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Scattering of long-wavelength gravitational waves
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We consider the scattering of a low-frequency gravitational wave by a massive compact body in
vacuum. We apply partial-wave methods to compute amplitudes for the helicity-conserving and helicity-
reversing contributions to the cross section, accurate to first order in M w. Contrary to previous claims, we
find that the partial-wave cross section agrees with the cross section derived via perturbation-theory

methods.
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L. INTRODUCTION

Gravitational waves—propagating ripples in space-
time—are a key prediction of general relativity (GR).
Despite strong indirect evidence for their existence [1,2],
they have yet to be measured directly. This is hardly
surprising given the expected amplitude of waves reaching
Earth (with a dimensionless strain of # ~ 1072!). However,
nine decades after the formulation of Einstein’s theory,
many experimentalists are now optimistic that “first light”
detections are imminent, at either (existing) ground-based
[3] or (future) space-based [4] interferometers.

In this paper, we ask a simple question. When a long-
wavelength gravitational wave impinges upon a massive
compact body, what is the differential scattering cross
section? We will assume that the incident wave is mono-
chromatic, long-lasting, and sufficiently weak that the
gravitational field equations may be linearized. Thus, the
problem is characterized by a single dimensionless pa-
rameter,

Mo = mrg/A (1)

(with units G = ¢ = 1), which conveniently expresses the
ratio of incident wavelength A to the Schwarzschild hori-
zon rg of the compact body. In this paper, we concern
ourselves only with the long-wavelength regime, in which
Mo < 1.

It is no surprise to find that this simple question has been
asked, and answered, by many authors. The literature on
the gravitational scattering of massless waves of various
spin (s = 0, %, 1, and 2) is extensive and stretches back over
40 years (see [5,6] for summaries). Nonetheless, to our
knowledge only one paper [7], written in the late 1970s,
tackles this problem via partial-wave methods. The pur-
pose of this paper is to revisit and improve Matzner and
Ryan’s pioneering study [7].

Over the years, various authors [7—12] have shown that,
in the long-wavelength limit (M < 1), the cross section
depends on the spin of the scattered field, as follows:
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It is worth noting that the gravitational result is somewhat
anomalous in that it does not follow the same general rule
[do/dQ = M?*cos*(6/2)/sin*(6/2)] as the other fields.

Equation (2)[d] is the conclusion of (at least) three
separate studies. The first derivation was carried out by
Westervelt [8], who applied perturbation theory to the
linearized gravitational equations. Peters [9] found the
same result via a Green’s function approach, while
De Logi and Kovacs [11] applied Feynman diagram tech-
niques. On the other hand, Matzner and Ryan [7] derived a
different and more complicated formula by applying
partial-wave methods. Matzner and Ryan recognized that
the lack of agreement between their result and the rest of
the literature was surprising, given that, in the case of
Coulomb scattering, the lowest-order partial-wave cross
section and the Born approximation are in exact
agreement.

The primary aim of this work is to show conclusively
that Eq. (2)[d] is indeed correct by improving the partial-
wave analysis of Matzner and Ryan. A secondary aim is to
clarify the origin of the “extra” term sin*(/2) in the
gravitational cross section (2)[d]. This term is a direct
consequence of the nonconservation of helicity in
gravitational-wave scattering. As we shall see, helicity is
not conserved because ‘‘axial’”’ and “‘polar’” waves are
scattered in different ways.

As is well known [13], first-order perturbations to the
Schwarzschild metric may be divided into two classes,
according to their behavior under spatial inversion. Axial
(or odd) perturbations pick up a factor of (—1)*! under
inversion, whereas polar (or even) modes pick up a factor
(—1)!. In our discussion, axial/odd modes are referred to as
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having negative parity (P = —1), whereas polar/even
modes are said to have positive parity (P = +1). As we
shall see, partial waves of the same [/ but opposite parity
pick up different scattering phase shifts.

II. ANALYSIS

The remainder of this paper is organized as follows. In
Sec. IT A we briefly recap the results of Matzner et al. to
write the cross section in terms of amplitudes which are
expressed as partial-wave series. In 11 B, we define the
phase shifts and discuss their asymptotic values [14] in
the long-wavelength regime (Mw < 1). In II C, we derive
a useful formula for the spin-weighted spherical harmon-
ics. In II D, we show that, in the long-wavelength limit, the
partial-wave series may be summed to give pleasingly
simple results. We conclude with a brief discussion in
Sec. II1.

A. Partial-wave series

In the late 1970s, Matzner and co-workers [7,15-17]
showed that the differential cross section for the scattering
of gravitational waves from a spherically symmetric com-
pact object can be written as the sum of the square magni-
tude of two amplitudes,

;’—g — 1F @)L + g 3)

These amplitudes may be expressed as partial-wave series,

e
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In these expressions, exp(2i6;,) are phase factors to be
determined from a radial equation, Y}"(x) are spin-
weighted spherical harmonics, and x = cos6, where 6 is
the scattering angle. Note the presence of the sum over
even and odd parities, P = *1.

The first amplitude f(x) corresponds to (that part of) the
interaction which preserves the helicity (i.e., for which the
helicity of the scattered wave is the same as the helicity of
the incident wave). The second amplitude g(x) corresponds
to (that part of) the interaction which reverses the incident
helicity. As we see in the next section, the helicity-
reversing amplitude is nonzero, because the phase shifts
8%, depend on parity P. In this respect, gravitational-wave
scattering is unlike scalar, neutrino, or electromagnetic
scattering.
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B. Phase shifts
The phase shifts of odd parity (P = —1) may be found

from Regge and Wheeler’s [13] radial equation,
d’R
dr?

+[w? = V(]R(r) =0,
(6)

}"2 r3

with V(r) = <1 _ 27M>[l(l +1) 6M}

which describes axial perturbations. Here, . is a tortoise
coordinate defined by dr/dr, =1 —2M/r. To find the
phase shifts, one must solve this equation subject to the
ingoing boundary condition at the horizon [R(r) ~
exp(—iwr,) as r — 2M]. The asymptotic solution in the
far field is

R(r) ~ A e i + A e/, asr— oo, (7)
and the phase shifts are determined by the ratio of the
ingoing and outgoing coefficients,

exp(2i8;,) = (=)' Agy /A ®)

The phase shifts of even parity (P = +1) may be found
by solving Zerilli’s radial equation [18]. It has been shown
[5] that the phase shifts of even parity are related to those of
odd parity by

(+2)+DII—-1) + RiMw
G+ + DIl —1) - R2iMe
X exp(2i8;,,). €))

exp(2i8;]) =

Thirty years ago, Matzner and Ryan [7] conducted a
partial-wave analysis in the low-frequency limit. They
assumed the odd-parity phase shift to be approximately

I'i+1-2iMw)
Ii+1+2iMw)’

Jim exp(2i8;,) = (10)

More recently, Poisson and Sasaki [14] showed that the
exact result for the phase shift in this regime is actually

A}imoexp(zi(s;n) = ¢ ®exp(—4iMw B)), (1)

where

(—1D(+3)

1
B, =§<\P(l+ 1) + ¥() + U+ D

P > (12)
with ¥(I) = — In(T'(1)).
dl
Here, ® = —4Mw In(4Mw) is an overall phase factor

which has no effect upon the cross section. The result of
Poisson and Sasaki can be rewritten
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exp(2i8;,) = e " P72Me exp[ —4iMw W (1 + 1)
+8iMw/I(l + 1)] + OM2w?)  (13)
I'i+1-2iMw)
I'i+1+2iMw)
+ O(M*w?). (14)

— o iP2iMe L8iMe/I(I+1)

The extra factor of ¢¥™@/I+1) present in (14) but not in
(10) proves significant, as we see in Sec. II D. But first, let
us briefly digress to study the spin-weighted spherical
harmonics.

C. Spin-weighted spherical harmonics

To compute the amplitudes (4) and (5) we require ex-
pressions for the spin-weighted spherical harmonics
_,Y?(x). These may be found by acting on spherical har-
monics of spin-weight zero, ,Y?(x) = \/%Pl(x), with
ladder operators [19]. The spin weight is lowered with

the operator 5, and the azimuthal number is raised with
L*. These operators are defined by

X m + sx
5,7 (x) = < -2, - 7>SY’"(x)
I Fl___x'_z I

=—JU+s)(—s+1D),_,Y"x, (15

s + mx
NI
=l —m) I+ m+ 1),Y7""(x). (16)

L Yp() = —( 1— 2%, + )SYI’”(x)

Here, 0, is shorthand for the partial derivative with respect
to x = cosf. By acting with SL*SL™ on ,¥Y'(x), it is
straightforward to show that the spin-weighted harmonics
in (4) and (5) can be written
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Their values in the forward and backward directions are
particularly simple,

20+ 1
sz%<1>=,/ i rieh=o (18)

D. Scattering amplitudes

In this section we show that, to first order in M w, the
scattering amplitudes f(x) and g(x) are given by

_  ieaine T = 2iMw)  cos*(6/2)
M) = e s M) [sin(6)2)] 2
+ O(Mw), (19)
M~ 'g(0) = e ®sin%(0/2) + O(Mw), (20)

where e ~'® is an irrelevant phase factor.

First, let us consider the helicity-conserving amplitude f
defined by (4). Using results (9), (14), and (17), it may be
written as

fx) = e ®*2Mo(1 + x)26, (1 — x)9,0,(1 = x)3,F(x),
2D
where

& 1+ Dedip(x)
F(x) = iw Z:ZZ(Z - DI+ 1) +2)

(22)

and

s, _ (= DI+ 1)1 +2)
“ T ((z S+ DU+ 2) - 12iMa)>
Il+1-2iMw)

8iMw/I(I+1) + @ M2 2 .
T+ 1+ 2iMa)¢ (M)

() 20+ 1/(1+x)?9,(1 —x)a,0,(1 — x)axPl(x)> (23)
21 X)—
4 K =D+ 1DI+2) To find the amplitudes in the long-wavelength limit, it is
(17)  only necessary to keep terms up to first order in M. Hence
|
(I=DII+1D(I+2) _ (I=DII+D(I+2) (24)
(- D0+ D)1 +2) - R2iMo  (—1-2iMa)( + 6iMa)( + 1 — 6iMa)( + 2 + 2iMw)’
and
SM/I+]) (I+8iMw)l+1—8iMw) 25)
W+
The phase factor ¢*2! can then be written
) Iri—-1-2im
i = (1= DI+ D+ 22 iMw) (26)

I'l+3+2iMw)’

The series F(x) may now be computed with the aid of Eq. (7.127) from Gradshteyn and Ryzhik [20], which gives
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fl (1 —x)7P)(x)dx =
-1

=2tog(g — 1)

To find F(x) we substitute o = 1 + 2iMw into the above
formula and compare with [ | F(x)P;(x)dx. This implies
that

2~ (1+2iMw) I[(1 —2iMw)
Fx) =M_—— s .
QiMw)*(1 + 2iMw)* T'(1 + 2iMw)
X (1 — x)!+2iMo, (28)

Plugging (28) into (21) and taking four derivatives yields
the pleasingly simple result
Cidoime L1 — 2iM ) [%(1 + x)J?
(1 +2iMw) [3(1 — x)]' 72Me’
(29)

f(x) = Me

which is the same as (19).
The helicity-reversing amplitude g(x) defined in (5) may
be written

e fam v+ 1)
o) = T(121Mw); (- DI+ D +2)
X e 4iMoBi_y2(—x), GO

The denominator of this expression ensures that the series
converges quickly. We are only interested in the amplitude
to first order in M w, and there is already a factor of 12iM w
in (30). Hence it is justified to take e *M®Bi ~1 +
OMw).

In order to compute g(x), let us first consider the integral
I
1= f (1 = x)_, Y (—x)dx
-1

_RI+1 (—1)!
N 47 - DIG+ DI +2)

1
x ] (1= 0%0,(1 + 000,01 + 0a,P,(x). (1)
-1
Integrating by parts four times we obtain
I+ (=1

47 (= DI+ DI +2)
X [6(3x — 1)1 + x)P;(x)]L,

S (—1)!
sy (1= DI+ D)1 +2) (32)

for [ = 2. Applying the orthogonality relation for the spin-
weighted spherical harmonics,

T+l + D0 +0-1)

Re(o) > —1,
ri+o) I'(l-o)
-0 TU+1+0) @D
LY L rWdr = s (33)
2tk 27 ol

we conclude that

1
[/, st0av3ax
(-1

_ T
12Me \ 47 (- DI+ DI +2) (34

Hence, by comparison with (32),

g(x) = IMe (1 — x), (35)

which is the same as result (20).

I11. DISCUSSION AND CONCLUSION

In the preceding sections we have computed the partial-
wave scattering amplitudes defined by Matzner and co-
workers [7,16] in the long-wavelength limit (Mo < 1).
Substituting (19) and (20) into (3) we conclude that

do _ e sin®(6/2) + cos®(6/2)
dQ sin*(6/2)

The partial-wave result is therefore consistent with all
previous studies [8,9,11], which reach the same result by
applying perturbation-theory methods.

It is worth remarking that, unlike other polarized waves
(i.e., neutrino and photon waves), the scattering cross
section of the gravitational wave (36) is nonzero in the
backward direction (6 = 7). As we have seen, this is
because the phase shifts in the partial-wave series are
parity dependent [Eq. (9)]. This implies the existence of
a helicity-reversing amplitude g(x). As noted by De Logi
and Kovacs [11], “if the incident radiation is in a pure
helicity state, the backscattered (6 = 7r) radiation must
have the opposite helicity.”

Finally, we note that a spherically symmetric interaction
will not induce a net polarization in an initially unpolarized
beam. Right- and left-circular polarizations are scattered in
the same way [Eq. (36)]. If the scattering body is rotating,
the spherical symmetry is broken. It has been suggested
[11] that, to first order in M w, polarization is not induced
by a rotating scatterer. However, outside this regime (i.e.,
when Mw ~ 1) we would definitely expect to see some
polarization effects caused by rotation. For instance, if the
incident wave were to impinge along the rotation axis of a
Kerr black hole, then the corotating polarization would be
enhanced by the superradiance effect [17]. We hope to

(36)
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make a numerical investigation of scattering from a rotat-
ing black hole in the near future.
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