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New techniques for the laboratory direct detection of dark matter weakly interacting massive particles
(WIMPs) are sensitive to the recoil direction of the struck nuclei. We compute and compare the directional
recoil rates dR=d cos� (where � is the angle measured from a reference direction in the sky) for several
WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivie’s
late-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to
distinguish the beginning of the recoil track from its end (lack of head-tail discrimination), we introduce
a folded directional recoil rate dR=dj cos�j, where j cos�j does not distinguish the head from the tail of the
track. We compute the CS2 and CF4 exposures required to distinguish a signal from an isotropic
background noise, and find that dR=dj cos�j is effective for the standard dark halo and some but not
all anisotropic models.
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I. INTRODUCTION

The nature of dark matter (DM) in the Universe is still
one of the outstanding problems in astrophysics and cos-
mology. Numerous observations support the existence of
DM. Examples are: big bang nucleosynthesis, cosmic mi-
crowave background data (WMAP3), supernova surveys,
galaxy surveys (SDSS, 2dF), and distance measurements
with cepheids (HST). In the concordance cosmological
model �CDM, the total density of the Universe has
three contributions: matter, radiation, and a cosmological
constant. The matter contribution can be further divided
into the contribution of ordinary (baryonic) matter
and the contribution of nonbaryonic cold dark matter
(CDM). Their density parameters, i.e. their densities
in units of the critical density �c � 1:053�
10�5 h2 �GeV=c2� cm�3 (here h is the Hubble constant in
units of 100 km=s=Mpc), are: �b � �0:021 86�
0:000 68�h�2 and �CDM � �0:1105�0:0039

�0:0038�h
�2 (from

Ref. [1]). Thus, CDM constitutes �84% of the matter in
the Universe.

CDM is found in clusters of galaxies and in individual
spiral and elliptical galaxies. For example, stars in spiral
galaxies are observed to move too fast around their galactic
centers to be explained by the gravity of luminous matter
alone. In particular, our Milky Way Galaxy also contains
DM. Binney and Dehnen [2], for example, show that the
rotation curve of the Milky Way is nearly constant far
beyond the Sun’s location, implying the presence of DM
in the Sun’s neighborhood. This and similar studies give a
density of DM near the Sun of � � 0:3 �GeV=c2�=cm3.

The nature of CDM is still unknown. DM candidates for
CDM are subatomic particles such as neutralinos, axions,
Kaluza-Klein particles, and other WIMPs. WIMPs are
hypothetical electrically neutral stable particles with scat-

tering cross section off nucleons of the order of the weak
interaction (�p 	 10�44 cm2) and mass in the range 10–
1000 GeV. Dark matter WIMPs arise, for example, as
lightest supersymmetric particles (LSPs) in supersymmet-
ric extensions of the standard model of particle physics.
Kaluza-Klein particles arise in theories with more than
four space-time dimensions, and share the same properties
with WIMPs except for being somewhat heavier. In this
paper, we refer to WIMPs but our considerations apply to
Kaluza-Klein particles as well.

Dark matter WIMPs near the Sun can reach the Earth
and can scatter elastically off target nuclei in a detector,
making the nuclei recoil. The energy, and recently the
direction, of the recoiling nuclei can be measured experi-
mentally. Extensive experimental efforts have been de-
voted to detect WIMPs directly (e.g., DAMA, CDMS,
EDELWEISS, CRESST, DAMA/LIBRA, SuperCDMS,
DRIFT, etc.). There are two types of direct detection ex-
periments: those that measure the recoil direction and those
that do not. Examples of directional direct detectors are:
DRIFT [3–7], which uses a gas target in a time projection
chamber and has run a prototype detector for a few years;
NEWAGE [8,9], which uses a similar time projection
chamber and is sensitive to spin-dependent WIMP-nucleus
interactions; and detectors that use organic crystals such as
stilbene [10,11]. The other detectors previously listed are
all nondirectional.

A goal of directional WIMP detectors is to identify
galactic WIMPs by using the distribution of the nuclear
recoil directions as a signature. We believe that an analysis
of the WIMP-induced recoil directions can also allow the
study of the structure and dynamics of the WIMP halo.

The idea of directional WIMP detection originated as
early as 1988. Spergel [12] suggested that a WIMP signal
could in principle be identified by means of the diurnal
rotation of the ‘‘WIMP wind’’ direction due to the Earth’s
rotation (the ‘‘WIMP wind’’ is caused by the Solar
System’s rapid motion through the galactic halo). The
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practical realization of directional WIMP detection was
delayed by the difficulty of finding a suitable target mate-
rial and an effective detection technique. In 1996, Martoff
et al. [13] described a prototype direction-sensitive solid-
state detector for WIMPs. A gaseous directional detector
was studied by Martoff et al. [3] and is described in
Snowden-Ifft, Martoff, and Burwell [4] (see also [5–7]).
This detector, called DRIFT (directional recoil identifica-
tion from tracks), uses a time projection chamber filled
with a low pressure mixture of a target gas and an electro-
negative gas. The first stage of DRIFT (DRIFT I) had a
1 m3 target (167 g of CS2) and ran from 2001 to 2004 at the
Boulby mine, North Yorkshire, England [14]. The current
stage of DRIFT (DRIFT II) is an array of 1 m3 modules
and has been operational since 2005 [15]. A future stage
has been envisaged (DRIFT III) that may have a target
mass of up to 1 ton [16].

On the theoretical side, Copi, Heo, and Krauss [17] and
Copi and Krauss [18] examined the number of events
required to distinguish a WIMP signal from an isotropic
background. Gondolo [19] obtained analytic expressions
for a variety of directional recoil spectra by means of the
Radon transform that relates the WIMP velocity distribu-
tion to the distribution of recoil momenta. Freese,
Gondolo, and Newberg [20] studied the possible direc-
tional detection of WIMPs belonging to the Sagittarius
tidal stream, which may be showering DM onto the Solar
System. Morgan, Green, and Spooner [21], Morgan and
Green [22], and Green and Morgan [23] studied how the
exposure required to directly detect a WIMP directional
recoil signal depends on the capabilities of a directional
detector. They also examined statistical tests to distinguish
a WIMP signal from an isotropic background and found
that in detectors with head-tail discrimination (see below)
of order ten events will be sufficient to distinguish a WIMP
signal from an isotropic background for all of the halo
models they considered. Host and Hansen [24] investigated
the possibility of measuring the velocity anisotropy of the
galactic dark matter halo in a direction-sensitive WIMP
detector. They found that in excess of 105 events across all
energies are needed to make a coarse measurement of the
velocity anisotropy.

The goal of this paper is to study how different halo
models affect the directional recoil rate dR=d cos�, where
� is the angle between the nucleus recoil direction and a
chosen reference direction in the sky. We compare the
directional recoil rates for the different models. We repeat
the same analysis for a ‘‘folded’’ directional recoil rate
dR=dj cos�j that incorporates the inability of some detec-
tors to distinguish the beginning of a recoil track from its
end (head-tail discrimination). We compare each
dR=dj cos�j to an isotropic background, to examine the
possibility of discriminating a WIMP signal from back-
ground noise.

In Sec. II, we present a general discussion of the direc-
tional recoil spectra. There we give the expressions of

various differential recoil rates that are useful to analyze
and interpret WIMP direct detection experiments. In
Sec. III, we describe two methods, numerical and analyti-
cal, for calculating the directional differential recoil rate
dR=d cos� of recoiling target nuclei struck by WIMPs. The
analytical method is applied to a Gaussian velocity distri-
bution whose average velocity is aligned with the reference
direction. The numerical method is more general and it can
be used for any reference direction and any WIMP distri-
bution. In Sec. IV, we present the results of applying the
numerical method to various WIMP halo models, includ-
ing streams of WIMPs, the standard dark halo, the Sikivie
late-infall halo, and anisotropic models. In Sec. V, we
address the difficulty of head-tail discrimination in
WIMP direct detection experiments and present recoil
distributions suitable for direct comparison with experi-
ments lacking head-tail discrimination. Finally, we sum-
marize our results in Sec. VI.

II. DIRECTIONAL RECOIL SPECTRA

In this section we give an expression for the directional
recoil rate for interactions between WIMPs and target
nuclei. In WIMP direct detection, the collision between
the WIMP and the target nucleus is detected by measuring
the energy of the recoiling nucleus. In directional detec-
tors, one can also measure its direction of recoil.

Figure 1 shows the kinematics of such a collision. The
energy of the recoiling nucleus is given by (see e.g. Gascon
[25])

 E � Emaxcos2�R; (1)

where �R is the angle of the nuclear recoil relative to the
initial WIMP direction (recoil angle), and

 Emax �
2�2

nv2

Mn
(2)

is the maximum energy that the WIMP can transfer to the
nucleus. Here v is the speed of the incoming WIMP, m is
its mass, Mn is the mass of the target nucleus, and �n �
mMn=�m�Mn� is the reduced mass of the WIMP-nucleus
system.

FIG. 1. Kinematics of a WIMP-nucleus elastic scattering.
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In general, the differential recoil spectrum, i.e. the dif-
ferential event rate per unit detector mass, is given by

 

dR
dE
�
X
n

�

2�2
nm

Cn�n�E�E�E�
Z
v>wn

f�v�
v
d3v; (3)

where the sum is over the nuclear species in the target, Cn
is the fraction of mass in species n,

 wn � c

����������
MnE

2�2
n

s
(4)

is the minimum WIMP speed required to transfer an
amount of energy E to the nucleus of mass Mn in the
detector (here c is the speed of light), � is the local
WIMP density mentioned in the Introduction, E�E� is the
detection efficiency at recoil energy E, and �n�E� is de-
fined as

 �n�E� � Emax
d�
dE

(5)

with d�=dE equal to the differential WIMP-nucleus scat-
tering cross section.

For directional detectors, we need a differential rate not
only in energy but also in direction. The three-dimensional
recoil rate in spherical coordinates where the angles � and
� refer to the direction of the nuclear recoil and the radial
coordinate is the recoil energyE, is given by (see Ref. [19])

 

dR
dEd�

�
X
n

�

4��2
nm

Cnf̂�wn; ŵ��n�E�E�E�; (6)

where d� � d�d cos� and f̂�w; ŵ� is the 3-dimensional
Radon transform of the velocity distribution function f�v�.
The 3-dimensional Radon transform f̂�w; ŵ� of a function
f�v� is defined to be the integral of f�v� on a plane
orthogonal to the direction ŵ at a distance w from the
origin v � 0 [26]. In formulas,

 f̂�w; ŵ� �
Z
��v 
 ŵ� w�f�v�d3v; (7)

where � is the Dirac delta function and ŵ is the recoil
direction. In this work we will specify the direction ŵ using
a reference frame fixed in the sky in preference to a
reference frame fixed with the laboratory.

Projections of the directional differential rate are also
useful and have been used in the past. For example, one can
measure recoil directions ŵ from a chosen reference direc-
tion n̂ as in Fig. 2. If Eq. (6) is integrated over the azimuthal
angle � and the energy E, one obtains

 

dR
d cos�

�
ZZ dR

dEd�
d�dE; (8)

where � is the angle between the reference direction n̂ and
the recoil direction ŵ. Equation (8) is the directional
differential recoil rate we study in this paper. It has been
used in previous work [8,27] to compare WIMP velocity

distributions and/or assess the advantages of directional
detection methods.

The directional rate dR=d cos� requires a 3D readout of
the track direction. Although we are optimistic that one day
a 3D readout will be available, current experiments are
limited to a 2D readout in a plane fixed with the laboratory
[15]. This plane precesses around the North-South terres-
trial axis due to the rotation of the Earth. A differential rate
dR=d� appropriate for this situation has been introduced
and studied in Refs. [21–23], to which we refer.

Besides the difficulty of a 3D readout, current detectors
may be unable to distinguish the beginning of the recoil
track (the head) from the end of the track (the tail). This is
called the difficulty of head-tail discrimination. Because of
this, it is useful to introduce the following folded direc-
tional recoil rate relevant to experiments that lack head-tail
discrimination:

 

dR
dj cos�j

�
dR�cos��
d cos�

�
dR�� cos��
d cos�

: (9)

This rate is correctly normalized because the integral of
both sides gives the total rate. As illustrated in Fig. 3,
j cos�j does not distinguish between ŵ and �ŵ.

FIG. 2. The figure shows the reference direction n̂, pointing to
a specific direction in the sky, and the angles � and � used in
Sec. III.

FIG. 3. The vectors ŵ and �ŵ share the same value of j cos�j.
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Therefore, there is no need to know the track’s head from
its tail when using the folded directional recoil rate,
Eq. (9). However, there may be a loss of information in
doing so (see Sec. V).

The differential WIMP-nucleus scattering cross section
�n�E� in Eq. (5) can be split into two parts, one spin-
independent (SI) and the other spin-dependent (SD):

 �n�E� � �SI
n �E� � �SD

n �E�: (10)

Correspondingly, one can separate the spin-independent
and spin-dependent contributions to the directional recoil
rate dR=d cos� as

 

dR
d cos�

�
dRSI

d cos�
�
dRSD

d cos�
: (11)

A similar separation can be defined for the folded direc-
tional recoil rate dR=dj cos�j.

The rest of this section describes the expressions for the
directional recoil rate for spin-independent and spin-
dependent interactions.

A. Spin-independent directional recoil rates

In Eq. (10), the spin-independent part �SI
n �E� can be

written as

 �SI
n �E� � �0F n�E�; (12)

where�0 is the WIMP-nucleus scattering cross section and
F n�E� is a nuclear form factor which depends on the type
of WIMP-nucleus interaction and on the mass and spin
distributions within the nucleus. In cases where the nuclear
form factor effects are negligible we have F n�E� � 1. In
reality, the nuclear form factor may become important for
specific detectors.

One can write

 �0 �
�2
n

�
jZGp

s � �A� Z�Gn
s j

2; (13)

where Z is the number of protons in the nucleus, A is the
mass number of the nucleus, and Gp

s (Gn
s) is the effective

proton (neutron)-WIMP coupling. The WIMP-proton cross
section is

 �p �
�2

p

�
�Gp

s�2; (14)

where

 �p �
mmp

m�mp
(15)

is the WIMP-proton reduced mass. Assuming, as it is
approximately the case for neutralino dark matter, that

 Gp
s � Gn

s ; (16)

we have

 �0 �
�2
n

�2
p

A2�p: (17)

In this case, the recoil rate, Eq. (6), takes the form

 

dRSI

dEd�
�

��p

4��2
pm

X
n

CnA
2
nf̂�wn; ŵ�F n�E�E�E�: (18)

We can define an effective spin-independent recoil mo-
mentum distribution, f̂SI

eff�E; ŵ�, as the average over all
masses

 f̂ SI
eff�E; ŵ� �

X
n

CnA2
nf̂�wn; ŵ�F n�E�E�E�: (19)

The rate of detection of WIMPs then reads

 

dRSI

dEd�
�

��p

4��2
pm

f̂SI
eff�E; ŵ�: (20)

We can also write

 

dRSI

d cos�
�

��p

4��2
pm

ZZ
f̂SI

eff�E; ŵ�d�dE: (21)

For example, for a CS2 target as in DRIFT,

 CS �
2MS

2MS �MC
; (22)

 CC �
MC

2MS �MC
; (23)

and f̂SI
eff�E; ŵ� is given explicitly by

 f̂ SI
eff�E; ŵ� �

2MSA2
Sf̂SF S �MCA2

Cf̂CF C

2MS �MC
E: (24)

Here f̂n � f̂�wn; ŵ�. [Notice that the symbol C (italic)
denotes the fraction of mass while the symbol/subscript
symbol C (roman) denotes the carbon nucleus].

Using common units and magnitudes, the spin-
independent directional detection rate of WIMPs is

 

dRSI

dEd�
� 1:306� 10�3 events

kg-day-keV-sr

�
�0:3�44

4��2
pm

f̂SI
eff�E; ŵ�; (25)

where �0:3 is the DM density in the solar neighborhood in
units of 0:3 �GeV=c2�=cm3, �44 is the proton cross section
in units of 10�44 cm2. �p and m are in GeV=c2, and f̂SI

eff is
in �km=s��1.

B. Spin-dependent directional recoil rates

In Eq. (10), the spin-dependent part �SD
n �E� can be

written as
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 �SD
n �E� �

32�2
nG2

F

�2Jn � 1�@4 �a
2
pS

n
pp�E� � a

2
nS

n
nn�E�

� apanS
n
pn�E��: (26)

Here @ is the reduced Planck constant, GF is Fermi cou-
pling constant [GF=�@c�

3 � 1:16637� 10�5 GeV�2], Jn
is the nucleus total angular momentum in units of @, ap�an�

is the effective axial coupling of WIMP and proton (neu-
tron) in units of 2

���
2
p
GF=@

2 [28]. [Notice that the subscript/
superscript symbol n (italic) denotes the nucleus while the
subscript symbol n (roman) denotes the neutron]. In
Eq. (26), the dimensionless functions Snpp�E�, Snnn�E�, and
Snpn�E� play the same role as the nuclear form factor F n�E�
in the spin-independent case. They are given by

 Snpp � Sn00 � S
n
11 � S

n
01; (27)

 Snnn � Sn00 � S
n
11 � S

n
01; (28)

 Snpn � 2�Sn00 � S
n
11�; (29)

where Sn00, Sn11, Sn01 are the nuclear spin structure functions
defined in [29]. When the nuclear spin is approximated by
the spin of the odd nucleon only, one finds

 Snpp �
�2
nJn�Jn � 1��2Jn � 1�

�
; Snnn � 0;

Snpn � 0;

(30)

for a proton-odd nucleus, and

 Snpp � 0; Snnn �
�2
nJn�Jn� 1��2Jn� 1�

�
; Snpn � 0;

(31)

for a neutron-odd nucleus. Here �n is conventionally de-
fined through the relation hnjSjni � �nhnjJjni, where jni
is the nuclear state, S is the spin, J is the total angular
momentum. Tables of �2

nJn�Jn � 1� values for several
nuclei can be found in [30,31].

The spin-dependent cross section off a proton is

 �SD
p �

24�2
pG2

F

�@4 a2
p; (32)

and that off a neutron is

 �SD
n �

24�2
nG2

F

�@4 a2
n: (33)

In case the target is a combination of different nuclei, we
write

 

dRSD

dEd�
�

6�G2
F

�2m@4 �a
2
pf̂

SD
eff;pp�E; ŵ� � a2

nf̂
SD
eff;nn�E; ŵ�

� apanf̂
SD
eff;pn�E; ŵ��; (34)

where we define the effective spin-dependent recoil mo-

mentum distributions

 f̂ SD
eff;pp�E; ŵ� �

X
n

4�
3�2Jn � 1�

CnS
n
pp�E�f̂�wn; ŵ�E�E�;

(35)

and similarly for f̂SD
eff;nn�E; ŵ� and f̂SD

eff;pn�E; ŵ�. The nor-
malization of f̂SD

eff;pp�E; ŵ�, f̂
SD
eff;nn�E; ŵ�, and f̂SD

eff;pn�E; ŵ�
has been chosen so that f̂SD

eff;pp�E; ŵ� � f̂�wp; ŵ� when the
target is a proton and f̂SD

eff;nn�E; ŵ� � f̂�wn; ŵ� when it is a
neutron.

For the CF4 target used in the NEWAGE detector [8,9],
and in the proton-odd approximation, Eq. (34) takes the
form

 

dRSD

dEd�
�

��SD
p

4��2
pm

f̂SD
eff;pp�E; ŵ�: (36)

In this case, the C nucleus has no spin (thus �C � 0), while
the F nucleus has spin 1

2 . In the proton-odd approximation,
�2

FJF�JF � 1� � 0:647 (see Table 1 in [30]). Thus the
effective spin-dependent recoil momentum distribution,
Eq. (35), reads

 f̂ SD
eff;pp�CF4� �

4

3
0:647CFf̂FE�E�: (37)

The fraction of mass CF is given by

 CF �
4MF

4MF �MC
: (38)

Using common units and magnitudes, the spin-dependent
directional detection rate of WIMPs (for the CF4 target
used in the NEWAGE detector) is

 

dRSD

dEd�
� 1:306� 10�3 events

kg-day-keV-sr

�
�0:3�

SD
p;44

4��2
pm

f̂SD
eff;pp�E; ŵ�: (39)

III. CALCULATION OF dR=d cos�

The analysis of directional spectra in WIMP direct
detection can be carried out by computing the directional
differential recoil rate dR=d cos� as a function of the angle
� between the nuclei’s recoil directions ŵ and a reference
direction n̂. In this section we describe two methods for
calculating the directional recoil rate dR=d cos�. The first
method is numerical and can be used for any WIMP
velocity distribution and for any reference direction. The
second method is analytic and is restricted to Gaussian
distributions and to reference directions n̂ in the same
direction as the WIMP average velocity V. Results of
applying these methods to various dark halo models are
given in Sec. IV.
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Before describing the two methods, we recall the ex-
pression of the recoil momentum function f̂�w; ŵ� for a
Maxwellian velocity distribution. In the rest frame of the
detector, the WIMP velocity distribution is given by

 f�v� �
1

�2��2
v�

3=2
exp

�
�
jv� Vj2

2�2
v

�
; (40)

where v is the velocity of a WIMP, �v is the velocity
dispersion (not to be confused with the WIMP-nucleus
cross section) and V is the average velocity of the
WIMPs with respect to the detector. The recoil momentum
spectrum for nucleus n in the laboratory frame is [19]

 f̂ n�w; ŵ� �
1

�2��2
v�

1=2
exp

�
�
�wn � ŵ 
 V�2

2�2
v

�
: (41)

In principle,

 V � V�W;G� � V�S;G� � V�E; S� � V�lab;E�; (42)

where V�W;G� is the average velocity of the WIMPs
relative to the galactic rest frame (zero in the standard
halo model), V�S;G� is the velocity of the Sun relative to
the galactic rest frame (of order 200 km=s), V�E; S� is the
velocity of the Earth relative to the Sun (of order 30 km=s),
and V�lab;E� is the velocity of the detector in the labora-
tory relative to the center of mass of the Earth (of order
0:3 km=s). As the Earth rotates and orbits the Sun, two
signal modulations (annual and diurnal) are expected as a
result of the relative motions V�E; S� and V�lab;E�. In this
work we neglect V�E; S� and V�lab;E�—and the corre-
sponding annual and diurnal modulations—and use the
velocity distribution in the frame of the Sun. We also
neglect focusing effects due to the gravitational field of
the Sun (of order 1 km=s, see [32]).

In the following, we assume that the nuclear form factors
are F n�E� � 1. In the case of a detector with threshold
energy Ethr, we model the detection efficiency at recoil
energy E as

 E �E� �
�

1; if E> Ethr;
0; if E< Ethr:

(43)

A. Numerical dR=d cos�—general case

In general directions and for non-Gaussian distributions,
the integration of the recoil rate over the energy E and the
azimuthal angle � in Eq. (8) cannot be done analytically.
However, one can calculate the recoil distribution
numerically.

We do the integration over the azimuthal angle� using a
Riemann sum. For the integration over the energy E, it is
difficult to use a Riemann sum because of narrow peaks in
dR=d cos� as a function of cos� when streams of dark
matter are present. Therefore, we do the integration over E
by means of the fifth-order Cash-Karp Runge-Kutta
method with adaptive stepsize control, as described in

Ref. [33]. To apply this method, we write the differential
recoil rate in the form of an ordinary differential equation:

 

d
dE

�
dR

d cos�

�
� 1:306� 10�3 �0:3�44

4��2
pm

XN�
i�1

f̂eff�E; ŵi���;

(44)

where �� � 2�=N�, and the unit vectors ŵi, which de-
pend on �i, are specified in Eq. (52) below. We take N� �
100 with initial condition �dR=d cos��E�0 � 0; we require
an accuracy of 10�8 and choose a scaling factor

 yscal
i � jyij �

��������hRK

�
dy
dE

�
i

��������; (45)

where hRK is the value of the stepsize, yi � dR=d cos� at
� � �i, and �dy=dE�i is the partial derivative of
dR=d cos� with respect to E at � � �i.

An expression for ŵi is obtained as follows. At a fixed
value of the angle � between the reference direction n̂ and
the recoil direction ŵ, the possible directions of the target
nucleus recoils lie on a cone of opening angle 2�, as shown
in Fig. 2. Since � is constant, it is convenient to specify ŵ in
terms of the polar angle � and the azimuthal angle �
reckoned with respect to the n̂ axis.

We want to find the Cartesian components of ŵi in an
arbitrarily given reference frame x, y, z. For this purpose,
we introduce an auxiliary Cartesian coordinate system x0,
y0, z0, with z0 aligned with n̂. Since � and � are reckoned
from z0, the vector ŵi, which is ŵ at� � �i, can be written
in terms of the new unit vectors ê01, ê02, ê03 as

 ŵ i � sin� cos�iê01 � sin� sin�iê02 � cos�ê03: (46)

Our task is now to express the new basis vectors ê01, ê02,
ê03 in terms of the original basis vectors ê1, ê2, ê3. Once
this is achieved, Eq. (46) will give ŵi in terms of ê1, ê2, ê3

and one can read off its Cartesian components.
The transformation matrix from ê1, ê2, ê3 to ê01, ê02, ê03

can be found using Euler angles. We first rotate the êi axes
about the z axis counterclockwise through an angle 	� �

2 .
Then we rotate the resulting axes about the new x axis
counterclockwise through an angle 
. We find

 ê0 1 � � sin	ê1 � cos	ê2; (47)

 ê0 2 � � cos
 cos	ê1 � cos
 sin	ê2 � sin
ê3; (48)

 ê0 3 � sin
 cos	ê1 � sin
 sin	ê2 � cos
ê3: (49)

Identifying n̂ with ê3 in Eqs. (47)–(49) shows that 	 and 

are the spherical coordinates of n̂:

 	 � tan�1

�
ny

nx

�
; (50)

 
 � cos�1�nz�: (51)
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Inserting these relations into Eq. (46), we obtain

 ŵ i � �� sin� cos�i sin	� cos
 cos	 sin� sin�i

� sin
 cos	 cos��ê1 � �sin� cos�i cos	

� sin� sin�i cos
 sin	� sin
 sin	 cos��ê2

� �sin� sin�i sin
� cos
 cos��ê3: (52)

B. Analytic dR=dcos�—special case

We were able to derive an analytic expression for
dR=d cos� when the WIMP velocity distribution is
Maxwellian and the reference direction n̂ is aligned with
the WIMP average velocity V. Notice that this does not
mean that � � �R, the recoil angle (see Fig. 1), because �R
is measured from the velocity of an individual WIMP while
� is measured from the average velocity of all WIMPs.
Here we assume a spin-independent case and a zero-
threshold detector.

We wish to compute

 

dR
d cos�

�
��p

4��2
pm

ZZ
f̂eff�E; ŵ�dEd�: (53)

Using Eq. (19),

 

dR
d cos�

�
��p

4��2
pm

X
n

CnA2
nIn; (54)

where

 In �
Z 1

0

Z 2�

0
f̂n�w; ŵ�dEd�: (55)

For a Maxellian velocity distribution,

 In �
1

�2��2
v�

1=2

Z 1
0

Z 2�

0
exp

�
�
�wn � ŵ 
 V�2

2�2
v

�
dEd�:

(56)

Since ŵ 
 n̂ � cos� and we assume here that V � Vn̂, we
have

 ŵ 
 V � V cos�: (57)

From Eq. (4),

 dE �
4�2

n

Mnc2 wndwn: (58)

Substituting Eqs. (57) and (58) into Eq. (56), we find

 In �
8��2

n

Mnc
2�2��2

v�
1=2

Z 1
0

exp
�
�
�wn � V cos��2

2�2
v

�
wndwn;

(59)

 

�
8��2

n�v
Mnc

2�2��1=2

�
exp

�
�
V2cos2�

2�2
v

�

�
V cos�

�v
���
2
p

����
�
p

�
1� erf

�
V cos�

�v
���
2
p

���
; (60)

where erf�x� is the error function. Inserting Eq. (60) into
Eq. (54) gives

 

dR
d cos�

�
X
n

2��pCnA
2
n�

2
n�v�������

2�
p

Mnc
2m�2

p

�
exp

�
�
V2cos2�

2�2
v

�

�
V cos�

�v
���
2
p

����
�
p

�
1� erf

�
V cos�

�v
���
2
p

���
(61)

or
 

dR
d cos�

� 2612
events

kg-day

X
n

�0:3�44CnA2
n�2

n�v�������
2�
p

Mnc2m�2
p

�

�
exp

�
�
V2cos2�

2�2
v

�

�
V cos�

�v
���
2
p

����
�
p

�
1� erf

�
V cos�

�v
���
2
p

���
: (62)

This analytic formula agrees with the numerical method,
Eq. (44), in the cases in common.

IV. RESULTS

In this section we present the results of applying the
numerical method, Eq. (44), to various WIMP halo models,
including streams of WIMPs, the standard dark halo, the
Sikivie late-infall halo (SLI streams), and anisotropic
logarithmic-ellipsoidal models. For comparison’s sake, in
the last three cases (the standard dark halo, SLI streams,
and the anisotropic models), we fix the reference direction
n̂ to be the direction of galactic rotation. For all these
models, we use CS2 molecules as target nuclei. We use
ecliptic coordinates (longitude � and latitude 
).

We specify the WIMP velocities and the directions of
nuclear recoil in a Cartesian coordinate system defined as
follows: as seen from the Earth, the x axis points toward the
position of the Sun at the vernal equinox, the y axis toward
the position of the Sun at the summer solstice, and the z
axis toward the North Pole of the ecliptic (which is the
projection of the trajectory of the Sun onto the celestial
sphere). The ecliptic longitude of the reference direction,
�axis, is the angular distance along the ecliptic from the
vernal equinox to the base of the great circle containing n̂
and the pole of the ecliptic; it is measured eastwards in
degrees from 0 to 360. The ecliptic latitude of the
reference direction, 
axis, is the angular distance north
(from 0 to 90) or south (from 0 to�90) of the ecliptic
along the previously mentioned great circle; it is measured
from the ecliptic to n̂. In terms of �axis, 
axis, we write

 n̂ � �cos
axis cos�axis; cos
axis sin�axis; sin
axis�: (63)
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In computing our rates we take a WIMP mass m �
60 GeV, a WIMP-proton cross section �p � 10�44 cm2 �

10�8 pb. We also neglect the nuclear form factor, i.e. take
F n�E� � 1. In this section, we further assume an ideal
efficiency with zero threshold E�E� � 1. In Sec. V, we
present some results with a nonzero threshold for both
spin-independent and spin-dependent cases.

A. Streams of WIMPs

We start by showing the results of applying the numeri-
cal method, Eq. (44), to a simple model, namely, a
Maxwellian stream of WIMPs with an average velocity
V. For definiteness sake, we consider the case of a stream
with V � �V; 0; 0�, but our results apply to a generic V.

First we fix the reference direction n̂ in the direction of
V, i.e. we take ��axis; 
axis� � �0

; 0�, and vary the ratio
�v=V of the velocity dispersion �v to the magnitude of the
average WIMP velocity V. Figure 4 shows the resulting
dR=d cos� as a function of cos� for streams with �v=V �
4:74=300 � 0:0158 (solid line), �v=V � 10=100 � 0:1
(dashed line), �v=V � 100=100 � 1 (dotted line), and
�v=V � 200=100 � 2 (dash-dotted line).

The solid line in Fig. 4 shows that dR=d cos� peaks at
� � 0 and almost vanishes for cos� � 0. This behavior can
be understood by considering a stream with zero velocity
dispersion. All WIMPs in the stream move at the same
velocity V, so the velocity distribution function is

 f�v� � ��v� V�: (64)

Its Radon transform follows from Eq. (7) as

 f̂�w; ŵ� �
Z
��v 
 ŵ� w�f�v�d3v � ��V 
 ŵ� w�:

(65)

With V̂ � Vn̂ and ŵ 
 n̂ � cos�,

 f̂�w; ŵ� � ��w� V cos��: (66)

Inserting this relation into Eq. (55), and using Eq. (58),
gives
 

In �
ZZ

f̂�wn; ŵ�dEd� (67)

 

� 2�
Z 1

0
��wn � V cos��dE (68)

 �
4�2

n

Mnc2 2�
Z 1

0
��wn � V cos��wndwn (69)

 

�
8��2

n

Mnc
2 V cos�: (70)

Therefore, for zero velocity dispersion, we have

 

dR
d cos�

�

(
�
P
n

2��p�2
nCnA2

n

�2
pmMnc2 V� cos�; if cos� > 0;

0; if cos� � 0:
(71)

For positive cos�, dR=d cos� is a linearly increasing func-
tion of cos�. Its maximum occurs in the forward direction
at � � 0. Away from the forward direction, the number of
recoils decreases, and dR=d cos� drops. At negative cos�
there are no recoils for �v � 0, since momentum conser-
vation forces all recoils to be in the forward direction.

As the ratio �v=V increases we can observe first a few
and then many recoils at cos� � 0, because of the effect of
the relatively higher velocity dispersion �v of the streams.
This is illustrated by the dashed, dotted, and dash-dotted
lines in Fig. 4, some of which extend to cos� � �1.

Now we fix the velocity of the stream and its dispersion,
and vary the reference direction n̂. Since there are no other
directions in this case, the rate dR=d cos� depends only on
the angle  between V and n̂, besides the ratio �v=V. For
definiteness, we take V � �200; 0; 0� km=s and �v �
10 km=s (so the ratio �v=V � 0:05). We start with the
stream’s average velocity V parallel to the reference direc-
tion ��axis; 
axis� � �0

; 0�. We keep the ecliptic latitude
of the reference direction constant at 
axis � 0. We in-
crease its ecliptic longitude �axis in steps of 45 until V is
antiparallel to n̂. Figure 5 shows the corresponding
dR=d cos� for  � 0, 45, 90, 135, and 180. We
note the following.

First, the directional recoil rate dR=d cos� of streams
parallel to the reference direction peaks in the direction
opposite to the incoming WIMPs. For example, the solid
line that peaks on the right is for WIMPs coming from the
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FIG. 4. The directional recoil rate dR=d cos� off a CS2 target
as a function of cos� for streams with average velocity V parallel
to the reference direction n̂ for different �v=V ratios; �v=V �
4:74=300 � 0:0158 (solid line), �v=V � 10=100 � 0:1 (dashed
line), �v=V � 100=100 � 1 (dotted line), and �v=V �
200=100 � 2 (dash-dotted line).
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left and the thick solid line that peaks on the left is for
WIMPs coming from the right.

Second, for a given stream, if we take two reference
directions that are opposite to each other, they form angles
 and ��  , respectively, with the stream’s velocity V.
Since cos � � cos���  �, their respective dR=d cos�
distributions transform into each other under the substitu-
tion cos�! � cos�. For example, the case  � 0 (solid
line in Fig. 5) is the reflection about cos� � 0 of the case
 � 180 (thick solid line in Fig. 5). Similarly, the case
 � 45 (dashed line in Fig. 5) is the reflection of the case
 � 135 (dash-dotted line in Fig. 5). For the same token,
the case  � 90 is the reflection of itself, i.e. it is sym-
metric under cos�! � cos�.

B. Standard dark halo

Here we consider a flow of WIMPs according to the
standard dark halo. In this model, the WIMPs are on
average at rest relative to the galaxy, and their velocity
distribution is Maxwellian with velocity dispersion given
by

 �v std �
220 km=s���

2
p : (72)

The local standard of rest (LSR) moves at vLSR �
220 km=s relative to the galactic rest frame in the direction
of the galactic rotation, i.e. �lGal:rot:; bGal:rot:� � �90; 0� in
galactic coordinates and ��Gal:rot:; 
Gal:rot:� � �347:
340; 59: 574� in ecliptic coordinates.

Using the ecliptic Cartesian coordinate axes defined in
the beginning of the current section, the average WIMP
velocity components with respect to the Sun are

 V std � ��104:525; 34:947;�196:836� km=s: (73)

The average velocity Vstd points in the direction
��std; 
std� � �161: 513;�60: 755�. These values (Vstd

and its direction) are from Alenazi and Gondolo [32].
In this subsection, we choose the reference direction n̂

along Vstd, i.e. ��axis; 
axis� � �161: 513;�60: 755�.
Applying the numerical method, Eq. (44), we see in

Fig. 6 that dR=d cos� is an increasing function of cos�.
It peaks in the forward direction (� � 0) because most of
the recoils occur at � � 0. Away from the forward direc-
tion, dR=d cos� decreases because fewer recoils result due
to momentum conservation. The effect is similar to the
dotted line in Fig. 4, whose ratio �v=V � 1 is close to the
ratio �vstd=Vstd �

155:567
225:59 � 0:689 of the standard dark

halo. We further discuss the case of the standard dark
halo (Fig. 6) in the following subsections.

C. Sikivie’s late-infall halo model (SLI streams)

Here we consider Sikivie’s late-infall (SLI) halo model
[34–36]. The SLI model is a self-similar axially symmetric
infall model with net angular momentum and parameters
adjusted to describe our galaxy. In this model, many flows
of collisionless DM particles are oscillating into and out of
the galaxy in pairs. The first pair corresponds to particles
passing through the Solar System from opposite sides of
the galactic plane for the first time, the second pair corre-
sponds to particles passing for the second time, and so on
(from the fifth pair onward, the flows in a pair come on the
galactic plane but one inwards and the other outwards).
Table I lists the densities �i and velocities Vi of the first 20
pairs of SLI streams in our ecliptic coordinate system.
These values are taken from Ref. [37], where they were
given in the galactic coordinate system (see also [38]).
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FIG. 6. The directional recoil rate dR=d cos� off a CS2 target
for the standard dark halo for a reference direction n̂ in the
direction ��axis; 
axis� � ��std; 
std� � �161: 513;�60: 755�.
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FIG. 5. The directional recoil rate dR=d cos� off a CS2 target
for streams with V � 200 km=s, �v � 10 km=s (thus �v=V �
0:05), and various reference directions making an angle  with V
equal to: 0 (solid line), 45 (dashed line), 90 (dotted line),
135 (dash-dotted line), and 180 (thick solid line).
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The conversion from the galactic frame to ecliptic frame
proceeds as follows. In the galactic coordinate system, X
points toward the galactic center, Y toward the direction of
galactic rotation, and Z toward the north galactic pole. Our
ecliptic coordinate system assumes x pointing toward the
vernal equinox, y toward the summer solstice, and z toward
the North Pole of the ecliptic. We take the galactic com-
ponents of the solar motion to be [39] U � 10:00�
0:36 km=s (radially inwards), V � 5:25� 0:62 km=s (in
the direction of galactic rotation), and W � 7:17�
0:38 km=s (vertically upwards). The velocities VS

i of the
SLI streams relative to the Sun follow, in galactic coordi-
nate system, as

 VSiX � VGiX �U; (74)

 VSiY � VGiY � V � vLSR; (75)

 VSiZ � VGiZ �W; (76)

where VG
i are the velocities relative to the galaxy (and

vLSR � 220 km=s, as in the previous subsection). Then we
convert VSiX, VSiY , and VSiZ from the galactic coordinate
system to our ecliptic coordinate system, and obtain the
velocities of SLI streams Vix, Viy, and Viz listed in Table I.

In the SLI model, the WIMP velocity distribution func-
tion is given by

 fSLI�v� �
1

�

X
i

�i��v� Vi�: (77)

Following [38], we assume a Gaussian distribution of
velocities for each flow with velocity dispersion �vSLI �
v0��

2
p with v0 � 30 km=s. We have

 fSLI�v� �
1

�

X
i

�i
�2��2

vSLI�
3=2

exp
�
�
jv� Vij

2

2�2
vSLI

�
: (78)

Now, the recoil momentum distribution is

 f̂ SLI�w; ŵ� �
1

�

X
i

�i
�2��2

vSLI�
1=2

exp
�
�
�w� ŵ 
 Vi�

2

2�2
vSLI

�
:

(79)

We fix the reference direction opposite to the direction
of galactic rotation, �laxis; baxis� � �270; 0� in galactic
coordinates or ��axis; 
axis� � �167: 340;�59: 574� in
ecliptic coordinates. We used the numerical method,
Eq. (44), to calculate the directional recoil rate
dR=d cos� for SLI streams. The result is shown in Fig. 7
by the solid line. For comparison, we also show the result
from the standard dark halo (dashed line), recomputed for
the new reference direction.

We see in Fig. 7 that dR=d cos�jSLI (solid line) peaks in
the direction opposite to the case of dR=d cos�jstd (dashed
line). This is because the average velocity of the SLI
streams points in a direction roughly opposite to that of
standard dark halo’s. Indeed, using Table I, the average
(weighted) velocity �VSLI of the SLI streams is

 

�V SLI � �57:534;�1:465; 85:994� km=s: (80)
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FIG. 7. The directional recoil rate dR=d cos� off a CS2 target
for SLI streams (solid line) and the standard dark halo (dashed
line) for a reference direction opposite to the direction of galactic
rotation, ��axis; 
axis� � �167: 340;�59: 574�.

TABLE I. Densities and velocities of the first 20 pairs (� ) of
SLI streams in the ecliptic coordinate system. The values are
from Ref. [37] where they were given in the galactic coordinate
system.

i �i (10�26g=cm3) Vix (km=s) Viy (km=s) Viz (km=s)

1� 0.4 �560
490

19
20

225
�377

2� 1.0 �417
460

6:5
6:8

274
�228

3� 2.0 �270
407

�4:0
�3:8

299
�89

4� 6.3 �95
321

�14
�14

302
63

5� 9.2 102
123

�203
175

164
201

6� 2.9 55
87

�298
289

81
138

7� 1.9 21
57

�325
331

21
85

8� 1.4 �0:2
38

�341
355

�15
52

9� 1.1 �18
21

�342
364

�46
23

10� 1.0 �30
8:8

�339
367

�67
1:3

11� 0.9 �40
�1:0

�337
369

�84
�16

12� 0.8 �50
�11

�330
366

�101
�34

13� 0.7 �57
�19

�323
363

�114
�47

14� 0.6 �64
�27

�316
359

�126
�61

15� 0.6 �68
�32

�305
351

�134
�70

16� 0.55 �73
�37

�299
347

�142
�79

17� 0.5 �78
�42

�293
343

�150
�88

18� 0.5 �80
�45

�283
334

�153
�94

19� 0.45 �82
�48

�277
329

�157
�98

20� 0.45 �84
�51

�271
325

�161
�103
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Comparison with Eq. (73) shows that Vstd and �VSLI form an
angle of 170.

D. Anisotropic logarithmic-ellipsoidal models

Many observations and numerical simulations show that
galaxy halos are better approximated by triaxial models
with anisotropic velocity distributions (e.g. Moore et al.
[40], Helmi, White, and Springel [41], and Green [42]).
Green [42] examined the effect of triaxial and anisotropic
halo models on the exclusion limits from WIMP direct
detection searches and found that such models lead to non-
negligible changes in the exclusion limits. Helmi, White,
and Springel [41] found that the expected signal for the
fastest moving DM particles in direct detection experi-
ments is highly anisotropic. In this subsection we inves-
tigate the nuclei’s directional recoil rate dR=d cos� in
specific cases of anisotropic logarithmic-ellipsoidal
models.

Evans, Carollo, and de Zeeuw [43] provided analytic
solutions to the Jeans equations for the logarithmic-
ellipsoidal model, which is the simplest triaxial general-
ization of the isothermal sphere, under the assumption of
conical alignment of the velocity ellipsoid. Their aniso-
tropic velocity distribution at the Sun’s position can be
approximated by an anisotropic Gaussian, which in the
galactic rest frame where the WIMPs are on average at
rest is given by
 

f�v� �
1

�2��3=2�vX�vY�vZ
exp

�
�

v2
X

2�2
vX

�
v2
Y

2�2
vY

�
v2
Z

2�2
vZ

�
:

(81)

Here X points toward the galactic center, Y toward the
direction of galactic rotation, and Z toward the north
galactic pole. In this frame, the velocity dispersion matrix
�2
v is diagonal.
In one of the Evans, Carollo, and de Zeeuw models, the

Solar System is on the long (major) axis of the halo density
ellipsoid, and

 �2
vX �

v2
0

�2� ���p�2 � q�2 � 1�
; (82)

 �2
vY �

v2
0�2p

�2 � 1�

2�p�2 � q�2 � 1�
; (83)

 �2
vZ �

v2
0�2q

�2 � 1�

2�p�2 � q�2 � 1�
: (84)

In another of their models, the Solar System is on the
intermediate (minor) axis of the halo density ellipsoid, and

 �2
vX �

v2
0p
�4

�2� ���1� q�2 � p�2�
; (85)

 �2
vY �

v2
0�2� p

�2�

2�1� q�2 � p�2�
; (86)

 �2
vZ �

v2
0�2q

�2 � p�2�

2�1� q�2 � p�2�
: (87)

Here p and q are constants used to describe the axis ratios
of the density ellipsoid, and � is a constant used to describe
the velocity anisotropy. In the spherical limit (p � q � 1,
� � 0), all the velocity dispersion components are equal,
and the logarithmic-ellipsoidal model reduces to the iso-
thermal sphere.

An anisotropic Gaussian velocity distribution can be
written in matrix form as

 

f�v� �
1

�2��3=2�det�2
v�

1=2
exp

�
�

1

2
�v� V�T��2

v �v� V�
�
:

(88)

Its Radon transform has been found to be [19]

 f̂�w; ŵ� �
1

�2�ŵT�2
vŵ�1=2

exp
�
�
�w� ŵ 
 V�2

2ŵT�2
vŵ

�
: (89)

Since the WIMPs are assumed to be on average at rest in
the galactic frame, the same average WIMP velocity V as
for the standard dark halo Vstd [see Eq. (73)] applies to
these anisotropic models. Since the velocity dispersion
matrix �2

v is diagonal in the galactic frame, the principal
axes of the velocity dispersion ellipsoid are aligned with
the axes X, Y, and Z [see Eq. (81)]. In matrix form, the
exponent of Eq. (81) can be written as

 �
1

2
vX vY vZ
	 
 1

�2
vX

0 0

0 1
�2
vY

0

0 0 1
�2
vZ

0BBB@
1CCCA

vX
vY
vZ

0@ 1A; (90)

and the velocity dispersion tensor is

 � 2
v �

�2
vX 0 0
0 �2

vY 0
0 0 �2

vZ

0@ 1A: (91)

To calculate ŵT�2
vŵ in Eq. (89), we write

 

ŵT�2
vŵ � ŵX ŵY ŵZ

	 
 �2
vX 0 0

0 �2
vY 0

0 0 �2
vZ

0BB@
1CCA

ŵX
ŵY
ŵZ

0BB@
1CCA

� �2
vXŵ

2
X � �

2
vYŵ

2
Y � �

2
vZŵ

2
Z: (92)

Thus, the anisotropic recoil momentum distribution is
given by
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 f̂�w; ŵ� �
1������������������������������������������������������������������

2���2
vXŵ

2
X � �

2
vYŵ

2
Y � �

2
vZŵ

2
Z�

q
� exp

�
�

�w� ŵ 
 V�2

2��2
vXŵ

2
X � �

2
vYŵ

2
Y � �

2
vZŵ

2
Z�

�
;

(93)

where only the components of �v and ŵ are now in
galactic coordinates.

We fix the reference direction to be opposite to the
direction of galactic rotation, �laxis; baxis� � �270; 0� in

galactic coordinates or ��axis; 
axis� � �167: 340;�59:
574� in the ecliptic coordinates. We consider eight aniso-
tropic models (i.e. different values of p, q, and �) taken
from Green [42]. Using the numerical method, Eq. (44),
the results are shown in Fig. 8 in the case when the Solar
System is on the minor axis of the density ellipsoid and in
Fig. 9 in the case when the Solar System is on the major
axis of the density ellipsoid. For comparison, in both
figures we also show the case of the isotropic standard
dark halo discussed in Sec. IV B (thick solid line). The
values of p, q, and � in Figs. 8 and 9 are taken from Table I
in [42].

In Figs. 8 and 9, dR=d cos� is an increasing function of
cos�. It is maximum in the forward direction (� � 0)
because of the direction of the average WIMP velocity is
similar to that of the standard halo’s. We see from Figs. 8
and 9 that the behavior of the eight anisotropic models
(solid, dashed, dotted, and dash-dotted lines) resembles
that of the isotropic standard dark halo (thick solid line).
The differences between these models in Figs. 8 and 9 arise
from the different velocity dispersions �v of these models
resulting from different values of the parameter p, q, and �
in Eqs. (82)–(87). This also means different ratios �v=V
for each model.

V. FOLDED DIRECTIONAL RECOIL RATE

In this section, we will discuss the consequences of a
lack of head-tail discrimination in WIMP direct detectors.
We use the folded directional recoil rate dR=dj cos�j de-
fined in Eq. (9). We also discuss the exposures required to
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FIG. 9. Same as Fig. 8 but for logarithmic-ellipsoidal models
in which the Solar System is on the major axis of the density
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distinguish the expected WIMP signals from an isotropic
noise, and present results for both an ideal zero-threshold
detector and a detector with a finite energy threshold of
20 keV. We consider a CS2 target (spin-independent and
spin-dependent, which is zero) and a CF4 target (assuming
a spin-dependent cross section only).

We use Eq. (9) and the numerical method, Eq. (44),
for the standard dark halo (Sec. IV B), SLI streams
(Sec. IV C), and logarithmic-ellipsoidal anisotropic models
(Sec. IV D). The results are shown in Figs. 10–13 for the
CS2 target nuclei, where for all cases the reference direc-
tion is opposite to the direction of the galactic rotation,

��axis; 
axis� � �167:340;�59:574�. In all of these fig-
ures, we show the rates for the standard dark halo and the
SLI model. For the anisotropic models, the case in which
the Solar System is assumed to be on the minor axis of the
density ellipsoid is shown in Fig. 10 (for an ideal zero-
threshold detector) and 11 (for a 20-keV threshold detec-
tor). Figures 12 and 13 show the analogous cases for the
Solar System on the major axis of the density ellipsoid.

The spin-dependent case for a 20-keV threshold detector
is shown in Fig. 14 (when the Solar System is assumed to
be on the minor axis of the density ellipsoid) and in Fig. 15
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FIG. 11. Same as Fig. 10 but using a detector with threshold
energy equal to 20 keV.
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FIG. 14. The spin-dependent folded directional recoil rate
dRSD=dj cos�j off a CF4 target using a detector with threshold
energy equal to 20 keV, for the standard dark halo (thick solid
line), SLI streams (thick dash-dotted line), and four logarithmic-
ellipsoidal anisotropic models in which the Solar System is on
the minor axis of the density ellipsoid (solid, thick dotted,
dashed, and dotted lines, with parameters given in the legend).
In all cases, the reference direction is opposite to the direction of
the galactic rotation, ��axis; 
axis� � �167: 340;�59: 574�.
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FIG. 12. The folded directional recoil rate dR=dj cos�j off a
CS2 target for the standard dark halo (thick solid line), SLI
streams (thick dash-dotted line), and four logarithmic-ellipsoidal
anisotropic models in which the Solar System is on the major
axis of the density ellipsoid (solid, thick dotted, dashed, and
dotted lines, with parameters given in the legend). In all cases,
the reference direction is opposite to the direction of the galactic
rotation, ��axis; 
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FIG. 13. Same as Fig. 12 but using a detector with threshold
energy equal to 20 keV.
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(when the Solar System is assumed to be on the major
axis of the density ellipsoid). The shape of the
dRSD�>20keV�=dj cos�j curves in Figs. 14 and 15 differs
from the shape of the dR�>20keV�=dj cos�j curves in
Figs. 11 and 13 respectively because of the different
masses of sulfur (S) and fluorine (F).

The dR=dj cos�j curves that show small variation with
j cos�j will be harder to differentiate from an isotropic
background. To make this statement quantitative, we com-
pute the effective exposure � required to distinguish a
directional signal of WIMPs from a distribution uniform
in j cos�j that may be due to background events. For this
purpose, we use the Kolmogorov-Smirnov test, which tests
if data are drawn from a given distribution (in this case, the
uniform distribution). Neglecting the background, we de-

termine the required effective exposure � as follows. We
use a model dR=dj cos�j to Monte Carlo generate a j cos�j
distribution of n events representing the outcome of a
simulated experiment with zero background. We do this
for 10 000 simulated experiments. For each experiment, we
compute the Kolmogorov-Smirnov statistic Dn, which is
the maximum vertical distance between the cumulative
distributions of a uniform variate and of the simulated
j cos�j values. We declare that the j cos�j distribution is
nonuniform at the 90% level of significance (i.e. that the
experiment under question detects a WIMP signal at the
90% significance level) when Dn is greater than the upper
10% quantile Dn;10 of the Dn distribution evaluated under
the null hypothesis of a uniform variate. To evaluate the
probability distribution ofDn under the null hypothesis, we
use formulas in Refs. [44,45] as implemented numerically
in Refs. [33,46]. We determine the fraction of the 10 000
simulated experiments with a positive detection at the 90%
significance level. We finally increase the number n of
events in each simulated experiment, until the fraction of
experiments with a positive detection reaches 90%.
This gives us the minimum number of events Ne required
to distinguish each of the halo models considered from a
flat distribution at 90% significance level in 90% of the
simulated experiments. Finally, the corresponding effec-
tive exposure � is obtained by dividing Ne by the
integrated expected rate above thresholdR
dj cos�j�dR�>Ethr�=dj cos�j� (or the total rateR
dj cos�j�dR=dj cos�j� for an ideal zero-threshold

detector).
Table II shows the resulting Ne and � for a zero-

threshold detector and a detector with threshold energy
equal to 20 keV, assuming a CS2 target, a WIMP massm �
60 GeV and a WIMP-proton cross section �p �

10�44 cm2.

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 0  0.2  0.4  0.6  0.8  1

dR
S

D
(>

 2
0 

ke
V

) 
/ d

 |c
os

θ|
   

[e
ve

nt
s 

/ k
g-

da
y]

|cosθ|

’standard dark halo’
’SLI streams’

’p=0.9, q=0.8, gamma= -1.0’
’p=0.9, q=0.8, gamma= -1.33’

’p=0.72, q=0.7, gamma= -1.39’
’p=0.72, q=0.7, gamma= -1.6’

FIG. 15. Same as Fig. 14 but for logarithmic-ellipsoidal mod-
els in which the Solar System is on the major axis of the density
ellipsoid.

TABLE II. Number of recoil events Ne required to distinguish each of the halo models considered from a flat distribution at 90%
significance level in 90% of the simulated experiments using a Kolmogorov-Smirnov statistic, for a CS2 zero-threshold detector and a
CS2 detector with threshold energy equal to 20 keV. Here �p � 10�44 cm2. Also shown are the effective exposures � required for each
case.

Zero-threshold energy Threshold energy � 20 keV
Model Ne � (kg-yr) Ne � (kg-yr)

Standard dark halo 260 330 39 113
SLI streams 1606 1596 115 295
Anisotropic logarithmic-ellipsoidal models (Solar System is on the minor axis of the density ellipsoid):
p � 0:9, q � 0:8, � � 0:07 503 585 98 275
p � 0:9, q � 0:8, � � �0:62 876 969 196 482
p � 0:72, q � 0:7, � � 4:02 1005 1149 1199 3548
p � 0:72, q � 0:7, � � 2:01 2088 2276 7500 19116

Anisotropic logarithmic-ellipsoidal models (Solar System is on the major axis of the density ellipsoid):
p � 0:9, q � 0:8, � � �1:0 365 427 60 168
p � 0:9, q � 0:8, � � �1:33 600 668 115 283
p � 0:72, q � 0:7, � � �1:39 301 354 46 130
p � 0:72, q � 0:7, � � �1:6 497 555 90 221
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The number of events Ne is independent of the value of
the WIMP-proton cross section �p, because it depends
only on the shape, and not the height, of the dR=dj cos�j
distribution. The corresponding exposure however scales
as the inverse of �p. Regarding the dependence on the
WIMP mass, in general Ne and � have a complicated
dependence due to the relation between the threshold
energy, the target nucleus mass, and the WIMP mass.

From Table II, we notice the following. Even in the most
favorable case of negligible background, the most optimis-
tic case is the standard dark halo where, for a detector with
a 20-keV threshold, only 39 recoil events or an effective
exposure of 113 kg-yr are needed in order to distinguish the
standard dark halo from a flat distribution at 90% signifi-
cance level in 90% of the simulated experiments. For a
zero-threshold detector, the required number of recoil
events Ne increases to 260 events (330 kg-yr of effective
exposure). These numbers are almost the same as those
obtained by Morgan, Green, and Spooner [21] for the same
standard dark halo, although they used the average of
j cos�j while we use the full j cos�j distribution.

In the case of SLI streams, the required number of events
Ne is 115 (295 kg-yr of effective exposure) for a detector
with 20-keV threshold, and Ne � 1606 (1596 kg-yr of
effective exposure) for a zero-threshold detector.
Distinguishing an SLI streams signal from an isotropic
background requires 3 to 5 times larger exposures than
for a standard dark halo.

The anisotropic models we considered are, with few
exceptions, intermediate between the standard dark halo
and the SLI streams cases. The hardest cases to distinguish
from a flat distribution are the two anisotropic models with
parameters p � 0:72, q � 0:7, � � 4:02 and p � 0:72,
q � 0:7, � � 2:01. They require effective exposures of
thousands to ten thousands of kg-yr. This is due to
the peculiar behavior of their dR�>20keV�=dj cos�j dis-
tributions. As seen in Fig. 11, these distributions
(dashed and dotted lines) exhibit a sudden drop in
dR�>20 keV�=dj cos�j in the folded forward�
backward direction j cos�j � 1. Notice that these two
models are the most anisotropic models among the eight
anisotropic logarithmic-ellipsoidal models considered in
this study (� � 4:02 and � � 2:01, respectively). This
might be the reason for such behavior.

To illustrate a spin-dependent case, we assume a CF4

target, a proton-odd approximation for the F spin, a spin-
dependent cross section off protons�SD

p � 10�44 cm2, and
a vanishing spin-independent cross section. We examine
both a zero-threshold detector and a detector with thresh-
old energy equal to 20 keV. Because the spin-dependent
rates do not increase as A2, the effective exposures required
for spin-dependent interactions are longer than for the
spin-independent case (at the same WIMP-proton cross
section). For CF4 we find them about 1000 times longer
than for CS2. For example, in the case of the standard dark

halo we find that � is about 4:8� 105 kg-yr for a zero-
threshold detector and it is about 1:6� 105 kg-yr for a
detector with threshold energy equal to 20 keV. The effec-
tive exposures � for the other halo models follow the same
pattern and they are in the order of magnitude of 106 kg-yr.
Such effective exposures are impractical.

To summarize, the folded directional recoil rate
dR=dj cos�j can be helpful in recognizing the cases of
the standard dark halo, SLI streams, and some not-too-
anisotropic models. However, if the detector threshold is
too low, or the degree of anisotropy too high, it may be
difficult to recognize SLI streams and some other aniso-
tropic models.

VI. SUMMARY AND CONCLUSIONS

In this paper, we studied the directional recoil rate
dR=d cos� of recoiling target nuclei struck by WIMPs in
terms of the angle � between the nucleus recoil direction ŵ
and a chosen reference direction n̂ in the sky. We used the
ecliptic coordinate system and imagined a CS2 detector
similar to DRIFT but with 3D readout capabilities.

The directional recoil rate dR=d cos�was computed and
compared for different halo models that represent several
WIMP velocity distributions: streams of WIMPs
(Sec. IV C), the standard dark halo (Sec. IV B), Sikivie’s
late-infall halo model (SLI streams) (Sec. IVA), and an-
isotropic logarithmic-ellipsoidal models (Sec. IV D). We
repeated our analysis for a folded directional recoil rate
dR=dj cos�j that incorporates the inability of some detec-
tors to distinguish the beginning of a recoil track from its
end (lack of head-tail discrimination). For all of the halo
models considered, we compared dR=dj cos�j to an iso-
tropic background, to examine the possibility of discrimi-
nating a WIMP signal from background noise.

We computed dR=d cos� both numerically and analyti-
cally (Sec. III). The numerical method (Sec. III A) uses a
fifth-order Cash-Karp Runge-Kutta method and can be
applied to general (Gaussian and non-Gaussian) velocity
distributions and any reference direction. The analytical
method (Sec. III B) works only for Gaussian distributions
with the reference direction n̂ aligned with the average
WIMP velocity V. The analytic formula was used to cross
check the numerical calculation. Comparison of the nu-
merical and analytic calculations gave the same results. In
both the numerical and analytical methods, the recoil
momentum function f̂�w; ŵ� used in the calculation of
dR=d cos� was taken as the Radon transform of the veloc-
ity distribution function f�v�.

We applied the numerical method to the aforementioned
WIMP halo models and presented the results by showing
the directional recoil rate dR=d cos� as a function of the
angle � (see Sec. IV). For generic streams of WIMPs, we
showed how varying the ratio �v=V of the velocity disper-
sion �v to the magnitude of the average WIMP velocity V
affect the directional recoil rate dR=d cos� (see Fig. 4). We
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also showed the effect of varying the reference direction n̂
or equivalently the stream velocity V (see Fig. 5).

Comparisons between the case of the SLI streams and
the case of the standard dark halo showed that SLI streams
produce a directional recoil rate that peaks in the opposite
direction to the standard halo one (see Fig. 7). The case of
streams with anisotropic logarithmic-ellipsoidal models
resembles that of the standard dark halo, with small differ-
ences between the anisotropic models due to different
values of their axial ratios p and q and anisotropy parame-
ter � (see Figs. 8 and 9).

We allowed for the difficulty of head-tail discrimination
in WIMP direct detection experiments in Sec. V. There we
introduced a folded directional recoil rate dR=dj cos�j
suitable for direct comparison with experiments lacking
head-tail discrimination. For both a zero-threshold detector
and a detector with 20-keV threshold energy, we calculated
the number of recoil events Ne and the effective exposure �
required to distinguish each of the halo models considered
from a flat distribution (see Table II). We found that in

distinguishing a signal from an isotropic background noise,
the folded directional recoil rate dR=dj cos�j may be ef-
fective for the standard dark halo and some of the aniso-
tropic logarithmic-ellipsoidal models; it may be less
effective for the SLI streams and other anisotropic models
(see Figs. 10–13). In most cases, for m � 60 GeV and
�p � 10�44 cm2, exposures from few dozens to few hun-
dreds of kg-yr of CS2 would be needed to utilize the folded
directional recoil rate dR=dj cos�j for the purpose of dis-
criminating a directional WIMP signal from an isotropic
background noise.
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