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Measuring eccentricity in binary black-hole initial data
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Initial data for evolving black-hole binaries can be constructed via many techniques, and can represent a
wide range of physical scenarios. However, because of the way that different schemes parametrize the
physical aspects of a configuration, it is not always clear what a given set of initial data actually represents.
This is especially important for quasiequilibrium data constructed using the conformal thin-sandwich
approach. Most initial-data studies have focused on identifying data sets that represent binaries in
quasicircular orbits. In this paper, we consider initial-data sets representing equal-mass black-hole
binaries in eccentric orbits. We will show that effective-potential techniques can be used to calibrate
initial data for black-hole binaries in eccentric orbits. We will also examine several different approaches,
including post-Newtonian diagnostics, for measuring the eccentricity of an orbit. Finally, we propose the
use of the “Komar-mass difference” as a useful, invariant means of parametrizing the eccentricity of

relativistic orbits.
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I. INTRODUCTION

The possible detection of gravitational waves by detec-
tors such as LIGO and LIS A is driving rapid progress in the
binary black-hole (BBH) problem. The final stages of the
inspiral and coalescence are believed to be primary sources
of gravitational waves at frequencies accessible by such
detectors. Theoretical models that accurately predict these
final stages of inspiral are needed to help analyze and
improve the rate of detection with future data. There are
two techniques commonly used to study such systems, the
post-Newtonian (PN) approximation and numerical rela-
tivity (NR). A detailed comparison has recently been car-
ried out between high accuracy NR simulations and a set of
PN approximants for the gravitational waves produced by
nonspinning equal-mass black holes on a quasicircular
adiabatic inspiral [1]. This study clearly shows the excel-
lent agreement between NR and PN methods as well as the
expected increasing level of uncertainty in the PN approx-
imations as the binary separation becomes small.

Numerical relativity breaks any simulation into two
parts, the specification of initial data and the numerical
time evolutions of this data. With recent advances in
evolutions [2-10], it is as important as ever to fully under-
stand the initial data each simulation is starting with. It is
well known that BBHs starting with large separation will
evolve toward an adiabatic inspiral that follows a series of
quasicircular orbits [11]. Most numerical work to date in
both the construction of BBH initial data and evolutions
has focused on quasicircular configurations. But the study
of binaries in truly eccentric orbits near coalescence
may be important for gravity-wave detectors (especially
LISA) and, in any case, is of considerable theoretical
interest.
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To predict which initial-data sets will yield binaries in
quasicircular orbits, two techniques have commonly been
used, one based on an effective-potential (EP) method [12]
and the other on the Komar-mass ansatz [13]. The two
methods have been contrasted and largely agree, with
significant differences occurring only at small BBH sepa-
rations [14,15]. For initial-data schemes where the linear
momenta of the individual black holes in a binary can be
directly specified [16,17], appropriate values for the mo-
menta to yield circular orbits can also be obtained from PN
results [7,18].

When the momenta of the black holes are specified
directly, the path to obtain elliptical orbits seems straight-
forward: simply increase or decrease the momenta of each
hole from its value for a quasicircular orbit. However,
when quasiequilibrium methods are used to construct the
initial data, noncircular orbits clearly break the notion of
quasiequilibrium since the black holes will no longer re-
main stationary in a corotating frame. A primary goal of
this paper is to examine how current quasiequilibrium
methods for constructing BBH initial data can be extended
to construct general eccentric configurations.

We begin in Sec. II with an overview of the quasiequili-
brium method we use to construct BBH initial data, em-
phasizing the aspects that will be most relevant to our
subsequent discussion. In Sec. III, we will discuss various
aspects of effective potentials in the context of their use
with BBH initial data. In particular, we will justify as fully
as we can the extension of these effective potentials to
BBHs in eccentric orbits. In Sec. IV we will explore and
compare several definitions of eccentricity, and will moti-
vate the use of the “Komar-mass difference’” as an invari-
ant means of parametrizing BBHs in eccentric orbits. All
of the preceding discussions have dealt with nonspinning
black holes. In Sec. V, we will briefly discuss the case of
corotating black holes. We end the paper in Sec. VI with
some conclusions.
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I1. INITIAL DATA

The binary black-hole initial-data sets that are used
below were described in detail in Refs. [14,19] and refer-
ences within. Here, we give an overview of the methods
used to construct the initial data, elaborating only on the
details most relevant to finding black-hole binaries in
quasicircular orbits.

Our initial-data sets were constructed within the ex-
tended conformal thin-sandwich (CTS) approach [20,21].
This approach is based on the standard 3 + 1 decomposi-
tion where the space-time interval is written as

Here, ;; is the spatial metric, and & and B! are the lapse
function and shift vector. Minimal initial data for a Cauchy
evolution requires that we fully specify y;; and the extrin-
sic curvature K;; (essentially a first time derivative of the
spatial metric) defined as

K= 3L,y ()
where n* is the timelike unit normal to the 7 = const
initial-data surface.

The CTS approach requires a conformal decomposition
of v;;, and that we specify the conformally related metric
¥ij- In this work we have taken ¥;; to be flat. The time
derivative of the conformal metric 9,%;; must also be
specified, along with the trace of the extrinsic curvature
K. We fixed both quantities to be zero. The CTS approach
then requires that we determine the conformal factor
relating y;; and the conformal metric, and the shift vector
B!. These are obtained by solving elliptic versions of the
Hamiltonian and momentum constraint equations (see
Ref. [14] for details). Finally, the extended CTS approach
also requires that we determine the lapse function « by
fixing the time derivative of the trace of the extrinsic
curvature and then solving the evolution equation for the
trace of the extrinsic curvature as an elliptic equation. We
fixed the trace of the extrinsic curvature to be constant in
time, d,K = 0.

In constructing the initial data, we excised the black-
hole interior from the computational domain, requiring us
to impose boundary conditions at these excision surfaces
when solving the elliptic equations for ¢, 8, and a. We
demanded that each black hole be in quasiequilibrium by
imposing the boundary conditions worked out in
Refs. [19,22]. The assumptions of quasiequilibrium are
essentially the same as those required of an ‘‘isolated
horizon™ (see Refs. [23—25]). We must also impose bound-
ary conditions at the outer boundary of the computational
domain (either at infinity or some large radial distance
from the black holes). For this, we assume that our con-
figuration is asymptotically flat. However, asymptotic flat-
ness does not fully fix the boundary conditions on the
constrained data. The asymptotic condition on the shift is
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ﬂilr—voo = (QO X r)i’ (3)

where Q) is an angular velocity vector.
The time coordinate threading through our initial-data
slice is defined by

th = an® + B*. 4)

Imposing Eq. (3), we see that £}, determines the rotation of
the ““helical” time coordinate. If a binary system were in
true equilibrium, the time coordinate would generate a
symmetry and the bodies would move in circular orbits
along integral lines of the time coordinate. For relativistic
systems, the binary can at best be only in quasiequilibrium
and the time coordinate generates an approximate symme-
try. Nevertheless, €} represents the orbital angular veloc-
ity of the binary as measured by observers at infinity. From
a computational perspective, €2, must be chosen.
Ultimately, it is the effect of different choices for €} that
we will be exploring in this paper.

In Ref. [14], two independent methods for choosing the
magnitude of , were compared. Both methods attempt to
produce a binary system that is in quasiequilibrium with
the black holes in quasicircular orbits. One method is based
on the Komar-mass ansatz, first proposed by Gourgoulhon
et al. [13], which posits that if ), is chosen so that the
Arnowitt-Deser-Misner (ADM) energy Eapy and the
Komar mass My of a system are equal, then the system
will be nearly stationary (i.e., in quasiequilibrium) and the
binary will be in a quasicircular orbit. These masses are
defined via

1 ; ; )
Eaom = 15- § VG —0lG)as,

1 . .
My = At ?{o(via — BK;)d*S’, (6)

where G;; = y;; — fi, fi; is the flat metric, and V; is the
covariant derivative compatible with vy;;. The second
method assumes that quasicircular orbits are found at the
minima of a reduced two-body effective potential.
Effective potentials will be described in more detail in
Sec. III.

In Ref. [14], we showed that the circular-orbit configu-
rations produced by both methods agree remarkably well
for both nonspinning and corotating black-hole binaries.
Here, we simply show a figure that directly compares sets
of circular-orbit models as we vary the binary separation.
Figure 1 displays the EP curves for nonspinning equal-
mass black-hole binaries as computed in Ref. [14]. The
vertical axis displays the dimensionless binding energy of
the binary E,/u, where Ey is defined in Eq. (7), u =
m;m,/m is the reduced mass of the system and m = m; +
m, is the total mass of the binary. The horizontal axis
displays the dimensionless proper separation of the binary
€/m. It is important to note that each EP curve consists of a
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FIG. 1 (color online). Effective-potential plot for nonspinning
equal-mass black holes constructed from numerical initial data
[14]. The thin solid (multicolor) lines are individual EP curves.
Some of these EP curves are labeled by their value of J/um.
Passing through the local minima of these EP curves and drawn
as a bold (red) line is the EP sequence of quasicircular orbits.
The Komar sequence of quasicircular orbits is displayed as a
dashed (blue) line.

sequence of models where the value of (), changes mono-
tonically. Passing through the minima of the EP curves is
the “EP sequence” defined as the sequence of quasicircu-
lar orbit models where quasicircular orbits are defined via
the effective-potential method. Also shown in Fig. 1 is the
“Komar sequence’ defined as the sequence of quasicircu-
lar orbit models defined via the Komar-mass ansatz. It is
clear that the two sequences agree quite well except for the
smallest separations. See Ref. [14] for a more detailed
comparison. Most important for our considerations is that
both the Komar-mass and EP methods choose particular
models on each EP curve, with very similar values of (),
as quasicircular orbit models.

When the CTS equations and excision boundary con-
ditions as described above are used to construct initial data
for binaries in quasicircular orbit, the resulting data are
consistent with a system in quasiequilibrium. In particular,
we expect both bodies in the binary to be following the
integral curves of an approximate helical Killing vector
(the time coordinate). Furthermore, half of the initial data
that must be specified is also consistent with this notion of
quasiequilibrium. Recall that the conformal metric ;;, the
trace of the extrinsic curvature K, and their time derivatives
must be specified, and that we take all of the time deriva-
tives to vanish. As long as the binary is in a circular orbit,
the notion of quasiequilibrium is satisfied.

PHYSICAL REVIEW D 77, 044011 (2008)

We are left to wonder, though, what does the initial data
represent if we choose (), so that the binary is not in a
quasicircular orbit? We are forced to give up the notion that
the helical time vector represents an approximate Killing
vector of the space-time. In Ref. [14], we made the asser-
tion that the resulting initial data would represent a binary
at either pericenter or apocenter of a general bound or
unbound orbit. This assertion is grounded in the hypothesis
that setting d,y;; = 0 is sufficient to set the initial radial
velocity of the black holes to zero. Our goal below is to see
if this generalized interpretation of the initial data is
reasonable.

III. EFFECTIVE POTENTIALS

In Newtonian physics, 1D effective potentials nicely
capture the important features of certain dynamical sys-
tems. In the case of the reduced gravitational 2-body
problem, for a given orbital angular momentum, the effec-
tive potential can be used to locate the turning points for an
elliptic orbit of given energy, or the radius and energy of a
circular orbit. No exact 1D effective potential can be
rigorously and uniquely derived for the fully relativistic
gravitational 2-body problem, although useful effective
potentials can be defined within any PN approximation.
Within the fully relativistic theory, a useful effective po-
tential has been defined [12,15,26,27] in direct analogy
with the Newtonian gravitational effective potential.

In essence, an EP curve is the total energy of the system
measured along a sequence of configurations where the
radial separation varies, while all other physical parameters
are held fixed. In order to correspond to an effective
potential, the velocity of the generalized coordinate that
is allowed to vary (the radial separation in this case) must
vanish so that there is no associated (radial) kinetic energy.
Binary systems in bound orbits with vanishing radial ve-
locity are either at apocenter or pericenter, and collectively
we refer to these as turning points in the orbit. Also, in
order for the concept of an effective potential to be appli-
cable, it must be true that the dissipative effects of radiation
reaction must occur on a time scale that is much larger than
an orbital period. Clearly, this approximation will break
down for binaries that reach sufficiently small separations.

For black-hole binaries, we define each EP curve used in
this work as a sequence of initial-data configurations where
the apparent-horizon masses of the individual black holes
(m; and m,), the magnitude and direction of the spins of
the individual black holes, and the total angular momentum
of the system are held constant. We also require that the
binary be at a turning point in the orbit. The value of the
effective potential at each point on the EP curve is taken to
be the binding energy:

E, = Expm — my — my. @)

We emphasize that there are several ‘“‘uncertainties’ within
this definition which necessarily lead to some level of
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uncertainty in any results that are based on it. These
uncertainties stem from the fact that there is no unique
way to define the total mass, spin, or linear momentum for
an individual black hole in a binary system. When needed,
we define the total mass of a black hole using the
Christodoulou formula [28]
2 2 s?
M? =M + s ®)

1r

where the irreducible mass M, is approximated by the
apparent-horizon mass m, , and the spin S is computed via
some quasilocal approximation (cf. Refs. [14,29]).

Of more immediate concern is the fact that we cannot
uniquely define the linear momentum of each hole. As with
spin, a quasilocal linear momentum can be defined (cf.
Ref. [30]). We have examined this, but the radial compo-
nent of the momentum, though small, does not vanish even
for quasicircular orbits. Instead of trying to directly mea-
sure the radial velocity (or momentum) to determine if a
given initial-data set is at a turning point, we will compare
our numerical EP curves against PN results.

There are at least two approaches for considering eccen-
tric binaries within the PN framework (cf. Ref. [31] and
references within). In this work, we fill follow the approach
of Mora and Will [32] who introduced third-order conser-
vative post-Newtonian equations for the energy and angu-
lar momentum of a system in terms of a single eccentricity
€ and its associated inverse semilatus rectum . In that
work, the authors treated the black holes as having zero
spin and ignored dissipative terms. One can find the orbital
angular velocity at either pericenter or apocenter through
the authors’ choice of definition of € and { used in creating
these equations. In order to include the spin of the black
holes, and to parametrize the equations in terms of irre-
ducible mass instead of total masses, it becomes necessary
to include correction terms that create equations of the
following form:

E(G, g’ w) = EADM(GJ Z) + Eself(e’ f, w) + EN,corr(e: g’ a))
+ ESpin(e! g! a))r (9)

J(G, g} w) = JADM(E’ {) + S(Er g’ w) + JN,COrr(E’ g! w)
+ Jspin(e’ f, (1)). (10)

In these equations w represents the spin angular velocities
of the black holes.' The self-energy and spin terms (E¢
and S) are derived as expansions of the Kerr formulas
relating mass, spin, and rotational angular velocity. The
Newtonian correction terms (Ey corr and JN corr) Stem from
the conversion of total mass to irreducible mass and the
“spin” terms (Egy, and Jgy,) represent spin-orbit effects.

"We use a single parameter o for simplicity. In general,
specifying the spin of two black holes would require six
parameters.
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The parameter space of these equations, for the case of
nonspinning holes, can be seen in Figs. 5 and 6 which will
be discussed later.

With this parametrization, one can easily construct 3PN
EP curves. In Fig. 2, we plot for comparison the EP curves
for nonspinning, equal-mass binaries from both the nu-
merical data and the 3PN equations. The energy is plotted
as a function of the dimensionless orbital angular velocity
m{), where small m{) corresponds to large orbital separa-
tion. Included on the graph is data from the Komar se-
quence and the EP sequences extracted from the minima of
the 3PN EP curves and the numerical EP curves.

At large values of angular momentum (large orbital
separation), the solid 3PN data curves agree well with the
dashed numerical data curves. The numerical data and the
3PN data begin to diverge as the angular momentum
decreases. This is not surprising as it is well known that
both numerical quasiequilibrium models and the PN ex-
pansion become less accurate for tighter binary systems. It
seems from the good agreement between numerical and
3PN EP curves that the numerical data we construct using
the CTS approach are reasonably close to turning points,
and clearly asymptote to turning points as the system
becomes more Newtonian.
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—— Num. EP seq.

3PN EP seq.
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FIG. 2 (color online). EP curves for nonspinning equal-mass
black holes from both numerical and 3PN data. Numerical EP
curves are plotted as short-dashed (blue, green, and red) lines.
3PN EP curves are plotted as solid (black) lines. The Komar
sequence through the numerical data is plotted as a dash-dotted
(purple) line. The EP sequence through the numerical data is
plotted as a long-dashed (black) line. The EP sequence through
the minima of the 3PN data is plotted as a light-solid (orange)
line. A boundary of the allowable region for 3PN equations is
shown as a light-solid (brown) line at the ends of the 3PN curves.
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IV. MEASURING ECCENTRICITY

The comparison of the numerical EP to the 3PN EP
curves in Sec. III gives us confidence that the numerical
data represent systems at either pericenter or apocenter.
Since each numerical EP curve is constructed from a
sequence of models where the mass, angular momentum,
and spins are held constant and are at turning points, it is
reasonable to use these curves as one method of defining
the eccentricity for a given model.

For Newtonian binaries, eccentricity can be measured
using relative separation at pericenter d,, and apocenter d,:

d,—d
— an

GdEdapo.

We use €, to denote the eccentricity of numerical models
based on coordinate separations. By applying Newtonian
equations of motion, one can replace the above definition
of eccentricity parametrized by relative separation with a
version that depends on the orbital angular velocities at
pericenter (), and apocenter {),. Not only is the eccen-
tricity found in those terms, but the dimensionless inverse
semilatus rectum can also be found using the same pa-
rameters [32].

_0,-9,
“=9,70,

= <\/”WP Zi‘/m—ﬂ“y/ ? (13)

We use € to denote the eccentricity of our numerical
models as measured using orbital angular velocities. The
following relationships follow directly from these equa-

tions:

We note that these equations (at either pericenter or apoc-
enter) are the only places in any of our work where the sign
of the eccentricity matters, and so for the remainder of the
paper we will ignore the middle (pericenter) relationship
and assume eccentricity is negative at pericenter. This has
the added benefit of simplifying many of the figures below.

12)

A. Direct measurement

Our next goal is to determine if the definition of eccen-
tricity in Eq. (12) yields reasonable results. We start by
computing € for the nonspinning equal-mass models
represented in the numerical EP curves displayed in
Fig. 2 (also seen in Fig. 1). The measured eccentricities
are shown in Fig. 3, plotted against m{). The €, definition
of eccentricity should give reasonable results when the
corresponding orbit is sufficiently Newtonian. The orbits
become more relativistic as the total angular momentum
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FIG. 3 (color online). Eccentricity of nonspinning equal-mass
black holes computed along numerical EP curves. The e
definition of eccentricity is plotted against the orbital angular
velocity. Negative values of € correspond to models at peri-
center, while positive values correspond to apocenter. Large
values of the orbital angular momentum are plotted as dot-
dashed (blue) lines, intermediate values as solid (green) lines,
and small values as dashed (red) lines.

associated with the orbit gets smaller. Throughout this
paper, we will use the following convention to easily
differentiate which EP curves represent large, intermedi-
ate, and small values of angular momentum. EP curves
with dot-dashed lines represent large values of angular
momentum, solid lines denote the middle range of angular
momentum, and the dashed lines have small values of
angular momentum.

Figure 3 shows only a limited range of eccentricities for
each value of angular momentum. There are several rea-
sons for this, both physical and computational. First, to
compute the eccentricity, we require data from two corre-
sponding turning points on the same EP curve. That is, we
need two points with the same value of the binding energy.
Because we do not construct models at arbitrarily large
separation, some data at pericenter have no matching data
at apocenter. In this case, the eccentricity cannot be com-
puted. Clearly, we cannot compute eccentricities using this
method for pericenter data corresponding to unbound or-
bits, but there are additional limitations associated with the
shape of the effective potential at small separation.
Because of strong-field effects, the effective potentials
reach a local maximum at small separation (cf. the effec-
tive potential for massive test particles orbiting
Schwarzschild). For bound orbits, we are limited to com-
puting eccentricities for configurations with energies lower
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than that of the local maximum for each EP curve. So, the
eccentricities plotted in Fig. 3 correspond to data in the
neighborhood of the local minimum of each EP curve and
extending only as far as the lowest local maximum on
either side.

To test whether the numerical data is behaving as ex-
pected, we turn to the definition of eccentricity found in €,.
This definition should be reasonable for large separations,
but will break down as the coordinate separation of the two
black holes decreases because of coordinate effects near
the black holes. In Fig. 4, we show the relative difference of
the two measurements (€ — €,)/€q. Note that we have
manually removed data corresponding to points near the
minima of the EP curves since both definitions of eccen-
tricity yield zero at the minimum and the relative error for
neighboring points is dominated by numerical noise.
However, it is easy to find where those points would
have been as the different lines become somewhat jagged
in the region of zero eccentricity. This is a good example of
how definitions of eccentricity for strong field binaries are
not unique.

Figure 4 shows the expected behavior. For large separa-
tions (large J/um) the coordinate separation d and the
orbital angular velocity should both yield reasonable esti-
mates of the eccentricity and we see that the relative error
is tending to zero as J/um increases. Clearly, the gauge
dependence of the coordinate separation d will cause €, to
become less reliable for smaller separations (small J/ um),
and indeed we see the relative difference increase as J/ um
decreases. Because the orbital angular velocity () is gauge

0'4 T T [ T T [ T L [ T L [ T L [ T T T
{--- Small J/um \ ]
|— Intermediate J/um | \ |

0.3l - - Large J/um R _

a L
w
= L
o
“:J 0.2+
a
&
0.1+
0 11 11 1 11 11 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1
0 005 0.1 0.15 2/30.2 0.25
(m€2)

FIG. 4 (color online). The relative difference between the €
and €, definitions of eccentricity for the nonspinning equal-mass
black-hole numerical EP curves. Lines as in Fig. 3.

PHYSICAL REVIEW D 77, 044011 (2008)

independent, we expect that € will yield a better defini-
tion of the eccentricity; however, we need an independent
standard against which we can measure the reliability of

€Q.

B. Post-Newtonian measurement

To test € in the more relativistic regime we return to
post-Newtonian theory. The 3PN equations for the energy
and angular momentum in Eqs. (9) and (10) can be used to
compute the eccentricity of initial data in several ways, all
using information from a single initial-data configuration
[32—-34]. The two most useful ways are based on using
values for either E, and gy or J and (), from a given
initial-data set. Both methods yield similar but distinct
values for the eccentricity. We will denote eccentricities
obtained using the energy via €g,, and using the angular
momentum via €.

To use Egs. (9) and (10) to find eccentricity, we need to
simplify the dependencies. Those equations depend on the
eccentricity €, the inverse semilatus rectum ¢, and the
individual black-hole spins (represented by w). The spin
dependence can always be fixed. For now, we consider
nonspinning black holes. Next we apply Eq. (14) to replace
€ with m() and . The equations now depend on only m{)
and /. To find a 3PN value of /, we set one of the equations
(say the energy equation) to the constant (energy) taken
from an initial-data set and replace m{) with its value from

Sy T T T T
-l [ mQ=00614 N
I \ ---e=0.0(PN) i |
! ---- ¢ =const (PN) @ |
ask Vo[ J/um = 3.30 S ]

J/um

FIG. 5 (color online). Parameter space of J(e, {) [Eq. (10)] for
nonspinning equal-mass black holes. Short-dashed (green or
black) lines of constant € are constructed using the 3PN equa-
tions. The solid (red) line represents all 3PN models with a
specific value of m{) = 0.0614 corresponding to a particular
numerical model. The horizontal dotted (black) line represents
the corresponding orbital angular momentum of that model.
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the same data set. We can then use one-dimensional root
finding to obtain a value for /. Finally, using Eq. (14)
again, we can obtain e.

There is an issue when using root-finding methods on the
modified equations. Equations (9) and (10) are polyno-
mials with multiple roots, so we must determine which
value of { to use. Figure 5 shows the parameter space for
the 3PN angular momentum from Eq. (10) for the case of
nonspinning equal-mass black holes. The angular mo-
menta for lines of constant eccentricity are plotted against
{ as dashed lines. A solid line shows all 3PN configurations
having a constant value of m{) = 0.061 355. This value of
m{) was chosen because it corresponds to the minimum of
one of the numerical EP curves. The horizontal dotted line
displays the angular momentum from that EP curve. As can
be seen, there are two values of { where these two lines
intersect, and both correspond to valid roots of the equa-
tion. The smallest positive root corresponds to a very small
eccentricity which we would expect for the given data set.
The second smallest positive root yields an eccentricity
somewhere between €; = 0.25 and €; = 0.50. It is un-
likely that the minimum of an EP curve would have such
high eccentricities and negative values of ¢ are not al-
lowed, so we always choose the smallest positive root for
{. The 3PN energy from Eq. (9) yields similar results as
can be seen in Fig. 6. Again, we always choose the smallest
positive root for .

In Fig. 7 we show the eccentricity €, of the same EP
curves considered in Fig. 3 but computed using the 3PN
energy equation. The minima of the EP curves, which

0
— mQ =0.0614
---£=0.0(PN)
--- e=const (PN)
0.021 E,/n=-0.0636 Iy
3
S~
O
/M -0.04
-0.06
-0.08

FIG. 6 (color online).

Parameter space of E(e, {) [Eq. (9)] for
nonspinning equal-mass black holes. Lines as in Fig. 5 except
the horizontal dotted (black) line represents the corresponding
binding energy of the numerical model.
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FIG. 7 (color online). Eccentricity of nonspinning equal-mass
black holes computed along numerical EP curves. The 3PN €,
definition of eccentricity is plotted against the orbital angular
velocity. Lines are as in Fig. 3. The X symbols mark the minima
of each EP curve.

would have ey = 0, are marked with X’s. Qualitatively,
these results resemble the previous direct measurements
shown in Fig. 3; however, there are differences. First, note
that the minima of the EP curves do not correspond exactly
to €z, = 0 (as first noticed in Refs. [32-34]). Also, for
large values of J/ um, €, can be evaluated for more of the
data points on these EP curves than is possible for €. The
evaluation of € was limited in this range because the
numerical data did not extend out to sufficiently large
separations and €q requires pairs of turning points to
measure the eccentricity. Because €, requires information
from only a single initial-data set, it can be computed for
some data points where €, cannot. While not presented
here, using the angular momentum equation to compute €,
delivers results that are qualitatively similar.

Finally, our goal has been to gauge whether or not €
was a reasonable definition of eccentricity. In Fig. 8, we
show the difference between the €, and the 3PN definition
of eccentricity €g,. We plot € — €, against €q rather
than a relative difference to avoid division by small number
issues that make the graph difficult to read (recall that €,
and €g, do not evaluate to zero for the same data points).
As expected, there is better agreement for more Newtonian
configurations (large J/um) which diminishes as J/um
decreases. There is some jaggedness at € = 0.0 caused by
the polynomial fitting used to estimate the minima of the
EP curves. A careful examination of the apocenter data
points (positive €) shows that relative errors for modest
values of € do not exceed 20% for even the most relativ-
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FIG. 8 (color online). Difference between € and €, plotted
against € for nonspinning equal-mass black holes computed
along numerical EP curves. Lines are as in Fig. 3.

istic cases (smallest values of J/um). Of course, the
relative errors near € = 0 are unbounded. This compari-
son suggests that the use of either €q or €, yields reason-
able measures for the eccentricity when applied to the
numerical initial-data sets, although we should be more
cautious in trusting results for pericenter data with
small values of the angular momentum. Again, though,
we see the uncertainty associated with any definition of
eccentricity.

C. Komar-mass difference

The first application of the €z, and €; definitions to
nonspinning, equal-mass black-hole binary initial data
was undertaken by Berti er al. [34]. In this work, the
authors considered initial-data sets that satisfy the
Komar-mass criteria for circular orbits and showed that
the 3PN definitions of eccentricity €z, and €, yield non-
zero results for these configurations which are supposed to
be in circular orbits. We reproduce these results in Fig. 9.
We note that, while it is true that the circular-orbit data
have nonvanishing 3PN eccentricity, the magnitude of this
eccentricity smoothly approaches zero as the separation
increases. We also note, as pointed out in Refs. [32,34],
that the energy based definition €g, yields consistently
smaller values of eccentricity for the ‘‘quasicircular”
data than does the angular momentum based definition €;.

In Ref. [14], we showed that circular orbits defined by
the EP method yield models that are very similar to those
defined by the Komar-mass ansatz. We also showed that,
while very similar, all quantitative measurements of the
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FIG. 9 (color online). The 3PN eccentricity measures €5, and
€; applied to both Komar and EP sequences of nonspinning
equal-mass black holes. Note that the EP minima yield quasi-
circular data with a smaller eccentricity than is obtained from the
Komar-mass ansatz.

quality of the circular orbits showed that the EP method
yields better results. This is again true if we compare the
3PN eccentricities computed for nonspinning, equal-mass
binaries in circular orbits defined by the EP method and the
Komar-mass ansatz. The results are shown in Fig. 9, where
it is clear that the EP method yields consistently smaller
values of eccentricity for quasicircular orbit data.

Although the EP method yields consistently better re-
sults for circular orbits than can be obtained using the
Komar-mass method, the differences are in general not
sufficiently significant to outweigh the considerable com-
putational expense associated with the EP method. When
we compute eccentricities using the € definition, the
overhead of using the EP method is even larger. It would
be useful to find another means of estimating the eccen-
tricity of binary initial data.

In Fig. 10, we again plot the eccentricity €, of the same
set of nonspinning, equal-mass initial data. However, on
the horizontal axis, we plot the dimensionless Komar-mass
difference

AK = (Expym — Mg)/ . (15)

We see a very strong correlation in the data, though the
correlation weakens as we move farther from quasicircular
orbits. It is worth noting that the EP curves with small
J/ wm curve back towards zero AK for configurations with
negative eccentricities (pericenter). This behavior is asso-
ciated with data in the region of the local maxima in the EP
curves. That this occurs is consistent with the notion that
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FIG. 10 (color online). The eccentricity measure €, applied to
nonspinning equal-mass black holes computed along numerical
EP curves and plotted against the Komar-mass difference AK.
Lines are as in Fig. 3.

1
-0.04

these local maxima represent unstable quasicircular orbits,
and hence we will find the Komar-mass difference becom-
ing small in this region. More importantly, it shows that all
of the definitions of eccentricity we have used will break
down in this highly relativistic region.

V. COROTATION

So far we have restricted ourselves to the case of non-
spinning black holes. However, corotating configurations
have received considerable attention in spite of the fact that
we do not expect to see corotating black holes in nature. In
addition to the nonspinning case, Berti et al. [34] also
computed the 3PN eccentricities for the corotating data
presented in Ref. [14] and we reproduce these results in
Fig. 11.

One of the primary reasons that the initial data for
corotating black holes has been studied so extensively is
that there is a simple and unique means of enforcing the
condition of corotation on the black holes. This is in
contrast to any attempt to enforce a specific value of spin
(even no spin) on each black hole, which necessarily
includes the uncertainty in how we define the spin of an
individual black hole in a binary configuration.

The Newtonian concept of corotation implies that each
black hole rotates with a spin angular velocity w, that is
equal to the orbital angular velocity. This Newtonian no-
tion of corotation (i.e., w; = (),) was used by Berti et al.
to fix the spin parameters in Eqs. (9) and (10) when using
these 3PN equations to compute €, and €,. To our knowl-
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FIG. 11 (color online). The 3PN eccentricity measures €5, and
€; applied to both Komar and EP sequences of corotating equal-
mass black holes. The dot-dashed (blue) lines correspond to
quasicircular data defined via the Komar-mass ansatz and where
the Newtonian notion of corotation is used in the 3PN equations.
The dashed (red) lines show the improvement obtained by
including the 1PN correction to the notion of corotation. The
solid (black) lines show the added improvement of using quasi-
circular data based on the EP method.

edge, this Newtonian notion of corotation has been used
in all PN computations dealing with corotation (cf
Refs. [32,34—-38]). However, in Ref. [14], we have shown
that there are relativistic corrections to the spin angular
velocity associated with corotating black holes. We find
wy, including the 1PN correction, to be of the form

ws = Qo1 — n(mQ)*3 + -+ ), (16)

where 7 = w/m is the symmetric mass ratio which takes
the value of 1/4 for equal-mass binaries. Also shown in
Fig. 11 are two 3PN eccentricities computed using the
corrected definition for w,. We find that using this cor-
rected definition significantly decreases the 3PN estimated
eccentricity for these circular-orbit models.

As with the nonspinning case, we can also compute the
eccentricities for the corotating equal-mass binaries in
quasicircular orbits defined in terms of the EP method
rather than the Komar-mass ansatz. Including also the
improved definition for w, in the 3PN definitions of eccen-
tricity, we find the evaluated eccentricities are smallest
when evaluated for quasicircular data defined by the EP
method. This can also be seen in Fig. 11.

Even with the correction to w,, we notice the magnitude
of the 3PN eccentricities computed for “circular’’ data is
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consistently larger for corotating binary data than for non-
spinning data. We cannot be certain why this is the case,
but we should keep in mind that there is an inherent
inconsistency in any attempt to attach the notion of eccen-
tricity to corotating configurations. All of our definitions
for eccentricity, including the 3PN definitions that can be
evaluated using information from a single data set, ulti-
mately rely on information from both a pericenter and an
apocenter configuration. For eccentric orbits, the spins of
corotating black holes will change from pericenter to
apocenter. Since the spins (including spin-orbit and spin-
spin couplings) contribute to the total energy, this variation
of the spin throughout the orbit must impact upon our
definitions of eccentricity. This is likely to cause few
problems when considering nearly circular orbits (where
the spin varies little from pericenter to apocenter), but our
definitions of eccentricity may not yield reasonable results
for orbits that deviate significantly from being circular.

VI. CONCLUSIONS

In this paper, we have examined several basic questions
associated with the construction of binary black-hole initial
data. When we construct data sets using the extended CTS
equations and fix the freely specifiable parts of the data and
boundary conditions to be consistent with the assumptions
of quasiequilibrium, we obtain models for black-hole bi-
naries in circular orbits. But if we set aside the quasiequi-
librium assumption that imposes circular orbits, the
resulting data can no longer evolve in a quasiequilibrium
manor as the orbit will have a significant eccentricity. Our
investigations suggest that the initial-data models we ob-
tain represent, in general, binaries that are at turning points
(either apocenter or pericenter) of some general eccentric
orbit.

The specific notion of quasiequilibrium that we set aside
is implemented by imposing either the Komar-mass con-
dition or by choosing the minimum of an EP curve as our
circular-orbit model. If, as it seems, general initial-data
models on an EP curve are at turning points, then we can
use information from these models to estimate the eccen-
tricity of the model’s orbits. Of course, there is no unique
definition of eccentricity. We have examined several pos-
sible definitions for eccentricity. Using only information
from the initial-data sets on an EP curve, we have defined
two eccentricities for an orbit (e and €;), but these
definitions require that we have representative models at
both the pericenter and apocenter turning points of a given
orbit (assumed to have constant binding energy). We have
compared these definitions of eccentricity to the 3PN
definitions (€z, and €;) developed by Mora and Will
[32]. All of the definitions agree quite well for nonrelativ-
istic orbits. They are also in reasonably good agreement for
more tightly bound and relativistic orbits as well, although
the results are quantitatively different. One might ask
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which definition is better for more relativistic situations.
However, it is not clear that there is a meaningful answer.

In comparing the numerical and 3PN eccentricity mea-
sures for relativistic cases, we have noticed an interesting
and initially unexpected feature of the 3PN equations.
Figure 2 compares numerical and 3PN EP curves for
equal-mass nonspinning black-hole binaries. The EP
curves each have a constant value for the orbital angular
momentum. All of the numerical EP curves cover a finite
range of separations (parametrized by m{),). This is be-
cause it becomes computationally expensive to compute
models at very large separations (small m{);) and it be-
comes increasingly difficult to obtain convergent solutions
at very small separations. What was initially unexpected is
that some of the 3PN EP curves also cover a finite range of
separations.

For sufficiently small values of J/um, the 3PN EP
curves do not extend to configurations with arbitrarily large
separation. To make this clear, Fig. 2 includes a curve that
marks the boundary (for both large and small separation) of
the 3PN EP curves. This is most easily seen for the 3PN EP
curves near the bottom of Fig. 2. Here we can see that the
3PN EP curves do not extend to arbitrarily small values of
m{), but the numerical EP curves do (although we do not
compute them for arbitrarily large separation).

That this behavior is not an artifact of our method for
computing the 3PN EP curves can be seen by examining
Fig. 5. Recall that angular momentum is held constant
along EP curves, so an EP curve is represented by a
horizontal line in this figure. Notice that all curves of
constant eccentricity have a local minimum. For J/um =
3.4, an EP curve can extend from € = 0 — 1. However, for
J/um < 3.4, an EP curve can only extend from € = 0to a
maximum eccentricity that is less than 1, and is determined
by which curve of constant € has its minimum tangent to
the EP curve.

This behavior in the 3PN EP curves is clearly related to
the fact that, for sufficiently small values of J/um, the EP
curves each have a local maximum at small separation. In
spite of the fact that €z, and €, can be evaluated using data
from a single model, the parametrization of the 3PN energy
and angular momentum in terms of eccentricity and semi-
latus rectum used by Mora and Will [32] is, at its heart,
based on a ““two-point” method. Neither the numerical nor
PN approaches should be able to define an eccentricity for
a point on the EP curve with an energy larger than that at
the local maximum at small separation. Unfortunately, this
does not explain all of the unusual behavior seen in these
3PN EP curves as we note that in Fig. 2 the 3PN EP curves
for small J/um extend to separations smaller than the
location of the local maximum. What is clear is that this
behavior is an artifact of the parametrization of the 3PN
equation in terms of the eccentricity and semilatus rectum.
The original 3PN equation, parametrized in terms of, for
example, separation and tangential velocity, do not have
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any problem in constructing EP curves that extend to
infinite separation.

Given the strong correlation between the various mea-
sures of eccentricity and the difference between the Komar
mass and the ADM energy as measured by AK and seen in
Fig. 10, we suggest that perhaps AK can serve as a useful
invariant means of parametrizing the eccentricity of an
orbit. However, initial-data studies can at best suggest
possible useful parametrizations. It will be most useful to
evolve initial data that are significantly eccentric and ex-
amine the orbital dynamics to better understand both the
parametrization of eccentricity and its effects on the dy-
namics. For example, it may be particularly interesting to
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explore the evolution of eccentric initial data for an “orbit”
that has no pericenter turning point on its EP curve.
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