results are standard Keplerian relationships. Thus,
our equations for the orbital elements should reduce to
those for perturbed Keplerian orbits. Substituting
Eqs. (A10)–(A12) into Eqs. (39), (A8), and (A9), we find
the leading-order expressions for the perturbing force
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 fr � ~Fr (A15)

 f
 �
~F


r
(A16)

 ft �
e sin�
� w�����

p
p ~Fr �

1� e cos�
� w�����
p
p ~F
:

(A17)

These results allow us to expand Eqs. (36)–(38), to find the
leading-order expressions for the orbital elements:

 

dp
dt
�

2p3=2

1� e cos�
� w�
~F
 (A18)

 

de
dt
�

����
p
p e� 2 cos�
� w� � ecos2�
� w�

1� e cos�
� w�
~F


�
����
p
p

sin�
� w� ~Fr (A19)

 

dw
dt
�

����
p
p

M3=2

e
sin�
� w��2� e cos�
� w��

1� e cos�
� w�
~F


�

����
p
p

M3=2

e
cos�
� w� ~Fr: (A20)

These are Gauss’ well-known perturbation equations.

APPENDIX B: EVOLUTION EQUATIONS FROM
KILLING VECTORS

It is possible to derive Eqs. (36)–(38) for the derivatives
of the osculating elements from Eq. (10) and the Killing
vectors of the Schwarzschild spacetime, without reference
to Eq. (11). Although this derivation is equivalent to that
given in Sec. II C, its physical significance is more intui-
tive. We begin by defining energy and angular momentum

(per unit mass) as E � ���
�t� _z� and L � ��

�
� _z�, where
��t� �

@
@t and ��
� �

@
@
 are Killing vectors corresponding

to the spacetime’s invariance under time translations and
spatial rotations. From these definitions we find

 � _E � _z�����t� _z��;� � ���t�;� _z� _z� � ���t� _z� _z�;� � ���t�f�:

(B1)

The first term on the second line vanishes due to the
antisymmetry of ��;� for any Killing vector �, and the
final line then follows from the equation of motion _z� _z�;� �
f�. An analogous result holds for _L. From the definitions
of ��t� and ��
� we then find

 

_E � Fft; (B2)

 

_L � r2f
: (B3)

These results can be used to find _e and _p using Eqs. (17)
and (18), which define E�p; e� and L�p; e�. Using these
relationships, we write _E � @E

@p _p� @E
@e _e and _L �

@L
@p _p� @L

@e _e, which can be rearranged to find

 _p �
@E
@e

_L� @L
@e

_E
@L
@p

@E
@e �

@L
@e

@E
@p

; (B4)

 _e �
@L
@p

_E� @E
@p

_L
@L
@p

@E
@e �

@L
@e

@E
@p

: (B5)

The equation for _w can then be found from Eq. (10), which
leads to Eq. (33), or

 _w �
1

r0

�
@r
@e

_e�
@r
@p

_p
�
: (B6)

The explicit results of these calculations are

 _p � �
2p1=2�p� 2� 2e cosv��p� 2� 2e�1=2�p� 2� 2e�1=2�p� 3� e2�1=2

�p� 6� 2e��p� 6� 2e�
ft

�
2p2M�p� 4�4�p� 3� e2�1=2

�p� 6� 2e��p� 6� 2e��1� e cosv�2
f
; (B7)

 

_e �
�p� 6� 2e2��p� 2� 2e cosv��p� 2� 2e�1=2�p� 2� 2e�1=2�p� 3� e2�1=2

p1=2e�p� 6� 2e��p� 6� 2e�
ft

�
pM�1� e2��p2 � 8p� 12� 4e2��p� 3� e2�1=2

e�p� 6� 2e��p� 6� 2e��1� e cosv�2
f
; (B8)

 _w � �
�2e� �p� 6� cosv��p� 2� 2e cosv��p� 2� 2e�1=2�p� 2� 2e�1=2�p� 3� e2�1=2

p1=2e2 sinv�p� 6� 2e��p� 6� 2e�
ft

�
pMf2e�p2 � 8p� 32� � ��p2 � 8p��1� e2� � 4e2�6� e4�� cosvg�p� 3� e2�1=2

e2 sinv�p� 6� 2e��p� 6� 2e��1� e cosv�2
f
: (B9)
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When accompanied by the auxiliary Eq. (21) for d�d� , these
equations form a closed, autonomous system for the orbital
elements.

The results in this section are equivalent to those in
Sec. II C, which can be easily shown by using Eq. (39) to
replace ft with fr. But they are numerically ill behaved.
Specifically, _e appears to diverge in the limit e! 0, and _w

appears to diverge when sinv � 0 (i.e., at every turning
point in the orbit). Although these divergences are can-
celed analytically by the numerators in each case, they are
serious obstacles in a numerical integration. Thus, the
equations given in Sec. II C are more practical, though
slightly lengthier.
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