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The Rainich’s program of describing metrics induced by pure electromagnetic fields is implemented in
a simpler way by using the Ernst formalism and increasing the symmetry of spacetime. Stationary metrics
possessing one, two or three Killing vectors are studied and classified. Three branches of solutions exist.
Electromagnetically induced mass terms appear in two of them, including a class of solutions in harmonic
functions. The static subcase is discussed too. Relations to other well-known electrovacuum metrics are
elucidated.
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I. INTRODUCTION

In general relativity, electromagnetic fields alter the
metric of spacetime through their energy-momentum ten-
sor

 T�� � �
1

4�

�
F��F�� �

1

4
��� F��F��

�
; (1)

where

 F�� � @�A� � @�A� (2)

is the electromagnetic tensor and A� is the four-potential.
T�� enters the r.h.s. of the Einstein equations

 R�� � �8�T�� : (3)

We use relativistic units G � c � 1 and take into account
that T�� is traceless. In addition, the Maxwell equations
are coupled to gravity through the covariant derivatives of
F��

 F��;� �
1�������
�g
p �

�������
�g
p

F���� � 0: (4)

Here g denotes the metric’s determinant and we discuss
electrovacuum solutions. The Einstein-Maxwell (EM)
equations (3) and (4) show how the electromagnetic field
leaves its imprint on the metric.

Already in 1925 Rainich gave the necessary and suffi-
cient conditions for a gravitational field to originate from a
non-null electromagnetic field [1–3]. They split into an
algebraic and an analytic part, which involve the Ricci
tensor and determine the associated electromagnetic field
up to a constant duality rotation. This method is cumber-
some for finding exact solutions, but is useful to check
those already found [3]. In fact, it is very hard to find any
exact solution for a completely general metric. One has to
introduce some symmetry, study algebraically special
fields or fields containing special vectors and tensors.
This seems to simplify the Rainich conditions too. Thus,
in Ref. [4] it is shown that type D aligned EM solutions are
characterized just by algebraic restrictions on R��.

In this paper we study the effect on spacetime of elec-
tromagnetic fields possessing some symmetry. The metric
inherits this symmetry and has Killing vectors which com-
mute and increase from one to three. Hence, it depends on
three, two, and one coordinates.

When the electromagnetic field is turned off Eq. (4)
becomes trivial, while Eq. (3) transforms into the vacuum
Einstein equations. They have a number of nontrivial
solutions besides flat Minkowski spacetime. Usually sin-
gularities are present where hidden mass sources lie. Thus
the Schwarzschild solution, although being a vacuum one,
represents the field of a point mass, sitting at the origin. We
want to study the pure electromagnetic effect on the metric,
therefore we demand that no traditional masses are present
and when the electromagnetic field is turned off, flat space-
time results. We call such spacetimes purely electromag-
netic spacetimes (PES).

In Sec. II stationary solutions are discussed by introduc-
ing the Ernst potential, the EM equations based on it and
their group of symmetry transformations. It is shown that
PES are characterized by a real constant taking three
values. The metric components are expressed through the
electromagnetic potential, which satisfies one fundamental
equation with three branches of solutions. Sometimes lin-
ear terms in the main metric function appear, leading to
electromagnetically induced mass terms.

In Sec. III static PES with one Killing vector are further
elaborated. There is a large class of solutions based on a
harmonic function.

In Sec. IV stationary axisymmetric PES are discussed
with emphasis on their multipole structure.

In Sec. V the static subcase is studied and the emergence
of Weyl solutions is clarified.

Section VI is dedicated to PES with plane and cylindri-
cal symmetry. All such spacetimes are found explicitly,
based on a simple harmonic function.

Section VII contains conclusions and discussion.

II. STATIONARY PES

Let the metric possess one Killing vector, taken timelike
for convenience. Such gravitational fields are called sta-*boyko@inrne.bas.bg
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tionary [3,5] and the interval reads

 ds2 � f�dx0 �!mdxm�2 � f�1�mndxmdxn: (5)

The metric components are independent of time. There
exists an Ernst potential E [6]

 E � f���� � i ; � � �� i	; (6)

where the scalar electric and magnetic potentials are de-
fined as

 F0n � �;n; Fmn � f��1=2"mnp	;p: (7)

The three-dimensional metric �mn determines a corre-
sponding vector calculus and � is its determinant, while
the comma denotes a derivative. The imaginary part of E
follows from !m, �, and f

 r � ~
� i���r���r���; (8)

 f�2
m � ���1=2"mpq@p!q: (9)

The existence of the Ernst potential leads to considerable
simplification of the EM equations for E, � and �mn

 fr2E � rE�rE� 2��r��; (10)

 fr2� � r��rE� 2��r��; (11)

 

�f2Rmn��� �
1
2E;�mE

�
;n� ��E;�m��;n� ���E�;�m�;n�

� �E� E���;�m��;n�: (12)

Symmetrization is meant on the r.h.s. of the last equation,
while f is given by Eq. (6)

 f � 1
2�E� E

�� ����: (13)

It is well-known that the group of symmetry transforma-
tions of these equations is SU�2; 1� [7]. A nonlinear repre-
sentation of it consists of 5 transformations containing 3
complex and 2 real parameters [3], p 520. We shall use two
of them that do not change the solution in a nontrivial
manner, namely

 E0 � E� ib; �0 � �; (14)

 E0 � ���E; �0 � ��; (15)

while �mn is not transformed. Here � is a complex pa-
rameter, while b is real. The first transformation is a gauge
one. The second is a duality rotation when j � j� 1 and a
rescaling of ds otherwise.

A linear representation of the group of motions is given
as follows [7]. The Ernst and the electromagnetic poten-
tials are parametrized by 3 complex scalar fields u, q, w

 E �
u� w
u� w

; � �
q

u� w
: (16)

One of them (w) is redundant and is chosen so that Eqs (10)
and (11) become

 �uu� � qq� � ww��r2Z � 2�u�ru� q�rq

� w�rw�rZ; (17)

where Z � u, q or w. One can further set u � 1, w � �, or
u � �, w � 1 obtaining

 E �
1� �
1� �

or E �
�� 1

�� 1
; � �

q
1� �

:

(18)

The potential � is defined up to a constant c. We
demand that when �! c Minkowski spacetime should
result. This means that !m � 0 and Eqs. (8) and (9) yield
 � 0. Obviously f should become equal to unity. Then
Eq. (6) gives E � 1� cc�, which is a real constant, con-
taining no mass parameters. When � is turned on, E
remains constant for PES. This is because the real and
imaginary part of � give the mass and rotation potentials in
the multipole structure of the solution [8], hence, for PES �
and correspondingly E should be trivial constants. We can
make them real by transformation (14). Using Eq. (15) the
real constant E0 can be set to one of the 3 distinct values 1,
0,�1. Hence, there are three branches of PES. In a similar
way, the inequivalent classes of solutions under the action
of the complete SU�2; 1� group are given by E � 1, 0, �1
and E � E� [3], Fig. 34.1.

The setting of E � E0,  � 0 for PES causes drastic
simplification in the EM equations. Equation (10) becomes
trivial, Eq. (13) gives

 f � E0 ����: (19)

The quadratic dependence of f on � can be traced to the
quadratic dependence of the energy-momentum tensor on
F��. Inserting Eq. (19) into Eq. (11) one gets an equation
for �

 ���� � E0�r
2� � 2��r�r�: (20)

Next, !q is determined from Eqs. (8) and (9)

 f2��1=2"mpq@p!q � i���r���r���

� i���r ln
�

��
: (21)

Equation (12), which determines the three-metric �mn
simplifies considerably

 f2Rmn��� � 2E0��;m��;n ��;n��;m�: (22)

The 3 branches of the solution are marked by different
values of c � c1 � ic2

 c2
1 � c

2
2 � 1� E0: (23)

Let us define the potential �1 � �1 � i	1 � �� c so
that �1 ! 0 always when the electromagnetic field is
turned off. Equation (22) remains the same but with �
replaced by �1. Equation (19) becomes
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 f � 1� 2c1�1 � 2c2	1 ��2
1 � 	

2
1: (24)

There are obviously linear terms in f whenever c � 0, i.e.
E0 � 1.

Neither of the parametrizations (18) can encompass all
three branches of the solution, but this is possible in the
parametrization (16)

 E0 � �1; u � 0; w � 1;� � q; (25)

 E0 � 0; u � w � 1;� � q=2; (26)

 E0 � 1; u � 1; w � 0;� � q: (27)

In all three cases Eq. (17) becomes identical to Eq. (20).
When E0 � �1 Eq. (20) coincides in form with the vac-
uum Ernst equation for � replaced by q. When E0 � 1 this
equation has been derived also by Tanabe [9] from the
condition for a linear relation between u, q, w. When E0 �
0 Eq. (20) is equivalent to

 � � H�1; r2H � 0: (28)

We also get Rmn��� � 0, so that space turns flat, H decou-
ples from �mn and becomes an arbitrary complex harmonic
function. Furthermore

 f �
1

HH�
; "mpq@p!q � iHH�r ln

H�

H
: (29)

Let H � L� iM, where L and M are real harmonic func-
tions. Then

 f �
1

L2 �M2 ; � �
1

L� iM
; (30)

 � �
L

L2 �M2 � fL; 	 � �
M

L2 �M2 � �fM:

(31)

Electromagnetic fields alone are unable to induce strong
gravitational fields like those around black holes, therefore
f � 1 and �, 	 are almost harmonic, as follows from
Eq. (31). At infinity a monopole term in�,�� e=Rwhere
e is the charge and R2 � r2 � z2, will induce a long-range
mass-type term in f according to Eq. (24)

 f� 1� 2c1
e
R

(32)

as long as c1 � 0 (E0 � 1). It presents an electromagneti-
cally induced mass. Otherwise the gravitational field of
PES remains short-ranged.

Equation (23) does not determine the signs of c1 and c2.
One can choose them in such a way that the induced mass
is always positive, no matter what the sign of the charge e
is.

The formulas for the E0 � 0 branch resemble those of
Perjés-Israel-Wilson (PIW) fields [5,10,11] but their physi-
cal interpretation is completely different. PIW solutions
are derived upon the condition of flat space metric, which

leads to a linear relation between E and � [5]

 � � 1
2�1� E�: (33)

A comparison with Eq. (18) gives � � q. Thus � is not
trivial and there are rotating masses in the system, besides
the electromagnetic field. In fact, the masses of the sources
are equal to the charges mi � ei. Obviously such solutions
are not PES. Curiously, PIW metrics also become flat when
� is turned off, but this is ensured by taking away some
mass in order to keep the relations mi � ei intact, even
when ei ! 0.

III. STATIC PES WITH ONE KILLING VECTOR

Stationary gravitational fields are static when the Killing
vector is hyper-surface orthogonal, !m � 0. Let us write

 � � �� i	 � � cos�� i sin�: (34)

Then due to Eq. (21) � is constant and �� 	. The effects
of electric and magnetic fields on gravity are identical and
we put for simplicity 	 � 0. The same conclusion holds for
general static fields [12–14]. This choice makes � real and
equal to �. One can always maintain that it depends on the
polar coordinates r, z, ’ through some other function h.
Equation (20) becomes

 	��2 � E0��hh � 2��2
h
rhrh � ���

2 � E0��hr
2h:

(35)

A large class of solutions may be found when h is har-
monic. Then Eq. (35) can be integrated

 h �
Z d�

�2 � E0

: (36)

The integral has 3 analytic expressions according to the
value of E0 and in all of them the functional dependence
h��� can be inverted

 E0 � 0; � � �1=h; (37)

 E0 � 1; � � tanh; (38)

 E0 � �1; � �
1� e2h

1� e2h : (39)

In the last case we took into account that c �
���
2
p

> 1. The
denominator in Eq. (36) is in fact f, which leads to the
relation �;i � fh;i similar to Eq. (31). Thus � is almost
harmonic. Equation (22) becomes

 Rmn��� �
4E0�m�n

��2 � E0�
2 : (40)

In the branch E0 � 0 space is flat, h decouples from �mn
and the solution resembles the Majumdar-Papapetrou (MP)
solutions [15,16], but still the physical interpretation is
different. The latter solutions are a static subcase of the
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PIW solutions and their sources have masses equal to the
charges.

IV. STATIONARY AXISYMMETRIC PES

Such metrics possess two commuting Killing vectors
and do not depend on t and ’. The interval is

 ds2 � f�dt�!d’�2 � f�1	e2k�dr2 � dz2� � r2d’2
:

(41)

The solutions with E0 � �1 in the previous sections are
inexplicit because r and r2 depend on �mn, which de-
pends in turn on � through Eqs. (12), (22), and (40). This
vicious circle breaks for all axisymmetric solutions; the
gradient and the Laplacian are the flat 3-dimensional ones.
Equation (20) decouples from k. The same is true for
Eq. (21)

 

f2

r
!r � 2��	z � 	�z�;

f2

r
!z � 2�	�r ��	r�:

(42)

Equation (19) is unchanged, while Eq. (22) simplifies to

 kr �
1

2
r�Rrr � Rzz� �

2E0r

f2 ��r�
�
r ��z�

�
z�; (43)

 kz � rRrz �
2E0r

f2 ��r�
�
z ��z�

�
r�: (44)

The equations for ! and k are linear and can be easily
solved after � is found from Eq. (20).

When E0 � 0 Eqs. (28)–(31) still hold and together with
Eq. (42) give the PES solution. As an example, let us
choose L and M as

 L � 1�
e
R
; M �

�z

R3 ; (45)

 � �
R3

R3 � eR2 � i�z
: (46)

Then near infinity we have

 �� 1�
e
R
; 	��

�z

R3 ; f� 1�
2jej
R
; (47)

so that the solution has charge �e, magnetic moment ��
and a monopole term of purely electromagnetic origin in f,
corresponding to a mass equal to jej. The angular momen-
tum is �� and is of magnetic origin. This solution repre-
sents a massive charged magnetic dipole, whose mass and
angular momentum are induced electromagnetically.

There are different techniques for solving the EM equa-
tions in the general axisymmetric case. One of them is the
Sibgatullin-Manko method, based on a prescribed behavior
of the Ernst potential on the symmetry axis [17,18]. One
starts with

 E�r � 0; z� � 1�
XN
l�1

�l
z� �l

(48)

and a similar expression for �, where �l, �l are given
constant parameters related to the mass, angular momen-
tum and higher multipole moments. The solution is ob-
tained by a sophisticated integration procedure. It is
characterized by the gravitational and electromagnetic mo-
ments Pi and Qi [8,19]. They are determined from the
coefficients �i, qi of the series expansion of � and q near
infinity. The infinite point is brought to the origin of the
coordinates by a conformal transformation �r; z� ! � �r; �z�.
One can write

 ���r � 0; �z� �
X1
i�0

�i �zi�1; q� �r � 0; �z� �
X1
i�0

qi �zi�1;

(49)

where �z � 1=z. Equation (48) shows that PES is obtained
as a special massless case when�l � �l � 0 and this gives
always a member of the E0 � 1 branch. The same con-
clusion follows from Eq. (49); � becomes trivial only when
all �i � 0. Then � � 0 and E � 1. The massless case has
been discussed in a number of papers [20–23]. In the last
reference the explicit solution for a massless magnetic
dipole is presented. One can check that in all these ex-
amples E � 1 and therefore c � 0. There are no linear
terms in f and no electromagnetically induced mass.

It must be pointed out that the expansion in Eq. (49)
cannot include � � 1 and consequently the E0 � 0 branch
of PES. This happens because there is no constant term in
it. On the other side PIW solutions have �i � qi and do fit
into Eq. (49). In addition, they are massive, not massless
solutions.

The branch E0 � �1 has � � q and Eq. (20) is equiva-
lent to the vacuum Ernst equation for q instead of �. Its
solutions can be found by the Sibgatullin-Manko method
and many other methods [3]. The metric components f, !
and k are given by Eqs. (19) and (42)–(44).

V. STATIC AXISYMMETRIC PES

Based on the previous sections one can describe these
spacetimes as follows. The function ! vanishes and ��
	. We put 	 � 0 for simplicity. Equation (20) becomes

 ��2 � E0�r
2� � 2�r�r� (50)

where the differential operators are flat and 3-dimensional.
Next

 f � 1� 2c1�1 ��
2
1 � E0 ��

2 (51)

where E0 � 1� c2
1, � � �1 � c1 and �1 ! 0 when the

electric field is turned off and also at infinity. Finally

 kr �
2E0r

f2 ��
2
r ��2

z�; kz �
4E0r

f2 �r�z: (52)
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The class of solutions given by Eq. (36) is still valid, h
being an arbitrary real harmonic function. It was discov-
ered by H. Weyl in 1917 [24] and includes the three
branches (37)–(39). The branch E0 � 0 is exhausted by
Weyl solutions and is conformastatic, but for E0 � �1
there can be solutions of Eq. (50) not based on a harmonic
function. Similarly to the stationary axisymmetric PES
with E0 � 1, static axisymmetric PES with this property
are among the massless cases of static electrovacuum
Sibgatullin-Manko solutions [25]. There are of course
electrovacuum solutions containing usual mass sources,
but the quadratic relation in Eq. (51) breaks for them in
principle.

Weyl solutions are usually derived by demanding func-
tional dependence f��1� which leads to f�1�1

� 2 and
leaves the coefficient c1 in Eq. (51) undetermined. We
see that it descends from the Ernst potential E0 of the
solution and is fixed to one of three distinct values 0, 1,

���
2
p

.

VI. PES WITH 3 COMMUTING KILLING
VECTORS

Such metrics depend on just one coordinate; z (plane
symmetry) or r (cylindrical symmetry). More generally,
they can depend on some function of r, z and spherical
symmetry is also included, but we shall not discuss this
possibility in the present paper. Equation (42) tells us that
when � � ��z� it induces !�r� and vice versa. The sym-
metry of the electromagnetic field is inherited only when
! � 0 and the solution is static. There are stationary
cylindrical solutions like the one given by Eq (22.17)
from Ref [3] but it does not transfer into Minkowski space-
time when the electric field is turned off and is not a PES.
Now � is a function of either z or r and consequently is a
function of either h � 1�Qz or h � 1�Q lnr which are
harmonic. Thus Eq. (20) transforms into Eq. (36) and its 3
branches comprise all solutions. Equation (52) becomes

 kr � 2E0r�h
2
r � h

2
z�; kz � 4E0rhrhz: (53)

Let us discuss first the plane-symmetric case. We have
kz � 0 and

 k � �E0Q2r2: (54)

The plane symmetry of the electric field is not inherited by
the metric unless the branch E0 � 0 is chosen. Then k � 0
and

 � �
1

1�Qz
; f � �1�Qz��2: (55)

This is written in the form of Eq. (51) like

 f � 1� 2�1 ��
2
1; �1 � �� 1; (56)

so that when Q � 0 we get �1 � 0 and f � 1. There is
clearly a linear term in f.

The electrified plane-symmetric solution has been
studied by many authors, working in different coordinate
systems. It appeared for the first time in a paper by Kar
[26]. The case with k � 0 was singled out by McVittie
[27].

In the cylindrical case one should replace z by lnr in
Eq. (55). The function k � k�r� again, but now all three
branches preserve cylindrical symmetry. The one with
E0 � 0 is the metric given by Eq (22.16) from [3] after
some corrections are made. It was found by Bonnor [28]
and rederived by Raychaudhuri [29] who used the Rainich
formalism.

VII. CONCLUSIONS AND DISCUSSION

We have shown in this paper that the Rainich program of
describing electromagnetically induced metrics can be
implemented in a simpler way and in more detail when
the symmetry of the system is gradually increased. PES
require that the Ernst potential becomes a constant with 3
possible values. This invokes a quadratic dependence of
the main metric function f on the electromagnetic potential
� and its complex conjugate. The two basic field equa-
tions (10) and (11) reduce to a single one Eq. (20) for �. It
possesses 3 branches of solutions—one harmonic, one of
Ernst type and one of quasi-Ernst type. In some cases f has
linear in �1 terms, which give rise to electromagnetically
induced mass terms. Solutions in harmonic functions form
a large class when one or two Killing vectors are present
and become exhaustive when the metric depends on a
single coordinate. We have also shown that the 3-branched
Weyl solution is a kind of PES and has analogs in axisym-
metric and stationary fields.

There are many EM solutions in the literature and it
seems strange that PES were not studied systematically in
the past. The reason probably is that vacuum solutions are
studied first as being simpler. Then they are electrified and
magnetized. In this way traditional mass sources coexist
with the electromagnetic field and the resulting gravitation
is a mixture due to the both types of sources. In other areas
of general relativity the corresponding problem has already
been investigated.

In the case of charged perfect fluids there is a bunch of
spherically symmetric models where mass arises in a
purely electromagnetic way [30,31]. Some of them were
proposed as classical models of the electron.

The study of the gravitation of beams of incoherent light,
whose energy-momentum tensor is of pure radiation type,
began already in 1931 in the linear approximation [32].
Later Bonnor found exact solutions belonging to the class
of pp-waves [33]. Even the gravitational field of two
identical colliding beams of light was found recently
[34]. Although these fields are rather weak, such studies
have important conceptual motive to unravel the nonlinear
structure of general relativity.
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The sources of PES are point mixtures of electric and
magnetic multipoles without any mass multipoles. There
should also be regular PES arising from rotating charged
and magnetized surfaces. In this respect they are com-

pletely different from PIW and MP solutions whose
sources are massive and represent extreme black holes or
shells of charged dust balanced by masses equal to the
charges [35–37].
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