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We examine the motion of a charged particle in a weak gravitational field. In addition to the Newtonian
gravity exerted by a large central body, the particle is subjected to an electromagnetic self-force that
contains both a conservative piece and a radiation-reaction piece. This toy problem shares many of the
features of the strong-field gravitational self-force problem, and it is sufficiently simple that it can be
solved exactly with numerical methods, and approximately with analytical methods. We submit the
equations of motion to a multiscale analysis, and we examine the roles of the conservative and radiation-
reaction pieces of the self-force. We show that the radiation-reaction force drives secular changes in the
orbit’s semilatus rectum and eccentricity, while the conservative force drives a secular regression of the
periapsis and affects the orbital time function; neglect of the conservative term can hence give rise to an
important phasing error. We next examine what might be required in the formulation of a reliable secular
approximation for the orbital evolution; this would capture all secular changes in the orbit and discard all
irrelevant oscillations. We conclude that such an approximation would be very difficult to formulate
without prior knowledge of the exact solution.
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I. INTRODUCTION

The gravitational inspiral of a solar-mass compact object
into a massive black hole residing in a galactic center has
been identified as one of the most promising sources of
gravitational waves for the Laser Interferometer Space
Antenna [1]. The need for accurate theoretical models of
the expected signal, for the purposes of signal detection
and source identification, has motivated an intense effort
from many workers to determine the motion of the small
body in the field of the large black hole. This is done in a
treatment that goes beyond the geodesic approximation
and takes into account the body’s own gravitational field,
which is a small perturbation over the field of the black
hole. In this treatment the small body can be described as
moving on an accelerated world line in the background
spacetime of the large black hole; the body is said to move
under the influence of its own gravitational self-force [2,3],
and this force is derived from the retarded gravitational
perturbation produced by the moving body. For a review of
the self-force formalism, see Ref. [4] and the special issue
of Classical and Quantum Gravity devoted to this topic [5].

The concrete evaluation of the gravitational self-force
acting on a small body moving in the Kerr spacetime is a
challenging project that has not yet been completed
(although progress has been steady). Given the severity
of the challenge, a number of authors [6–16] have at-
tempted to formulate various simple schemes that would
allow them to reproduce the effects of the self-force; their
hope is that these schemes will be simple enough for rapid
implementation in numerical codes, and accurate enough
to describe faithfully the orbital evolution of a body sub-
jected to its gravitational self-force. One such scheme is
Mino’s radiative approximation [6–8], which is based on
an approximate self-force constructed from the half-

retarded minus half-advanced gravitational perturbation
associated with the moving body. Mino proved that while
his version of the self-force neglects all conservative cor-
rections to the motion, it correctly accounts for the long-
term dissipative effects associated with the true self-force.
This led to the widespread belief that all long-term secular
changes in the orbital motion would be captured by the
radiative approximation, and that conservative effects
would produce only short-term changes that would not
accumulate in the long run. The simplicity of Mino’s
scheme made it attractive, and it was adopted in a number
of works that aimed to model the inspiral of a small body
into a rapidly rotating black hole [9–16].

Mino’s radiative approximation was criticized, however,
in an earlier work by the present authors [17], hereafter
referred to as ‘‘paper I.’’ Building on an analogy between
the gravitational self-force and its electromagnetic coun-
terpart, we showed that conservative terms in the true self-
force do lead to long-term secular changes in the orbital
motion. These changes are not captured by the radiative
approximation, and we concluded that Mino’s scheme has
severe limitations. This conclusion was supported by a
recent analysis by Drasco and Hughes [12], and the general
attitude currently is that while the radiative approximation
may be useful to generate template waveforms for signal
detection, it is probably insufficient for reliable parameter
estimation.

Our purpose in this paper is to revisit the analysis
presented in paper I. There are three reasons for reopening
the case. The first is that our original analysis of the
electromagnetic self-force employed rather crude mathe-
matical tools, and we wish to present here a more thorough
and rigorous treatment. The second is that the main source
of discrepancy between the effects of the radiative self-
force and those of the true self-force was not correctly
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identified in paper I. In the original paper we claim that the
discrepancy is mainly due to the secular regression in the
orbit’s periapsis, an effect that is produced by the true self-
force but not accounted for by the radiative approximation.
In this paper we show that while this is indeed a source of
discrepancy, it is not the most important one. As we shall
explain in Sec. IV C, the most important conservative
effect is actually associated with the time function on the
orbit. The third reason is that we wish to introduce here a
clear distinction between the radiative approximation to
the self-force and the notion of a secular approximation to
an orbital evolution; our secular approximation is a specific
implementation of the general idea of capturing the long-
term orbital evolution through an adiabatic approximation
that allows the orbit to evolve slowly. The phrases ‘‘radia-
tive approximation’’ and ‘‘adiabatic approximation’’ are
used synonymously in paper I (and indeed, in most of the
literature on this topic), but we feel that this is a highly
misleading practice. A large portion of this paper is de-
voted to the task of identifying what should be required of a
good secular approximation, and we shall see that the
radiative approximation does not meet those requirements.

The precise meaning of an adiabatic approximation is
somewhat ambiguous in the literature. In all cases, the
basic assumption is that the secular effects of the self-force
occur on a time scale that is long compared to the orbital
period. From this assumption, numerous approximations
have been formulated: (1) Since the particle’s orbit devi-
ates only slowly from geodesic motion, the self-force can
be calculated as if the particle travels on a geodesic (or, in
the post-Newtonian case, the radiation reaction can be
calculated as if the particle’s dynamics were conservative);
(2) Since the radiation-reaction time scale is much longer
than the orbital period, periodic effects can be neglected;
and (3) Based on various arguments, conservative effects
can be neglected. Although each one of these three ap-
proximations has been called an adiabatic approximation,
we believe that they should be distinguished from one
another. To discuss the first approximation is beyond the
scope of this paper. We focus instead on the latter two
approximations: number (2) above, which we call the
secular approximation, and which neglects periodic ef-
fects; and number (3), which we shall call the radiative
approximation, and which neglects conservative effects.

The main idea behind the construction of a secular
approximation is the following. We consider an orbital
evolution under the action of a self-force, and we wish to
simplify the equations of motion in such a way that the
long-term, secular changes will be captured, at the cost of
discarding irrelevant, short-term effects. Suppose that we
describe the orbital evolution in terms of a set of orbital
elements IA�t�, where A is an index that labels each ele-
ment. (This description is introduced in Sec. III, and ex-
plained fully in Appendices A and B.) The orbital elements
would be constant in the absence of a perturbing force, but

they evolve in time as a result of the force’s action. It is
expected that each orbital element will display a behavior
that can be decomposed into a secular change that accu-
mulates monotonically over time, and an oscillation that
averages to zero in the long run. We thus write IA�t� �
IAsec�t� � IAosc�t�, and a secular approximation for the orbital
elements would keep the secular terms and discard the
oscillations. We would write IA�t� ’ IAsec�t�, and seek a
method to obtain IAsec�t� in the most direct and convenient
way possible. Presuming that this must be done in a context
in which the exact solution IA�t� would be too difficult to
obtain, we would seek to formulate equations of motion
directly for IAsec�t�, and we would hope that those equations
are sufficiently simple that a solution could easily be found
(analytically or numerically). This is the main idea, and the
task ahead appears to be clearly identified. But to turn the
idea into a precise algorithm may not be easy. To illustrate
the difficulty we shall examine, in a specific context in
which we can make progress (the electromagnetic self-
force of paper I), what would be required in the construc-
tion of a secular approximation for the orbital evolution.

The secular approximation is logically distinct from the
radiative approximation, in which the true self-force is
truncated so as to discard all conservative terms. In the
radiative approximation, one writes IA�t� ’ IArad�t�, and one
calculates IArad�t� on the basis of the truncated self-force. It
is known, as Mino has shown [6–8], that the radiative self-
force correctly accounts for the long-term, dissipative
changes in the orbital elements. If it correctly produced
the long-term, conservative changes as well, we would
conclude that the radiative approximation captures the
idea of a secular approximation. But, as we have shown
in paper I [17], and as we intend to show even more
convincingly here, the radiative approximation fails to
account for secular changes in IA�t� that are produced by
the conservative piece of the self-force. The radiative and
secular approximations are therefore distinct, and we con-
sider it important to distinguish these terms carefully.

We will examine the limitations of the radiative approxi-
mation, and attempt to construct a faithful secular approxi-
mation, in the specific context of an electromagnetic self-
force acting on a charged particle moving in a weak
gravitational field. The motion of the particle is governed
by the equations

 a � g� f self ; (1.1)

where a � d2r=dt2 is the particle’s acceleration vector,
g � �Mr̂=r2 is the Newtonian gravitational field of a
body of mass M, and

 f self � �c
q2

�
M

r3 r̂� �rr
2

3

q2

�
dg
dt

(1.2)

is the electromagnetic self-force divided by the particle’s
mass �. (The particle is treated as a test mass. In this
treatment, the central body does not move, its mass M is
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the system’s total mass, and � is the system’s reduced
mass.) This self-force was calculated [18,19] for the
weakly curved spacetime produced by the central body,
assuming that the charged particle moves slowly. Here q is
the particle’s charge, and r�t� is its position vector relative
to the central body; we have also introduced the distance
r � jrj and the unit vector r̂ � r=r. The constants �c and
�rr in Eq. (1.2) are both equal to unity; they serve to remind
us that the first term in Eq. (1.2) is the conservative piece of
the self-force, while the second term is the dissipative (or
radiation-reaction) piece. By keeping these constants in
our calculations we will be able to distinguish conservative
effects from dissipative effects; the radiative approxima-
tion is obtained by setting �c � 0 and keeping �rr � 1.
Throughout the paper we use the usual vectorial notation of
three-dimensional flat space, and we work in units such
that G � c � 1.

We work in the specific context of Eqs. (1.1) and (1.2)
for two reasons. First, our toy problem is an actual example
of a self-force acting on an orbiting body. While the force
has an electromagnetic origin instead of a gravitational
origin, and while the motion takes place in a weak
(Newtonian) gravitational field instead of a strong field,
the self-force of Eq. (1.2) nevertheless contains conserva-
tive and dissipative terms that will have different effects on
the orbital motion. In the usual Lorenz gauge, the gravita-
tional self-force in strong fields will also contain conser-
vative and dissipative pieces. In addition, each self-force
comes with a similar post-Newtonian counting. From
Eq. (1.2) we see that the conservative term in the electro-
magnetic self-force is a correction of order q2=��r� rela-
tive to g, and taking q to be of order�, we recognize this as
a correction of first post-Newtonian (1PN) order; the dis-
sipative term is a correction of order q2v=��r�, where v is
the orbital velocity, and we recognize this as a correction of
1.5PN order. On the other hand, in a post-Newtonian
context the gravitational self-force presents conservative
pieces at orders 0PN, 1PN, 2PN, 3PN, and so on, and
dissipative pieces at orders 2.5PN, 3.5PN, and so on.
While the post-Newtonian counting is not identical, in
each case we have dominance of the conservative effects
over the dissipative effects, and all in all, this gives us good
reasons to believe that the electromagnetic problem cap-
tures the essential physics of the more complicated, gravi-
tational problem when it is formulated in the usual Lorenz
gauge.

Second, Eq. (1.1) is far simpler than the realistic self-
force equation (for which the force must be obtained
numerically), and this permits a very thorough and rigor-
ous mathematical analysis. We shall therefore be able to
extract very precise consequences of Eqs. (1.1) and (1.2),
and examine closely the issues that concern us regarding
the radiative and secular approximations. The simple
mathematics of the toy problem will allow us to draw
firm and clear conclusions, and the proximity of its physics

to that of the realistic problem will give us confidence that
these conclusions extend from the toy problem to the
realistic case.

We begin in Sec. II with a simple illustration of the
themes to be explored in this paper. The mathematical
analysis of Eqs. (1.1) and (1.2) is carried out in Sec. III,
in the framework of osculating orbital elements summa-
rized in Appendices A and B. The mathematical details are
presented in Sec. III with minimum commentary, but we
present a full discussion of our results in Sec. IV. We
summarize our conclusions in Sec. V.

II. ILLUSTRATION

Before we proceed with our mathematical analysis of
Eqs. (1.1) and (1.2), it is helpful to describe a very simple
problem that illustrates rather well the issues we shall
encounter.

Suppose that we are interested in a quantity q�t� that is
governed by the system of dynamical equations

 

dq
d�
� �1 � �2 sin�;

dt
d�
� 1� cos�� �3; (2.1)

where � is a running parameter, and �1, �2, and �3 are small
constants. The differential equations come with the initial
conditions

 q�0� � 1; t�0� � 0: (2.2)

In this example, q�t� is analogous to the set of orbital
elements IA�t� that were introduced previously, and the
equation for dq=d� is analogous to Eq. (3.10) below,
with �1 and �2 playing the roles of �rr and �c, respectively.
The quantity q is constant when �1 � �2 � 0 (the unper-
turbed situation), and it acquires a time dependence when
the perturbation is turned on. The equation for dt=d� is
analogous to the first line of Eq. (3.34) below, with �3

playing the role of �c. As we explain in Sec. III C, the first
term proportional to �c in Eq. (3.34) is generated by
oscillatory terms in the orbital elements and oscillatory
terms in the unperturbed equation for t; these combine to
give rise to a secular term in the perturbed equation. To
ignore the oscillations would produce the significant mis-
take of dropping the �3 term in Eq. (2.1). The variable �
gives a convenient parametrization of the motion; its use is
motivated by the fact that the ‘‘force’’ can be expressed as a
simple function of �, while it would be very difficult to
express it in terms of the time variable t. The parameter � is
analogous to the orbital parameter � that will be intro-
duced in Sec. III. (It is also analogous to ‘‘Mino time’’
[6,20], a convenient parametrization of geodesics in Kerr
spacetime.)

The exact solution to the system of equations is

 q��� � 1� �1�� �2�cos�� 1�; (2.3)

 t��� � �� sin�� �3�: (2.4)
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We see that �1 produces a secular growth in q���, �2 is
associated with oscillations, and �3 produces a secular drift
in the time function t���.

Suppose that we are interested only in the long-term,
secular changes in q, and that we wish to construct a
secular approximation for it. Because we have access to
the exact solution, it is a simple matter to remove the
oscillations by subjecting it to an averaging procedure.
Our first option is to introduce

 hqi� :�
1

2�

Z ���

���
q��0�d�0 (2.5)

and to define the secular approximation as qsec � hqi�. Our
choice here is therefore to remove the oscillations with
respect to �, and a calculation based on Eqs. (2.3) and (2.5)
gives

 hqi� � 1� �1�� �2 �O��
2�: (2.6)

This version of the secular approximation is a solution to
the modified differential equation

 

d
d�
hqi� � �1 �O��

2� (2.7)

with the modified initial condition

 hqi��0� � 1� �2 �O��2�: (2.8)

If we did not have access to the exact solution, we might
still have guessed that the correct differential equation for
qsec is Eq. (2.7), because it can be obtained directly from
Eq. (2.1) by averaging over the oscillatory term. But we
would be hard pressed to guess that the correct initial
condition is given by Eq. (2.8). Using the approximate
differential equation with the exact initial condition
qsec�0� � 1 would produce a function that is offset by �2

relative to hqi�.
Our first message is that a faithful secular approximation

can be based on an averaged version of the differential
equation, but that it must come also with a corresponding
change of initial condition. To obtain the approximate
differential equation might be easy, but to identify the
correct initial condition is impossible when the exact so-
lution is unknown. The formulation of a secular approxi-
mation therefore suffers from an ambiguity regarding the
correct choice of initial condition. In this example the
consequence of missing the �2 term in the initial condition
is not severe: The difference between the solutions 1� �1�
and 1� �1�� �2 becomes relatively small as � increases
and each solution grows secularly. In other situations,
however, the difference in initial conditions could lead to
more serious discrepancies.

In Eq. (2.5) we removed the oscillations of the exact
solution by averaging over the parameter �. Because the
observer might be more interested in the time behavior of
the function q, an alternative choice is to perform the
averaging over t instead of �. And since t��� contains

oscillations, it should be expected that this alternative
method of averaging will lead to a distinct formulation of
the secular approximation. Our second option is therefore
to introduce

 hqit :�

R
���
��� q��

0��dt=d�0�d�0R
���
����dt=d�

0�d�0
(2.9)

and to define version 2 of the secular approximation as
qsec � hqit. A calculation based on Eqs. (2.1), (2.3), and
(2.9) gives

 hqit � 1� �1��� sin�� �
1

2
�2 �O��

2�: (2.10)

This is a solution to the modified differential equation

 

d
d�
hqit � �1�1� cos�� �O��2� (2.11)

and the modified initial condition

 hqit�0� � 1�
1

2
�2 �O��2�: (2.12)

Here the situation is more interesting. If we did not have
access to the exact solution, we would never have guessed
that the correct differential equation for the secular ap-
proximation is Eq. (2.11), and we would also never have
arrived at Eq. (2.12).

Our second message is that this new secular approxima-
tion (version 2, which removes the oscillations in t instead
of the oscillations in �) must be based on an approximate
differential equation and an approximate initial condition
that are impossible to identify without knowing the solu-
tion to the exact problem. The ambiguity of the first
method extends from the choice of initial condition to
the specification of the differential equation.

Our third message is that while the idea of formulating a
secular approximation is clear enough, it is difficult to turn
it into a precise algorithm. To remove the oscillations of an
exact solution is easy enough. But to reformulate the
system of differential equations and initial conditions
into a set of approximate equations that would achieve
the same result is difficult; it might well be impossible in
most cases.

Our fourth message is concerned with the analogue here
of formulating a radiative approximation to Eqs. (2.1). This
is obtained by setting �2 � �3 � 0 while leaving �1 un-
changed. This produces the functions

 qrad��� � 1� �1�; trad��� � �� sin�: (2.13)

After a long time, when �� 1, qrad��� becomes very
nearly equal to q���, and the radiative approximation is
accurate when q is expressed in terms of the orbital pa-
rameter. At late times, however, we have that trad��� ’ �
while t��� ’ �1� �3��, and we see that the radiative ap-
proximation produces a shift in the time function that
becomes important when � increases beyond 1=�3; we
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shall see that this feature is present also in the context of
the electromagnetic self-force in Sec. III. When q is ex-
pressed as a function of time, we get that qrad�t� ’ 1� �1t,
while the exact solution behaves as q�t� ’ 1� �1t=�1�
�3�. The difference is equal to �1�3t=�1� �3�. While this
appears to be small because of the first factor of order �2, it
is steadily growing because of the additional factor of t.
The radiative approximation, therefore, produces a secular
drift in the time function, and a corresponding drift in q.

III. MULTISCALE ANALYSIS OF THE
ELECTROMAGNETIC SELF-FORCE

We now proceed with our mathematical analysis of
Eqs. (1.1) and (1.2). This section, unlike all others in this
paper, is highly technical, and we intend to deal with the
technical issues while keeping the commentary to a mini-
mum. The implications of our results, in the light of the
themes introduced in Sec. I, will be fully detailed in
Sec. IV. The reader who may not wish to delve into the
technical details, and who would prefer to pick up the story
where we left off at the end of Sec. II, can omit reading this
section and proceed directly to Sec. IV.

A. System of equations

We wish to integrate the equations of motion (1.1) for
the electromagnetic self-force of Eq. (1.2). We shall do so
by employing the method of osculating orbital elements
developed in Appendix B.

The starting point of the method is the unperturbed
situation described by the equations a � g, in which the
particle follows a Keplerian orbit characterized by a num-
ber of orbital elements. (Kepler’s problem is reviewed in
Appendix A.) The orbital elements are constants of the
Keplerian motion; they are related to the initial conditions
placed on the particle’s position and velocity vectors, but
they are defined so as to provide the most useful informa-
tion regarding the geometric properties of the orbit. The
elliptical shape of the Keplerian orbit is described by

 r��� �
p

1� e cos���!�
; (3.1)

where r is the distance between the particle and the central
mass M, and � is the longitude. The orbital elements are
the semilatus rectum p, the eccentricity e, and the longi-
tude at periapsis !. The elements p and e determine on
which ellipse the particle is moving, and we shall call them
the principal orbital elements. The element ! determines
the particle’s initial position on the selected ellipse, and we
shall refer to it as a positional orbital element. The position
of the particle as a function of time is determined by
integrating

 t0 �

������
p3

M

s
1

�1� e cos���!��2
(3.2)

for the time function t���; the prime indicates differentia-
tion with respect to �. The motion in the orbital plane is
then fully described (in parametric form) by the functions
r��� and t���. It is an important fact that Eq. (3.2) does not
admit a closed-form solution; a convenient way to handle it
is by straightforward numerical integration.

We next move on to the equations a � g� f self and a
description of the perturbed motion. In the method of
osculating orbital elements, the motion continues to be
described by Eqs. (3.1) and (3.2), but the orbital elements
�p; e;!� acquire a � dependence that accounts for the
perturbation. Their evolution equations are given by
Eqs. (B16)–(B18) in Appendix B. They rely on a decom-
position of the self-force according to f self � Rr̂� S�̂,
with R denoting its radial component and S its tangential
component; the unit vectors r̂ and �̂ point in the directions
of increasing r and �, respectively. The self-force does not
contain a component normal to the orbital plane, and in-
deed, our version of the method of osculating elements is
restricted to perturbing forces that are tangent to the plane.

From the expression given in Eq. (1.2), we find that the
radial and tangential components of the self-force are

 R �
q2M
�

�
�c �

4

3
�rr _r

�
1

r3 (3.3)

and

 S �
q2M
�

�
�

2

3
�rr

_�
�

1

r2 ; (3.4)

respectively. Here an overdot indicates differentiation with
respect to t, and time derivatives can be converted into �
derivatives by involving Eq. (3.2). After differentiating
Eq. (3.1) to obtain r0, we find that Eqs. (3.3) and (3.4)
become

 R �
q2M
�
�1� ec�3

p3

�
�c �

4

3
�rr

�����
M
p

s
es
�

(3.5)

and

 S �
q2M
�
�1� ec�4

p3

�
�

2

3
�rr

�����
M
p

s �
; (3.6)

where c :� cos���!� and s :� sin���!�. These ex-
pressions are ready to be inserted within Eqs. (B16)–
(B18).

The evolution equations come with the initial conditions

 p�� � 0� �: p	; e�� � 0� �: e	;

!�� � 0� �: !	 
 0; t�� � 0� �: t	 
 0;
(3.7)

the values selected for !	 and t	 produce no loss of gen-
erality. To facilitate the integrations we introduce the di-
mensionless semilatus rectum p and dimensionless time t,
as well as the dimensionless parameters �c and �rr that
characterize the strength of the perturbing force. These are
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defined by

 p :�
p
p	
; t :�

�������
M

p	3

s
t; �c :� �c

q2

�p	
;

�rr :�
2

3
�rr

q2

�p	

������
M
p	

s
:

(3.8)

The final form of the evolution equations is

 p 0 � �2�rr
1� ec

p1=2
; (3.9)

 e0 � �c
s�1� ec�

p
� �rr

�1� ec��e� 2c� 3ec2�

p3=2
;

(3.10)

 !0 � ��c
c�1� ec�

ep
� �rr

�1� ec�s�2� 3ec�

ep3=2
; (3.11)

 t 0 �
p3=2

�1� ec�2
; (3.12)

where c � cos���!� and s � sin���!�. Integration
proceeds from the initial values p�� � 0� � 1, e�� �
0� � e	, !�� � 0� � 0, and t�� � 0� � 0. We shall as-
sume that �c and �rr are small throughout the evolution. In
spite of the fact that �rr is smaller than �c by a factor of
order

�������������
M=p	

p
� 1, we shall formally treat them as being

of the same order of magnitude.

Equations (3.9), (3.10), (3.11), and (3.12) can easily be
integrated numerically, and the orbital motion recon-
structed by inserting the solutions within Eq. (3.1). The
result of such a numerical integration is presented in Fig. 1.
Our goal, however, is to obtain as much analytical infor-
mation as possible, and for this purpose we shall construct
approximate solutions to these equations, taking advantage
of the fact that �c and �rr are small. This will be carried out
in the following subsections. The approximation we shall
construct is distinct from the secular and radiative approx-
imations considered in Sec. I; we shall refer to it as the
multiscale approximation. We shall demonstrate that our
multiscale approximation faithfully reproduces the nu-
merical results at all points on the orbit, up to a time at
which terms of second order in �c and �rr become impor-
tant. From the multiscale approximation we shall be able to
construct secular and radiative approximations, and we
shall be able to ascertain their accuracy.

B. Multiscale approximation: orbital elements

The action of the electromagnetic self-force causes the
orbital elements p, e, and ! to acquire a � dependence
governed by Eqs. (3.9), (3.10), (3.11), and (3.12). The
corrections to the unperturbed solutions p � 1, e � e	,
and! � 0 can be separated into two classes: secular terms
that grow monotonically with � and nonsecular terms that
oscillate and average to zero over a complete orbital cycle
(0 � �< 2�). To capture these different behaviors, we
need an approximation method that has the capability of
producing a solution that stays accurate over a long interval
0 � �<�max, with �max of the order of ��1, where � is
the overall smallness parameter of the problem; and in this
interval, the difference between the exact and approximate
solutions must be uniformly of order �2. (Because we have
introduced two such parameters, we shall write �c � ec�,
�rr � err� and consider ec, err to be quantities of order
unity.) These requirements rule out a simple-minded ex-
pansion in powers of �, because this method would give
rise to a solution that is accurate only for ��� 1. We
adopt instead a multiscale analysis (see, for example,
Chapter 11 of Ref. [21]).

In a multiscale expansion one introduces a dependence
on a ‘‘long-scale’’ variable z :� �� in addition to the
dependence on the ‘‘short-scale’’ variable �. We write

 p � p0�z� � �p1�z; �� �    ; (3.13)

 e � e0�z� � �e1�z; �� �    ; (3.14)

 ! � !0�z� � �!1�z;�� �    ; (3.15)

and we seek to isolate all secular changes within the
zeroth-order quantities, and to make all first-order quanti-
ties purely oscillatory. We use the chain rule

-40

-30

-20

-10

 0

 10

 20

 30

 40

-120 -100 -80 -60 -40 -20  0  20

FIG. 1 (color online). Orbital evolution under the action of the
electromagnetic self-force. We set M � 1, q2=� � 0:05, and the
orbital elements are integrated from the initial conditions p	 �
20, e	 � 0:8, and !	 � 0. With these choices we have �c �
2:500� 10�3 and �rr � 3:727� 10�4. The motion proceeds in
the counterclockwise direction and is followed for 50 orbital
cycles (0 � �< 100�). At the end of the integration �c� �
0:7854. The orbit is displayed in the x–y plane, with x � r cos�
and y � r sin�. In the course of its evolution the orbit becomes
smaller, more circular, and its periapsis regresses.
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 f0 �
@f
@�
� �

@f
@z

to evaluate the total derivative with respect to � of a
function f�z;��.

To proceed we substitute Eqs. (3.13), (3.14), and (3.15)
into Eqs. (3.9), (3.10), and (3.11) and obtain, to first order in
�,

 

dp0

dz
�
@p1

@�
� �

2err

p1=2
0

�
1� e0 cosv

�
; (3.16)

 

de0

dz
�
@e1

@�
�
ec

p0

�
sinv�

1

2
e0 sin2v

�

�
err

p3=2
0

�
3

2
e0 �

1

4
�8� 5e2

0� cosv

�
5

2
e0 cos2v�

3

4
e2

0 cos3v
�
; (3.17)

 

d!0

dz
�
@!1

@�
� �

ec

2p0

�
1�

2

e0
cosv� cos2v

�

�
err

p3=2
0

�
8� 3e2

0

4e0
sinv�

5

2
sin2v

�
3

4
e0 sin3v

�
; (3.18)

where v :� ��!0. It is easy to recognize the terms on
the right-hand sides that drive the secular changes in the
orbital elements. We isolate these changes by setting

 

dp0

dz
� �

2err

p1=2
0

;
de0

dz
� �

3erre0

2p3=2
0

;
d!0

dz
� �

ec

2p0
:

(3.19)

The nonsecular (oscillatory) corrections are then obtained
by integrating

 

@p1

@�
� �

2erre0

p1=2
0

cosv; (3.20)

 

@e1

@�
�
ec

p0

�
sinv�

1

2
e0 sin2v

�

�
err

p3=2
0

�
1

4
�8� 5e2

0� cosv�
5

2
e0 cos2v

�
3

4
e2

0 cos3v
�
; (3.21)

 

@!1

@�
� �

ec

2p0

�
2

e0
cosv� cos2v

�

�
err

p3=2
0

�
8� 3e2

0

4e0
sinv�

5

2
sin2v�

3

4
e0 sin3v

�
:

(3.22)

We must impose the initial conditions p0 � �p1 �    �

1, e0 � �e1 �    � e	, and !0 � �!1 �    � 0 when
� � 0.

The general solutions to Eqs. (3.19) are

 p 0 � a�1� 3errz=a3=2�2=3; (3.23)

 e0 � b�1� 3errz=a3=2�1=2; (3.24)

 !0 � c�
eca1=2

2err

�
1� �1� 3errz=a

3=2�1=3

�
; (3.25)

where a, b, and c are constants of integration that will be
determined.

The purely oscillatory solutions to Eqs. (3.20), (3.21),
and (3.22) are

 �p1 � �
2�rre0

p1=2
0

sinv; (3.26)

 

�e1 � �
�c

p0

�
cosv�

1

4
e0 cos2v

�

�
�rr

4p3=2
0

�
�8� 5e2

0� sinv� 5e0 sin2v� e2
0 sin3v

�
;

(3.27)

 

�!1 � �
�c

p0

�
1

e0
sinv�

1

4
sin2v

�

�
�rr

4p3=2
0

�
8� 3e2

0

e0
cosv� 5 cos2v� e0 cos3v

�
:

(3.28)

We recall that v � ��!0.
To relate the constants a, b, and c to the initial con-

ditions we note that p0�0� � a and �p1�0� � 0; we there-
fore have a � p	 � 1. Similarly, we note that e0�0� � b
and �e1�0� � �

1
4 �c�4� b�; we therefore have b � e	 �

1
4 �c�4� e	� �O��2�. Finally, we note that !0�0� � c and
�!1�0� � �rr�8� 5b� 4b2�=�4b�; we therefore have c �
��rr�8� 5e	 � 4e	2�=�4e	� �O��2�. Making these sub-
stitutions in Eqs. (3.22), (3.23), and (3.24) gives

 p 0 � �1� 3�rr��
2=3; (3.29)

 e0 � e	
�

1� �c
4� e	

4e	

�
�1� 3�rr��

1=2; (3.30)

 !0 � ��rr
8� 5e	 � 4e	2

4e	
�

�c

2�rr

�
1� �1� 3�rr��1=3

�
:

(3.31)

These expressions describe the secular changes in the
orbital elements. Eqs. (3.26), (3.27), and (3.28), on the
other hand, describe the nonsecular (oscillatory) changes.
All together, these results give us the desired multiscale
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approximation for the orbital elements.1 We compare the
approximations with exact numerical results in Figs. 2–4.

C. Multiscale approximation: time

We now wish to construct a multiscale approximation
for the time function t���. To begin we recall that
Eq. (3.12) must be integrated numerically even in the
unperturbed situation, when p, e, and ! are all constant;

the approximation, therefore, will also involve a numerical
integration. A lazy option presents itself: The time function
could be obtained simply by inserting our multiscale ap-
proximations for p���, e���, and !��� within Eq. (3.12)
and performing the integration numerically. In an effort to
obtain maximum analytical insight, however, we choose to
proceed differently.

We substitute Eqs. (3.13), (3.14), and (3.15) and the
explicit expressions of Eqs. (3.26), (3.27), and (3.28) into
Eq. (3.12), and we expand in powers of �. Through first
order we obtain

 t 0 �
p3=2

0

�1� e0 cosv�2
�

1

2
�cp

1=2
0

4� e0 cosv

�1� e0 cosv�3

�
1

2
�rre0

sinv� e0 sin2v

�1� e0 cosv�3
; (3.32)
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FIG. 3 (color online). Multiscale approximation for e��=2��
compared with exact numerical results. The numerical condi-
tions are the same as in Fig. 1, and the caption of Fig. 2 provides
the relevant details.
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FIG. 2 (color online). Multiscale approximation for p��=2��
compared with exact numerical results. The numerical condi-
tions are the same as in Fig. 1. The solid curve in red shows the
exact evolution as computed numerically. The dotted curve in
blue shows the evolution as predicted by the multiscale approxi-
mation, which includes a secular term as well as oscillations.
The dashed curve in green shows the secular piece of the
multiscale approximation. The large panel shows the entire
evolution from � � 0 to � � 100�. The first inset (bottom
left) shows the evolution in the small interval 6<�=�2��<
9; early in the evolution the multiscale approximation is ex-
tremely accurate. The second inset (top right) shows the evolu-
tion in the small interval 41<�=�2��< 44; here the multiscale
approximation is less accurate, because �� has become compa-
rable to unity.
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FIG. 4 (color online). Multiscale approximation for !��=2��
compared with exact numerical results. The numerical condi-
tions are the same as in Fig. 1, and the caption of Fig. 2 provides
the relevant details.

1We take this opportunity to make an observation. We notice
from Eq. (3.29) that when �� is comparable to unity, the
dissipative term in the self-force produces a change in p that
is also of order unity. In this calculation the radiation-reaction
force is linear in �, and there are no corrections of order �2. If
such corrections were present, however, they would produce an
additional change of order � in p. Next we notice from Eq. (3.30)
that the conservative term in the self-force produces a change of
order � in e, in addition to the change of order unity that comes
from the radiation-reaction force. We conclude that second-order
terms in the radiation-reaction force would produce effects that
scale with the same power of � as those produced by the
conservative force. As we shall see below, the conservative force
must be included in the calculation when the evolution of the
orbital phase is required to stay accurate to order �0 during a
radiation-reaction time. In a context where the radiation-reaction
force would contain a second-order term, the same accuracy
would be achieved only after including this term as well in the
calculation. We thank Tanja Hinderer and Éanna Flanagan for
making this point clear to us.
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where v � ��!0, and p0, e0, and!0 are the functions of
z :� �rr� displayed in Eqs. (3.29), (3.30), and (3.31). The
first term in Eq. (3.32) is obtained by inserting p � p0, e �
e0, and ! � !0 within Eq. (3.12); the second and third
terms are contributed by the oscillatory terms p1, e1, and
!1.

We wish to find an approximate solution to Eq. (3.32),
and once more we wish to distinguish between secular and
nonsecular terms. Two sources of complications present
themselves. First, while it was easy in Eq. (3.16), (3.17),
and (3.18) to separate the secular terms from the oscilla-
tions, the factors of 1� e0 cosv in the denominators of
Eq. (3.32) make this separation more difficult. Second,
while p, e, and !, are simply constant at the unperturbed
level, the Keplerian version of t��� is already a compli-
cated function of � that contains secular and oscillating
terms. The situation here is therefore more complicated,
but we will, nevertheless, be able to express the solution to
Eq. (3.32) in the form

 t ��� � t0��� � �t1��� �    ; (3.33)

with t0��� incorporating the Keplerian behavior (including
secular terms and oscillations) as well as the secular
changes produced by the electromagnetic self-force, and
with �t1��� being purely oscillatory.

To isolate the oscillatory terms in Eq. (3.32) we calculate
the averages

 hfi���� :�
1

2�

Z ���

���
f��0�d�0

of the various functions of � that appear on its right-hand
side; these averages are calculated while keeping p0,
e0, and !0 constant over the integration domain.
Defining f1 � �1� e0 cosv��2, f2 � �4� e0 cosv��
�1� e0 cosv��3, and f3 � �sinv� e0 sin2v��
�1� e0 cosv��3, we find that hf1i� � �1� e

2
0�
�3=2,

hf2i� �
1
2 �8� e

2
0��1� e

2
0�
�5=2, and hf3i � 0. The func-

tion multiplying �rr in Eq. (3.32) is therefore purely oscil-
latory, but the function multiplying �c contains a secular
component. To isolate this we rewrite Eq. (3.32) into the
equivalent form
 

t0 �
p3=2

0

�1� e0 cosv�2

�
1� �c

8� e2
0

4p0�1� e
2
0�

�

�
1

4
�c

p1=2
0 e0

1� e2
0

9e0 � 3�2� e2
0� cosv

�1� e0 cosv�3

�
1

2
�rre0

sinv� e0 sin2v

�1� e0 cosv�3
; (3.34)

in which a term 1
4 �cp

1=2
0 �8� e

2
0��1� e

2
0�
�1�1� e0 cosv��2

was removed from the second term in Eq. (3.32) and
inserted within the first term. In Eq. (3.34), the functions
that appear in the second and third lines are purely
oscillatory.

It is important to notice that the term proportional to �c

in the first line of Eq. (3.34) is a secular correction to t0 that
originates with the oscillatory terms p1, e1, and !1 in the
orbital elements. These oscillations combine in a nonlinear
fashion, and they contribute an additional secular term
beyond the one that comes from p0, e0, and !0. It would
be a significant mistake to discard the oscillations in the
orbital elements when constructing the time function.

The solution to Eq. (3.34) is
 

t �
Z �

0

p3=2
0

�1� e0 cosv0�2

�
1� �c

8� e2
0

4p0�1� e
2
0�

�
d�0

�
1

4
�c

Z �

0

p1=2
0 e0

1� e2
0

9e0 � 3�2� e2
0� cosv0

�1� e0 cosv0�3
d�0

�
1

2
�rr

Z �

0
e0

sinv0 � e0 sin2v0

�1� e0 cosv0�3
d�0; (3.35)

where v0 :� �0 �!0��0�. We must leave the first integral
alone, but we shall manage to evaluate the second and third
integrals. Because the changes in p0, e0, and !0 are of
order �, because the second and third integrals already
come with a factor of � in front, because the integrands
are purely oscillatory functions, and because the calcula-
tion of t��� is carried out consistently to first order in �, we
are permitted to treat p0, e0, and !0 as constants when
evaluating the integrals. We thus obtain

 t �
Z �

0

p3=2
0

�1� e0 cosv0�2

�
1� �c

8� e2
0

4p0�1� e2
0�

�
d�0

�
1

2
�c

p1=2
0 e0

1� e2
0

3 sinv� 3
4 e0 sin2v

�1� e0 cosv�2

�
1

4
�rr

�
3� 4e0 cosv

�1� e0 cosv�2
�

3� 4e0

�1� e0�
2

�
:

(3.36)

We have not yet achieved the form of Eq. (3.33). The
reason is that while the function in the second line of
Eq. (3.36) is purely oscillatory (it has a zero average),
this is not true of the function in the third line. Defining
f4 � �3� 4e0 cosv��1� e cosv��2, we find that hf4i� �

�3� 4e2
0��1� e

2
0�
�3=2 and this combines with the second

term on the third line to contribute secular terms.
Removing these from the third line and inserting them
within the first line, we finally arrive at the desired ex-
pression for the time function t���.

Our final result is that t��� can be expressed as in
Eq. (3.33), with
 

t0 �
Z �

0

p3=2
0

�1� e0 cosv0�2

�
1� �c

8� e2
0

4p0�1� e
2
0�

�
d�0

�
1

4
�rr

�
3� 4e0

�1� e0�
2 �

3� 4e2
0

�1� e2
0�

3=2

�
(3.37)
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and
 

�t1 � �
1

2
�c

p1=2
0 e0

1� e2
0

3 sinv� 3
4 e0 sin2v

�1� e0 cosv0�2

�
1

4
�rr

�
3� 4e0 cosv

�1� e0 cosv�2
�

3� 4e2
0

�1� e2
0�

3=2

�
; (3.38)

where v � ��!0, and p0, e0, and!0 are the functions of
z: � �rr� displayed in Eqs. (3.29), (3.30), and (3.31). By
design, t0��� incorporates the Keplerian behavior (includ-
ing all Keplerian oscillations) in addition to the secular
changes produced by the perturbing force; the function
�t1��� is purely oscillatory, in the sense that its � average
is zero. A comparison between the exact time function t���
and the multiscale approximation is presented in Fig. 5.

IV. DISCUSSION

With the technical details out of the way, we may now
return to the themes introduced in Sec. I. To launch the
discussion we summarize the main results obtained in
Sec. III.

A. Summary of our results

In the method of osculating orbital elements, the motion
of a charged particle subjected to the electromagnetic self-
force of Eq. (1.2) is at all times described by

 r��� �
p

1� e cos���!�
; (4.1)

the Keplerian relation of Eq. (3.1). The orbital elements p,
e, !, however, acquire a � dependence that accounts for
the perturbation created by the self-force. With the defini-
tions of Eq. (3.8), these quantities evolve according to
Eqs. (3.9), (3.10), and (3.11), and integrating Eq. (3.12)
produces t���. The motion is then fully determined.

The evolution equations can be integrated numerically,
or they can be integrated analytically via a multiscale
analysis that produces a faithful approximation over the
long interval 0 � � & ��1. Moreover, the multiscale
analysis produces a clean separation of the solutions into
secular and oscillatory pieces. The secular changes in the
orbital elements are described by the functions p0, e0, and
!0 displayed in Eqs. (3.29), (3.30), and (3.31). We copy
them here for convenience:

 p0 � p	�1� 3�rr��
2=3; (4.2)

 e0 � e	
�

1� �c
4� e	

4e	

�
�1� 3�rr��

1=2; (4.3)

 !0 � ��rr
8� 5e	 � 4e	2

4e	
�

�c

2�rr

�
1� �1� 3�rr��

1=3

�
;

(4.4)

where

 �c :� �c
q2

�p	
; (4.5)

 �rr :�
2

3
�rr

q2

�p	

������
M
p	

s
; (4.6)

and where p	 :� p�� � 0� and e	 :� e�� � 0�; we have
set !�� � 0� � 0. The oscillatory changes in the orbital
elements are given by �p1, �e1, and �!1 displayed in
Eqs. (3.26), (3.27), and (3.28).

The piece of the time function that incorporates
Keplerian behavior and secular changes produced by the
electromagnetic self-force is t0, and this is displayed in
Eq. (3.37). We copy it here for convenience:
 

t0 �

�������
p	3

M

s �Z �

0

�p0=p	�3=2

�1� e0 cosv0�2

�
1� �c

�8� e2
0�p

	

4p0�1� e2
0�

�
d�0

�
1

4
�rr

�
3� 4e0

�1� e0�
2 �

3� 4e2
0

�1� e2
0�

3=2

��
; (4.7)

where v0 � �0 �!0��
0�; this, like the Keplerian time

function, is expressed in terms of an integral that must be
evaluated numerically. The oscillatory piece of the time
function is �t1, and this is given by Eq. (3.38). We recall
that the term proportional to �c inside the integral is
produced by the oscillatory pieces p1, e1, and !1 of the
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FIG. 5 (color online). Multiscale approximation for t��=2��
compared with exact numerical results. The numerical condi-
tions are the same as in Fig. 1. The solid curve in red shows the
exact evolution as computed numerically. The dotted curve in
blue shows the evolution as predicted by the multiscale approxi-
mation t0 � �t1, where t0 incorporates the Keplerian behavior in
addition to the secular changes produced by the perturbing force,
and where �t1��� is purely oscillatory. The dashed curve in
green is a plot of t0 only. The large panel shows the entire
evolution from � � 0 to � � 100�. The first inset (top left)
shows the evolution in the small interval 6<�=�2��< 9. The
second inset (bottom right) shows the evolution in the interval
41<�=�2��< 44.
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orbital elements; the oscillations combine to produce a
secular correction to the time function.

B. Conservative and dissipative terms in the self-force

The effect of each term in Eq. (1.2) can easily be
identified if we focus our attention on the secular changes
in the orbital elements and time function described by
Eqs. (4.2), (4.3), (4.4), (4.5), (4.6), and (4.7). Because these
accumulate in the long run, while the oscillations that are
not contained in those equations average to zero, it is clear
that it is the secular pieces of p���, e���, !���, and t���
that are the most important to capture.

The effects of the conservative piece of the self-force are
identified by selecting the terms in �c; the effects of the
radiation-reaction piece are identified by �rr. An examina-
tion of Eqs. (4.2), (4.3), (4.4), (4.5), (4.6), and (4.7) reveals
that the radiation-reaction force drives secular changes in
the principal orbital elements p and e, but that it affects !
only indirectly, and only if there is a conservative force. In
addition, the radiation-reaction force affects the time func-
tion indirectly through the changes in the principal ele-
ments, and also directly as can be seen in the second line of
Eq. (4.7). On the other hand, the conservative force drives
secular changes in the positional element !, but it affects e
only through the factor that comes in front of �1�
3�rr��

1=2. In addition, the conservative force affects the
time function directly, as can be seen from the correction
term inside the integral.

The combined effects of the conservative and radiation-
reaction forces on the time function can be neatly summa-
rized by computing P :�

R��2�
� t��0�d�0, the period of an

orbital cycle. Ignoring the changes in the orbital elements
while performing the integration, we obtain

 P � 2�

������������������������
p3

0

M�1� e2
0�

3

vuut �
1�

1

4
�c
p	

p0

8� e2
0

1� e2
0

�
: (4.8)

The factor in front of the large brackets is the Keplerian
period expressed in terms of the changing orbital elements;
these changes, we recall, are driven by the radiation-
reaction force. The second term gives the correction con-
tributed by the conservative force. It may be recalled that
this correction originates from oscillations in p, e, and !,
and it may be noted that it becomes large when e0 ! 1.

C. Limitations of the radiative approximation

As we have defined it in Sec. I, the radiative approxi-
mation is obtained by setting �c � 0 in our results. This
preserves the secular changes in p and e, but it completely
turns off the secular evolution of !. In addition, the radia-
tive approximation discards an important correction term
in the time function, the one proportional to �c in Eq. (4.7).
This term, in fact, dominates over the radiation-reaction
corrections, because �c is numerically larger than �rr by a

factor of order
�������������
p	=M

p
� 1, as can be seen from Eqs. (4.5)

and (4.6). In addition, we have noted that the correction
becomes increasingly large as e0 increases toward unity.
As a result, the radiative approximation provides a poor
estimation of the orbital period, as can be seen from
Eq. (4.8).

The combined effect of omitting the secular changes in
! and missing an important correction in the time function
can be seen most clearly by examining the radial phase
variable � :� ��! expressed as a function of time; this
is the function that appears in r�t� � p=�1� e cos��, as
can be seen from Eq. (4.1). In Fig. 6 we compare the results
of two numerical computations, one carried out with the
full electromagnetic self-force (including conservative and
radiation-reaction pieces), the other carried out in the
radiative approximation, with only the radiation-reaction
piece of the self-force. The figure, and the quantitative
analysis presented in the caption, reveal very clearly that
the radiative approximation gives a rather poor representa-
tion of the phase function; in our simulation, the mismatch
after 50 orbits is nearly three full radial cycles. The origin
of the discrepancy is also clearly identified in the caption:
It is the missing conservative correction to the time func-
tion t��� that is mostly responsible for the phase mismatch.
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 ω
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2 
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t / p*3/2

exact equations
radiative approximation

FIG. 6 (color online). Effect of the radiative approximation on
the radial phase function ��t�, where � � ��!���. Plotted
are �=�2�� versus t �

���������������
M=p	3

p
t, with the same numerical

conditions as in Fig. 1. The lower curve in red is the exact
evolution as computed numerically with the help of the full self-
force, which includes conservative and radiation-reaction pieces.
The upper curve in blue is the evolution obtained in the radiative
approximation, in which the conservative force is switched off.
At the end of the integration, for t � 875, we have �=�2�� �
50:40 under the action of the full self-force, with a contribution
!=�2�� � �0:073 coming from the periapsis advance. The
radiative approximation gives instead �=�2�� � 53:06, with a
contribution !=�2�� � 0:000 16 coming from the shift in peri-
apsis. The total phase mismatch is �� � 2:66�2��, nearly three
radial cycles out of 50 orbits. Because the contribution from ! is
small in both cases, we conclude that the main source of error is
contained in the missing conservative terms in t���.
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D. Secular approximation: � average

The multiscale approximation method of Sec. III was
adopted precisely because it produces a clean separation
between secular and nonsecular terms in the expressions
for the orbital elements and the time function. The zeroth-
order quantities displayed earlier in this section were con-
structed so as to represent the secular changes, and the
oscillatory corrections were carefully designed to average
to zero. It is clear, therefore, that Eqs. (4.2), (4.3), (4.4),
(4.5), (4.6), and (4.7) achieve the goals of a secular ap-
proximation, and we would be justified to write

 psec��� � p0���; esec��� � e0���;

!sec��� � !0���; tsec��� � t0���:
(4.9)

This, in the language introduced in Sec. II, consists of
defining the secular approximation by averaging the exact
solution (as represented by the multiscale approximation,
which has been demonstrated to be faithful to the exact
numerical results) over the orbital parameter �.

The question we wish to explore here is whether the
secular approximation of Eq. (4.9) could be formulated
directly, without the help of the exact solution. The dy-
namical equations that govern the secular approximation
can be obtained by differentiating Eqs. (4.2), (4.3), (4.4),
(4.5), (4.6), and (4.7) with respect to �. We obtain

 p0sec � �2��rrp	3=2�p�1=2
sec ; (4.10)

 e0sec � �
3

2
��rrp	3=2�esecp

�3=2
sec ; (4.11)

 !0sec � �
1

2
��cp	�p�1

sec ; (4.12)

 t0sec �

����������������
p3

sec=M
p

�1� esec cosv�2

�
1�
��cp

	��8� e2
sec�

4�1� e2
sec�psec

�
;

(4.13)

in which v � ��!sec��� and where we have ignored (as
we should) terms of order �2. These equations must come
with the initial conditions

 psec�� � 0� � p	; (4.14)

 esec�� � 0� � e	
�

1� �c
4� e	

4e	

�
; (4.15)

 !sec�� � 0� � ��rr
8� 5e	 � 4e	2

4e	
; (4.16)

 tsec�� � 0� �
1

4
�rr

�������
p	3

M

s �
3� 4e	

�1� e	�2
�

3� 4e	2

�1� e	2�3=2

�
(4.17)

in order to reproduce precisely the secular evolution pre-
dicted by the multiscale approximation.

The differential equations for psec, esec, and !sec are
easy to motivate: Eqs. (4.10), (4.11), and (4.12) are the
same as Eq. (3.19), and they can be obtained directly by
submitting the exact Eqs. (3.9), (3.10), and (3.11) to an
averaging procedure. The differential equation for tsec,
however, is not so easy to justify. It is not reproduced by
averaging Eq. (3.12) over �, which would fail to account
for the important conservative correction proportional to
�c; the averaging would also remove the Keplerian oscil-
lations of the time function. And the initial values of
Eqs. (4.14), (4.15), (4.16), and (4.17) cannot be justified
at all without knowledge of the oscillatory terms in the
multiscale approximation. To integrate the differential
equations with the approximate initial conditions psec�0� �
p	, esec�0� � e	, !sec�0� � 0, and tsec�0� � 0 would pro-
duce solutions that are offset from the exact solutions by
quantities of order �. It is noteworthy that while the cor-
rections to psec�0�, !sec�0�, and tsec�0� come as additive
terms that become increasingly irrelevant as � increases,
the correction to esec�0� comes as a multiplicative factor;
this correction never becomes irrelevant.

Our main conclusion is this: The secular approximation
defined by the system of Eqs. (4.10), (4.11), (4.12), (4.13),
(4.14), (4.15), (4.16), and (4.17) would be very difficult to
formulate without prior knowledge of the exact solution, as
represented by the faithful multiscale approximation. This
conclusion reflects the lesson learned from the illustrative
example described in Sec. II.

E. Secular approximation: t average

The secular approximation considered in the preceding
subsection is obtained by removing the oscillations in �
from the exact expressions for the orbital elements.
Because we are ultimately interested in the time behavior
of the elements, it is perhaps more meaningful to define the
secular approximation by averaging with respect to t in-
stead of �. In this alternative secular approximation, we
write

 psec��� � hpit���; esec��� � heit���;

!sec��� � h!it���; tsec��� � htit���
(4.18)

in place of Eq. (4.9), where the time average is defined as in
Eq. (2.9),

 hqit :�

R���
��� q��

0��dt=d�0�d�0R���
����dt=d�

0�d�0
: (4.19)

The oscillations contained in dt=d�, as revealed in
Eq. (3.32), ensure that this version of the secular approxi-
mation is quite distinct from the version examined in the
preceding subsection.
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Performing the calculations produces

 psec � p0; (4.20)

 esec � e0 �
1

4
��cp

	�
2� e2

0 � 2�1� e2
0�

3=2

e0p0
; (4.21)

 !sec � !0 �
1

4
��rrp	3=2�

2� 5e2
0 � 2�1� e2

0�
3=2

e2
0p

3=2
0

:

(4.22)

It is clear that these expressions do not agree with those of
the preceding subsection, in which we made the assign-
ments psec � p0, esec � e0, and !sec � !0.

In view of the complexity involved, we shall not attempt
to find an explicit expression for tsec. Nor shall we prolong
the discussion by writing down dynamical equations and
initial conditions for psec, esec, !sec, and tsec. We can
simply jump to the main conclusion, which is the same
as in the preceding subsection: The dynamical equations
and initial conditions associated with this version of the
secular approximation would be very difficult to formulate
without prior knowledge of the exact solution. Once more
this conclusion reflects the lesson learned from the illus-
trative example described in Sec. II.

V. CONCLUSIONS

We examined the motion of a charged particle in a weak
gravitational field. In addition to the Newtonian gravity g
exerted by a large body of massM, the particle is subjected
to the electromagnetic self-force described by Eq. (1.2). As
we have argued in Sec. I, this toy problem shares many of
the features of the gravitational self-force problem, and yet
it is sufficiently simple that it can be solved completely
with simple numerical methods, and virtually completely
with simple analytical methods.

After subjecting the equations of motion to a multiscale
analysis in Sec. III, we summarized our main results in
Sec. IV and investigated the main themes introduced in
Sec. I. We first examined the roles of the conservative and
radiation-reaction pieces of the self-force. We showed that
the radiation-reaction force drives secular changes in the
principal orbital elements p and e, while the conservative
force drives secular changes in the positional element ! as
well as in the time function t���.

This led us to our first conclusion: The radiative ap-
proximation to the true self-force does not account for the
secular changes in all the orbital elements; this gives rise to
an important phase mismatch between an orbital evolution
driven by the radiation-reaction force, and one driven by
the true self-force. The radiative approximation does not
achieve the goals of a secular approximation.

This was also the conclusion of our previous work
(paper I: Ref. [17]), but we believe that we have established
these statements more firmly in this work. In addition, the

source of the phase mismatch was correctly identified here,
while it was attributed incorrectly in paper I: it is the
conservative correction in the time function that is mostly
responsible for the dephasing, and not the secular change
in !.

We next considered the issue of formulating secular
approximations to the dynamical equations that govern
the evolution of the orbital elements. Having access to a
faithful, analytical representation of this evolution, as pro-
vided by the multiscale approximation, it was an easy task
to perform averages and to obtain expressions that capture
the secular changes in the orbital elements (and the time
function). And having access to those expressions, it was
again an easy task to identify the differential equations that
govern their behavior, as well as the appropriate initial
conditions. The issue, of course, is whether the simplified
dynamical equations, those that would govern the purely
secular changes in the orbital elements, could be obtained
directly in a context in which the exact solutions are not
known.

Our answer is in the negative, and this led us to our
second conclusion: A secular approximation to the exact
differential equations and initial conditions, designed to
capture the secular changes in the orbital elements and to
discard the oscillations, would be very difficult to formu-
late without prior knowledge of the exact solution. While
some of the approximate differential equations can be
obtained by submitting the exact equations to an averaging
procedure, other equations cannot be obtained so simply.
And even if the correct differential equations can be iden-
tified, their integration must proceed from initial condi-
tions that differ from the exact initial conditions; the
difference is determined by the oscillations, and those
must be known before the approximate initial conditions
can be prescribed.

In addition to these issues, the formulation of a secular
approximation must resolve a fundamental ambiguity:
Which oscillations are to be removed? In our analysis we
had to distinguish carefully between taking a � average to
remove oscillations in �, and taking a t average to remove
oscillations in t. Different choices lead to different secular
approximations, different dynamical equations, and a dif-
ferent prescription for initial conditions.

The work presented here leaves a number of questions to
be examined. The most important one is this: Do the
conclusions of this paper have any relevance to the gravi-
tational self-force? While our analysis of the electromag-
netic self-force leaves no room for controversy, the
question of how our results will transfer to the more
interesting case of the gravitational self-force might be
cause for debate. We believe that the analogy between
the electromagnetic and gravitational self-forces is close,
we believe that our general conclusions do carry over to
this case, and we believe that our work serves as a useful
cautionary tale for the gravitational self-force. But we
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admit that the analogy relies on the usual formulation of
the gravitational self-force in the Lorenz gauge, and that
the analogy may be lost in alternative formulations—the
gravitational self-force is not gauge invariant, and its effect
on the description of orbital evolutions will depend on the
choice of gauge. For example, Mino [7,22] has proposed a
formulation of the gravitational self-force in a ‘‘radiation-
reaction gauge’’ in which the full self-force is equal (for a
radiation-reaction time) to the radiative self-force. In
Mino’s proposed formulation, the radiative approximation
is exact over a radiation-reaction time, and the issues raised
here may not at all be relevant. How our conclusions might
apply to the gravitational case is indeed a controversial
topic, but we consider its discussion to be beyond the scope
of this work. Indeed, this paper is concerned with the
electromagnetic self-force, and the case of the gravitational
self-force is considered separately in a companion paper
[23]. In our companion work we argue that the Lorenz-
gauge formulation of the gravitational self-force is physi-
cally meaningful, that the Lorenz gauge is most likely to
keep quantities other than the self-force (such as the gravi-
tational potentials) under control, and that the conclusions
of this paper do carry over to the gravitational case.
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APPENDIX A: KEPLERIAN MOTION

In this Appendix we provide a complete description of
Kepler’s problem. This material is well-known, and can be
found in any textbook on celestial mechanics (see, for
example, Ref. [24]), but we include it here for complete-
ness and as a way of defining our notation.

Two bodies of masses m1 and m2 move under their
mutual gravitational attraction. The equation of motion
for the relative position r :� r1 � r2 is

 a � g; (A1)

where a :� d2r=dt2 is the relative acceleration vector, and
g � �Mr=r3 is the gravitational field. Here M � m1 �
m2 is the total mass, and r � jrj is the distance between the
two bodies. We set G � 1.

Conservation of angular momentum implies that the
motion takes place within a fixed plane. We use polar
coordinates (r, �) in this plane, and we resolve all vectors
in the associated basis (r̂, �̂). The relation with the
Cartesian description is x � r cos�, y � r sin�, r̂ �
cos�x̂� sin�ŷ, and �̂ � � sin�x̂� cos�ŷ. The position
vector is r � rr̂, the velocity vector is v � _r r̂�r _� �̂ , and
the acceleration vector is

 a � � �r� r _�2�r̂�
1

r
d
dt
�r2 _���̂: (A2)

An overdot indicates differentiation with respect to t.

Eqs. (A1) and (A2) imply

 r2 _� � const �:
��������
Mp

p
; (A3)

which defines the semilatus rectum p. We also have

 

�r�
M

r2 �
Mp

r3 � 0; (A4)

which integrates to

 

1

2
_r2 �

M
r
�
Mp

2r2 � const �: �
M
2p
�1� e2�: (A5)

The constant is the system’s conserved energy per unit
reduced mass, and the last equation defines the eccentricity
e.

Eliminating time from Eqs. (A3) and (A4) produces a
differential equation for r��� which integrates to

 r��� �
p

1� e cos���!�
; (A6)

where ! is an additional constant of the motion. This
equation describes an off-centered ellipse of semimajor
axis

 a �
p

1� e2 (A7)

and eccentricity e. The constant !, known as longitude of
periapsis, determines the orientation of the ellipse in the
plane. The orbit is at periapsis r � p=�1� e� whenever
cos���!� � 1, and is at apoapsis r � p=�1� e� when-
ever cos���!� � �1.

Equations (A3) and (A6) imply

 _r � e

�����
M
p

s
sin���!� (A8)

and

 

_� �

������
M

p3

s
�1� e cos���!��2: (A9)

This last equation integrates to

 t��� � tperi �

������
p3

M

s Z �

!

d�0

�1� e cos��0 �!��2
(A10)

and determines the time. The fourth (and final) constant of
integration tperi is time at periapsis, and is such that t�� �
!� � tperi. According to Eq. (A10) the orbital period is

 P �
2�
n
; n :�

�����
M

a3

s
; (A11)

where n is known as the mean motion.
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APPENDIX B: OSCULATING ORBITAL
ELEMENTS

In this Appendix we develop a method of osculating
orbital elements for the integration of the equations of
motion associated with a perturbed Keplerian orbit. The
general idea is very old, and many variations of this
method can be found in the literature (see, for example,
Ref. [24]). But we find that the version presented here is
perhaps a little unusual, while being especially convenient
and well suited to our purposes. For these reasons we judge
it worthwhile to develop it in full here.

We consider the equations of motion

 a � g� f ; (B1)

in which f is a perturbing force (divided by the system’s
reduced mass) that depends on the relative position vector r
and (possibly) the relative velocity vector v. (The notation
is introduced in Appendix A.) We seek to integrate
Eq. (B1) for r�t� using a method of osculating orbital
elements. We assume, for simplicity, that the perturbing
force can be decomposed as

 f � Rr̂� S�̂; (B2)

so that it lies within the orbital plane. The perturbed orbit,
therefore, will stay within the same plane.

1. First formulation

Let

 IA :� fp; e;!; tperig (B3)

collectively stand for the Keplerian orbital elements intro-
duced in Appendix A, let

 r K�IA; t� (B4)

stand for the position vector of a Keplerian orbit, and let

 v K�I
A; t� (B5)

be the Keplerian velocity vector. The method of osculating
elements states that the perturbed motion is described at all
times by Eqs. (B4) and (B5), but that the orbital elements
acquire a time dependence. In mathematical terms, the
position vector of the perturbed orbit is

 r � rK�I
A�t�; t� (B6)

and its velocity vector is

 v � vK�I
A�t�; t�: (B7)

Differentiating Eq. (B6) with respect to time yields

 v �
@rK

@IA
dIA

dt
�
@rK

@t
:

The second term, in which rK is differentiated while keep-
ing IA constant, is recognized as vK, the Keplerian velocity

vector. Comparing with Eq. (B7) gives

 

@rK

@IA
_IA � 0: (B8)

Differentiating Eq. (B7) with respect to time yields

 a �
@vK

@IA
dIA

dt
�
@vK

@t
:

The second term gives g, and comparing with Eq. (B1)
gives

 

@vK

@IA
_IA � f : (B9)

Eqs. (B8) and (B9) can be solved for _IA in terms of the
perturbing force. The equations of motion have become a
system of first-order differential equations for the orbital
elements. The method of osculating orbital elements there-
fore transforms the original phase space spanned by �r;v�
into a new phase space spanned by the coordinates IA. In
the planar context considered here, the original phase space
is spanned by �r; �; _r; _�� while the new phase space is
spanned by �p; e;!; tperi�.

Concretely the equations of motion are

 

�r� r _�2 �
M

r2 � R;
d
dt
�r2 _�� � rS: (B10)

By virtue of Eq. (A3) and the osculating conditions of
Eqs. (B6) and (B7), r2 _� �

��������
Mp
p

and the second of
Eqs. (B10) implies rS � 1

2

�����������
M=p

p
_p. Inserting Eq. (A6)

yields

 _p � 2

������
p3

M

s
1

1� e cos���!�
S; (B11)

the new equation of motion for p�t�.
To work out the remaining equations we substitute

Eq. (A8) into the first of Eq. (B10). This gives

 R � � _p
e
2

������
M

p3

s
sin���!� � _e

�����
M
p

s
sin���!�

� _!e

�����
M
p

s
cos���!�; (B12)

after canceling out all Keplerian terms. An additional
equation is obtained by differentiating Eq. (A6) with re-
spect to time and demanding that the result be compatible
with Eq. (A8). After some algebra we obtain

 0 � _p�
p cos���!�

1� e cos���!�
_e�

ep sin���!�
1� e cos���!�

_!:

(B13)
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Equations (B11) and (B13) imply

 _e �
�����
p
M

r
�sin���!�R

�
e� 2 cos���!� � ecos2���!�

1� e cos���!�
S� (B14)

and

 e _! �
�����
p
M

r �
� cos���!�R

�
sin���!��2� e cos���!��

1� e cos���!�
S
�
: (B15)

In these equations, � is a function of time that must be
obtained by integrating Eq. (A9),

 

_� �

������
M

p3

s
�1� e cos���!��2;

in which p, e, and ! are now time-varying orbital
elements.

Our system of equations currently leaves out tperi, the
fourth orbital element. An equation for _tperi, however, will
not be required.

2. Second formulation

The preceding system of equations achieves a cleaner
structure if we change the independent variable from t to�
via Eq. (A9). Writing, for example, p0 :� dp=d� � _p= _�,
we obtain

 p0 �
2p3

M
1

�1� ec�3
S; (B16)

 e0 �
p2

M

�
s

�1� ec�2
R�

e� 2c� ec2

�1� ec�3
S
�
; (B17)

 e!0 �
p2

M

�
�

c

�1� ec�2
R�

s�2� ec�

�1� ec�3
S
�
; (B18)

 t0 �

������
p3

M

s
1

�1� ec�2
; (B19)

where

 c :� cos���!�; s :� sin���!�: (B20)

The first three equations for p���, e���, and !��� con-
stitute a closed system that can be solved independently of
the fourth equation, which determines t���. These equa-
tions are exact, they are convenient to deal with, and they
can easily be implemented numerically. (The equations are
ill behaved when e! 0; a transformation to new variables
� � e cos!, � � e sin! eliminates this pathology.) It is
understood that the system of equations is accompanied by

the Keplerian representation of the motion, that is, equa-
tions such as r��� � p=�1� e cos���!�� and r0 �
ep sin���!�=�1� e cos���!��2.

The second formulation of the method can be under-
stood as follows. Let

 IA :� fp; e;!g (B21)

collectively stand for the relevant orbital elements, let

 r K�I
A; ��; tK�I

A; �� (B22)

stand for the position vector of a Keplerian orbit, parame-
trized by longitude �, and let

 r 0K�I
A;�� :�

@rK

@�
; t0K�I

A;�� :�
@tK
@�

: (B23)

The Keplerian velocity vector can then be expressed as
vK � r

0
K=t

0
K.

The method of osculating elements states that the per-
turbed motion continues to be described by Eqs. (B22) and
(B23), but that the orbital elements acquire a � depen-
dence. In mathematical terms, the position vector of the
perturbed orbit is

 r � rK�I
A���; ��; t � tK�I

A���; �� (B24)

and we impose also

 r 0 � r0K�I
A���; ��; t0 � t0K�I

A���; ��: (B25)

The first two equations are equivalent to Eq. (B6), and the
last two equations are equivalent to Eq. (B7). The second
of Eqs. (B25) is the same as Eq. (B19).

Differentiating Eq. (B24) with respect to � yields

 r 0 �
@rK

@IA
dIA

d�
�
@rK

@�
:

Comparing with Eq. (B25) gives

 

@rK

@IA
I0A � 0: (B26)

Differentiating Eq. (B7) with respect to � and dividing by
t0 from Eq. (B25) yields

 a �
v0

t0
�

1

t0K

�
@vK

@IA
dIA

d�
�
@vK

@�

�
:

The second term gives g, and comparing with Eq. (B1)
gives

 

1

t0K

@vK

@IA
I0A � f : (B27)

Equations (B26) and (B27) can be solved for I0A in terms of
the perturbing force, and the end result is the system of
Eqs. (B16)–(B18). In this formulation the method of oscu-
lating orbital elements transforms the original phase space
spanned by r�t�,��t�, _r�t�, and _��t� into a new phase space
spanned by p���, e���, !���, and t���.
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The second formulation of the method of osculating
elements is distinguished by the facts that it involves �
as a running orbital parameter, and it removes tperi from the
list of phase-space variables. This formulation leads to the

important advantages that Eqs. (B16)–(B18) form a closed
set of equations; these equations can be integrated first, and
t��� can be recovered at a later stage by solving Eq. (B19).
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