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The baryonic acoustic signature in the large-scale clustering pattern of galaxies has been detected in the
two-point correlation function. Its precise spatial scale has been forwarded as a rigid-rod ruler test for the
space-time geometry, and hence as a probe for tracking the evolution of dark energy. Percent-level shifts in
the measured position can bias such a test and erode its power to constrain cosmology. This paper
addresses some of the systematic effects that might induce shifts; namely, nonlinear corrections from
matter evolution, redshift space distortions, and biasing. We tackle these questions through analytic
methods and through a large battery of numerical simulations, with total volume of the order
�100 �Gpc3h�3�. A toy-model calculation shows that if the nonlinear corrections simply smooth the
acoustic peak, then this gives rise to an ‘‘apparent’’ shifting to smaller scales. However if tilts in the
broadband power spectrum are induced then this gives rise to more pernicious ‘‘physical’’ shifts. Our
numerical simulations show evidence of both: in real space and at z � 0, for the dark matter we find
percent-level shifts; for haloes the shifts depend on halo mass, with larger shifts being found for the most
biased samples, up to 3%. From our analysis we find that physical shifts are greater than �0:4% at z � 0
for a LCDM model with �8 � 0:9. In redshift space these effects are exacerbated, but at higher redshifts
are alleviated. We develop an analytical model to understand this, based on solutions to the pair
conservation equation using characteristic curves. When combined with modeling of pairwise velocities
the model reproduces the main trends found in the data. The model may also help to unbias the acoustic
peak.
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I. INTRODUCTION

Within the last few years the discipline of physical
cosmology has greatly benefited from a considerable influx
of extremely high fidelity data sets, which have enabled
measurements of the large-scale structure of the Universe
to be made with unprecedented precision; and together
these data have led to the establishment of the ‘‘standard
model of cosmology’’: the flat, dark energy dominated
collisionless cold dark matter (CDM) model [1–7].
Whilst the CDM particles are well founded from a particle
physics point of view, the dark energy may arise through a
number of possible mechanisms, most of which are of deep
consequence to much of physics if found to be true [8–10].
The task of modern theoretical and observational cosmol-
ogy, therefore, is to construct robust tests to expose the true
physical character of the dark energy and hence differ-
entiate between hypotheses. A number of experiments are
currently underway with this sole purpose in view, and
many more are being planned for the future (see [9,10]
and references there in for a comprehensive review of
current and future missions). The dark energy tests fall
into two main classes: those which perform geometric tests
of gravity and those which perform growth of structure
tests. The geometric tests are essentially the use of ‘‘stan-

dard candles’’ (Type Ia Supernova) and ‘‘standard rods’’
(baryonic acoustic oscillations), whereas the growth of
structure tests examine how the growth rate of perturba-
tions changes as a function of cosmological epoch. Weak
lensing by large-scale structure and the multiplicity func-
tion of clusters fall into both categories and therefore
potentially offer the most powerful discriminatory means.
However, in order to make precise, accurate, and useful
constraints on the dark energy, the systematics of each
experiment must be fully understood and controlled to
subpercent accuracy [9,10]—the removal of ‘‘unknown
unknowns’’ is imperative.

For instance, the standard candle measurement from
Type Ia supernovae must address the issue of whether or
not the ensemble of candles evolves with redshift, i.e.
through metallicity effects, or evolution of the underlying
host galaxy properties as a function of redshift. Moreover
until the ‘‘true’’ mechanism that drives the nova is under-
stood, it may be the case that this potential systematic can
only be quantified and eliminated once the data are in hand.

In this paper we shall restrict our attention to the second
of the geometric tests, that is the standard rod measurement
from the baryonic acoustic oscillations (BAO). Like the
standard candle test, this method also suffers from poten-
tial systematics; the three knowns in this case are: non-
linear mass evolution, nonlinear bias, and redshift space
distortions (hereafter, we shall refer to these together as
clustering systematics). However, unlike the case for Type
Ia Supernova, because the processes driving any possible
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evolution are plausibly understandable ab initio, there is
not much room for unknown unknowns and there is some
hope for estimating and mitigating these effects well be-
fore the data streams in from the next generation surveys.
This is important because if the BAO peak is displaced by
even 1%, this will induce a bias in the inferred value of the
dark energy parameter w on the order of 5% [7,11].

The physical picture for the BAO signature is as follows:
before the epoch of recombination, acoustic oscillations
were able to propagate through the photon-baryon plasma
at the sound speed, and these waves were weakly coupled
to dark matter through gravity. After recombination the
photons free stream out of the perturbations and this gives
rise to the observed CMB [12], the dark matter and segre-
gated baryons then relax together over time and the self-
same acoustic features that are imprinted in the CMB
become imprinted in the dark matter distribution. The
characteristic scale for the acoustic waves is set by the
sound horizon at last scattering r� (see [13] for a descrip-
tion of how to calculate this), and this in turn imprints a
characteristic scale in the pattern of galaxies and it is
supposed that this has the properties of a ‘‘standard rod.’’

The BAO features have been detected by various groups:
in the two-point correlation function of luminous red gal-
axies (LRG) by [7], and in the power spectrum of galaxies
and LRGs by [2,6,14–20]. The BAOs have also been the
subject of much vigorous theoretical and numerical re-
search [11,21–37]. The question of whether there are non-
linear effects at play on the acoustic scale is not an open
question [21], however, whether these nonlinearities give
rise to an actual motion of the acoustic peak—apparent or
physical—is of great debate, and the most recent literature
concerned with this question reaches conflicting conclu-
sions: [38] used the fitting formula for the power spectrum
from [39] to conclude that there is a shift due to nonlinear
mass evolution on the order of �2% at z � 0. [23] used
numerical simulations to show that there were changes to
the broadband power spectra of dark matter and haloes, and
in both real and redshift space, however, they argued that
provided these were accounted for, no overall shift in the
acoustic peak position would be induced. [34] used nu-
merical simulations with improved resolution to convinc-
ingly confirm the results from [23], that the power spectra
were not immune to strong broadband tilts. Based on these
results they suggested that percent-level shifts in the posi-
tion of the acoustic peak were highly plausible. The main
findings of these works were most recently substantiated
by [11]. On the other hand, [30] used a model based on
Lagrangian displacements of the initial density distribution
to argue that any acoustic peak shift in the dark matter
should be only of the order 10�4 at z � 0, although they do
note that ‘‘galaxy bias could produce a subpercent shift.’’
In addition, [35] studied how a relatively (by BAO stan-
dards) large peak in the initial power spectrum evolved in
numerical simulations and concluded that there were no
noticeable shifts, in agreement with [30].

In what follows, we examine this issue in detail. We do
this in a twofold way: First, we generate a large ensemble
of large volume numerical simulations to quantify the
possible effects. Second, we develop a new analytical
model, which is based on a new solution for the pairwise
conservation of particle pairs. When combined with a
careful modeling of the divergence of pairwise velocities
beyond linear theory this method is shown to capture the
main effects that are found in the simulations.

The subject of this paper is therefore to answer the
following important questions: Does nonlinear evolution
generate a displacement of the peak of the correlation
function? If so does the observed shift depend on the
halo/galaxy sample considered and how? Recently, there
has been a number of different approaches to estimating
the sound horizon from observational data, however, so far
as we know, it has not been shown that any of these
estimators are consistent, unbiased, or indeed minimum
variance estimators. The results presented in this work and
from our previous study of the power spectrum [34,36]
should act as an important empirical guide for constructing
such quantities.

The paper is structured as follows: In Sec. II we discuss a
toy model that shows that an effective smoothing of the
acoustic peak in the two-point function leads to an ‘‘ap-
parent’’ motion of the peak. Here we also show how if
nonlinear evolution induces a broadband tilt in the under-
lying linear power spectrum, further shifts in the peak
position are to be expected—these we shall class ‘‘physi-
cal’’ shifts. Then in Sec. III we describe our ensemble of
numerical simulations and present our measurements for
the two-point correlation function of dark matter and hal-
oes in real and redshift space, including a detailed analysis
of our data. In Sec. IV we describe our new physical model
and demonstrate how it gives rise to a transformation of the
structure of the peak in the dark matter and halo correlation
functions—and that this gives rise to a physical motion of
the peak. We also compare our analytic model with the
results from the numerical simulation and show that they
are in close agreement. Finally, Sec. V summarizes our
results, and discusses them in the wider context.

II. APPARENT AND PHYSICAL SHIFTS

A. Motivation

Motivated by the calculation of the real-space dark
matter correlation function in renormalized perturbation
theory (hereafter, RPT) [40,41], we can write the observed
correlation function in terms of the linear one through the
following relation:

 �obs�r� 	
Z
�lin�r� r0�K�r0�d3r0 
 �mc�r�; (1)

where the first term on the left-hand side represents the
linear correlation function convolved with some symmetric
kernel, K�r�, and the second term, �mc, describes any
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effects due to nonlinear mode coupling. The distinction
between these two terms may be more clearly seen in
Fourier space: the first term is directly proportional to the
linear power spectrum at the same scale, and the second
term represents a weighted sum over the information from
different neighboring wave modes. Note that such decom-
position can always be made. In RPT, the kernel K is well
approximated by a Gaussian [41], a result that becomes
exact in the Zel’dovich approximation [30,41,42].

Setting aside �mc for the moment, we remark that it is
sometimes thought that convolution with a Gaussian does
not lead to a shift in the BAO peak position. In the follow-
ing subsection we will show explicitly that this is not
correct and that the convolution with a symmetric filter
does shift the peak, and that this is solely due to the fact that
�lin is not symmetric about the acoustic peak. However, as
we mention in the following subsection this apparent shift-
ing of the peak may be corrected for.

Returning now to the issue of mode coupling, as we will
show in this work through our numerical simulations and
through our theoretical analysis, the term �mc in Eq. (1)
gives rise to an actual ‘‘physical’’ shift towards smaller
scales as the clustering evolves. For reasons which are now
clear, we shall now refer to the shifts that are generated by
the first term as being apparent, and those due to the
second, as being physical. In the next subsection we
present a toy model to further illustrate the meaning of
these terms.

B. A toy model for the shifts

Part of the following analysis was inspired by ideas first
presented by [38]. In that work one of the issues addressed
was the apparent shift of the acoustic peak position, in-
duced by an inhomogeneous selection function. Here we
use similar arguments, but directly connected to the dis-
tortions induced by the nonlinear clustering transformation
and bias, to examine the apparent shifts. Those familiar
with the analysis of [38] may wish to jump directly to
Eq. (7), which should be familiar.

To begin our toy model, let us suppose that the linear
theory correlation function can be well approximated by a
power law plus a Gaussian bump with peak position lo-
cated at rp:

 ��r� � Ap

�rp
r

�
�

 AG exp

�
�
�r� rp�2

2�2

�
: (2)

This is a reasonable approximation, since the transfer
function can be decomposed into a smooth component,
which models the suppression of dark matter fluctuations
due to radiation dominated growth and baryon drag effects,
and an oscillatory piece that comes from the baryons
clumped around the sound horizon: i.e. T�k� �
Tsmooth�k� 
 TBAO�k� (see [13]); on squaring and Fourier
transforming we get ��r� � �smooth�r� 
 �BAO�r�, where
we have for simplicity neglected the cross terms from

T2�k� (this is a toy model). Restricting the range of interest
to be small enough so that �smooth�r� is close to a power law,
then we would have something like our Eq. (2).

The presence of the power law means that the location of
the local maximum, say rmax, will differ from rp. Requiring
d�=dr � 0 means

 Ap�
�rp
rm

�
�
1
�

�
1�

rm
rp

� r2
p

�2 G�rm�: (3)

If rm � rp�1� �� then

 Ap��1� �����1 � �
r2
p

�2 G�rm�: (4)

If �rp � rm�2 � �2r2
p � �2 (meaning the offset from rp is

small compared to the width of the bump), then this
becomes

 Ap��1� �����1 � �
r2
p

�2 AG

�
1�

�2r2
p

2�2

�
: (5)

To first order in �, this is

 � �
� AG=Ap
���2=r2

p�
� �1
 ��

�
�1
: (6)

The fact that we call it a bump means that AG > Ap. In
addition, we are interested in the case where �� rp, thus
our final expression for the peak in the linear correlation
function is

 �lin 	 �
�
�
rp

�
2
�Ap
AG

�
: (7)

This shows that the fractional shift from rp is large if � is
large (meaning the amplitude of the power-law component
is changing rapidly), or if �=rp is large (meaning the bump
is broad, so the change in the amplitude of the power-law
component matters), or if Ap=AG is large (meaning that the
power-law component matters).

What concerns us now is: How does the peak scale
change if one of our clustering systematics alters one or
all of these terms? Suppose AG ! AG�1
 �AG�, Ap !
Ap�1
 �Ap�, etc., then we would have

 � 	 �lin

��1
 ����1
 ���2�1
 �Ap�
�1
 �AG�

�
; (8)

and if these changes are all small, then �! �lin�1
 ���

 �� 	 �� 
 2�� 
 �Ap � �AG: (9)

If the only effect of the clustering systematics is to smooth
out the spike to a bump, then they may simultaneously
increase the width of the peak and decrease AG: i.e. AG /
1=�, implying that �� 	 3��. However, because �� can
be larger than �0:1, the effect on � / �1
 ���3 may be
substantial. We emphasize that such an apparent shift

MOTION OF THE ACOUSTIC PEAK IN THE . . . PHYSICAL REVIEW D 77, 043525 (2008)

043525-3



would occur even if there were no physical shift in the
position of the peak. Turning now to the physical shifts: if
�� � 0 then we shall say that our clustering systematics
have changed the underlying power law and that this will
lead to a physical motion of the acoustic peak.

Before we move on, we note that there are circumstances
under which the apparent shifts may be considered as
benign and so removed, namely, the Gaussian smoothing
case. However, the physical shifts are more pernicious and
when these distortions are present it is not clear how best to
reconstruct the unperturbed peak for both of the shifts. We
shall reserve further discussion of this matter for our future
work. However, we note that for dark matter in real space
these effects can be calculated rather precisely [36]; in
particular, the physical shifts are more complicated than
just an overall tilt of the underlying power law as described
by our toy model.

III. APPARENT AND PHYSICAL SHIFTS FROM
NUMERICAL SIMULATIONS

A. The ensemble of simulations

For the range of cosmologies that are acceptable, the
BAO peak is located at about rp � 100h�1 Mpc. A large
simulation volume is therefore required in order to mini-
mize the cosmic variance in the measurement on these
scales and also to correctly account for the mode coupling
from scales beyond rp that may drive evolution [34].
However, to control the sample variance down to a level
of a few percent requires the generation of a huge computa-
tional volume. To make this task feasible, given our finite
computer resources, we decided to run a large ensemble of
large simulations as opposed to one single extremely large
simulation. As we will show this allowed us to robustly
answer the question as to whether there is any apparent or
physical evolution in the peak position. These simulations
will also allow us to assess how sensitive future surveys
will be to measuring the acoustic feature. To this end, we
have run 50 realizations of cubic boxes with side Lbox �
1280h�1 Mpc, giving a total comoving volume of about
105�h�1 Gpc�3, just under 4 times the volume of the
Hubble volume simulation. This is approximately the vol-
ume ADEPT plans to survey, and is more than an order of
magnitude larger than any current or proposed ground
based experiment [43].

The cosmological parameters for the ensemble were
selected to be in broad agreement with the Wilkinson
Microwave Anisotropy Probe (WMAP) best-fit model
[1]: �m � 0:27, �� � 0:73, �b � 0:046, h � 0:72, and
�8�z � 0� � 0:9. For this cosmology, linear theory pre-
dicts the position of the acoustic peak, i.e., the local
maximum of the autocorrelation function of dark matter,
to occur at 106h�1 Mpc.

Each simulation was then run with 6403 particles. We
used the cmbfast [44] code to generate the linear theory

transfer function, and we adopted the standard parameter
choices, but took the transfer function output redshift to be
at z � 49. The initial conditions for each simulation were
then laid down at z � 49 using the 2LPT code described in
[45,46] and subsequent gravitational evolution of the equa-
tions of motion was performed using the Gadget2 code
[47]. Each realization ran to completion in roughly 1900
time steps from redshift z � 49 to z � 0, and the comoving
force softening was set at 70 kpc=h.

Haloes were identified in the redshift z � 0, 0.5, and 1
outputs of each realization, using the friends-of-friends
algorithm with linking-length parameter l � 0:2 (this
choice is standard). Halo masses were then corrected for
the error introduced by discretization of the halo density
structure [48]. Since the error in the estimate of the halo
mass diverges as the number of particles sampling the
density field decreases, we only study haloes containing
33 particles or more. At each redshift we present results for
the three bins in halo mass. These bins were chosen by
counting down in mass from the most massive halo, so that
the number in each bin is the same at each redshift. Table I
shows the resulting cuts in halo mass, and the associated
comoving number densities.

B. The measured correlation functions

The correlation functions were estimated using the stan-

dard estimator: �̂��r� � DD�r�=RR�r� � 1, where �̂� is the
bin averaged correlation function, DD�r� is the number of
true data pairs in the bin, and RR�r� is the number of pairs
expected after we randomize the positions. We also note
that when dealing with the redshift space data, we apply the
distortion separately in the x-, y-, and z-directions and
measure three correlation functions, these are then aver-
aged together to construct a single estimate for each
realization.

Figure 1 shows the autocorrelation functions of the
haloes in each of the selected mass bins in our z � 0
outputs. Top and bottom panels show ��r� and �s�r�, the
real and redshift space correlation functions. We have
chosen to show ��r� rather than r2��r� because, as dis-
cussed earlier, the peak in the former is more directly
related to the sound horizon scale rs. The error bars on
the data points come from the scatter around the mean
value of � as measured in the 50 realizations (i.e. from the

TABLE I. Halo samples as a function of redshift. Haloes in the
‘‘large,’’ ‘‘intermediate,’’ and ‘‘small’’ mass binsM>M3, M2 <
M<M3, and M1 <M<M2, respectively. Masses are in units
of h�1M
 and comoving number densities �nH in �h�1Mpc��3.

z � 0 z � 0:5 z � 1 �nH

M3 1:5� 1014 1014 5:7� 1013 1:9� 10�5

M2 7� 1013 5� 1013 3:1� 1013 3:4� 10�5

M1 4� 1013 3� 1013 2� 1013 4:8� 10�5

SMITH, SCOCCIMARRO, AND SHETH PHYSICAL REVIEW D 77, 043525 (2008)

043525-4



diagonal elements of the covariance matrix divided by the
square root of the number of realizations, which for our
case is:

������
50
p

� 7).
The solid line in the top panel shows the dark matter

correlation function predicted by linear theory, multiplied
by a constant factor so that the curve approximately
matches the signal seen in the intermediate mass bin on
scales r � 80h�1 Mpc. The vertical dashed line shows the
location of the local maximum in this function:
106h�1 Mpc. Considering the results in real space (top
panel), the figure clearly shows that the local maxima of
the measured correlation functions are systematically
shifted to smaller scales compared to this mark.
Moreover, it appears that the magnitude of the shift stead-
ily increases with halo mass. Turning to the results in
redshift space, we see that this effect is even more
pronounced.

Figures 2 and 3 show results at redshifts, z � 0:5 and 1.
Although the distortions from the linear case appear to be
slightly smaller, we again see clearly that the trends are
similar to those of the redshift zero case.

We now draw attention to another point of interest. As is
expected, these selected halo samples are significantly
more clustered than the mass. The large-scale bias factors,

as measured by the (square root of the) ratio of the halo
correlation function to that of the measured dark matter on
scales �70h�1 Mpc (where nonlinear effects appear to be
small) are b � 1:4, 1.8, 2.6 for the z � 0 haloes, b � 1:9,
2.3, 3.2 for the z � 0:5 haloes, and b � 2:5, 3.0, 3.9 for the
z � 1 haloes—with the most massive haloes having the
largest bias parameters. What is not so obvious now is that
the halo clustering signal for each bin at the three different
redshifts is almost constant in time. For reference, consider
the linear theory growth factor which is smaller by a factor

FIG. 3 (color online). Same as Fig. 1 but at z � 1.

FIG. 2 (color online). Same as Fig. 1 but at z � 0:5.FIG. 1 (color online). Halo correlation functions at z � 0 in
real (top) and redshift (bottom) space. Different symbols in each
panel show results for massive (top) to less massive haloes
(bottom). Table I gives the precise bins in halo mass. Error
bars come from the dispersion between the measured � in our
50 simulations; a total volume of 105�h�1 Gpc�3. The solid line
in the top panel shows the linear theory correlation function
multiplied by an arbitrary constant so that it approximately
matches the signal from the intermediate mass bin. The vertical
dashed line shows the position of the acoustic peak in this linear
correlation function: it lies at 106h�1 Mpc.
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of 0.785 between redshifts z � 0 and 0.5, so the amplitude
of �dm drops between at z � 0 and 0.5 by a factor of
�0:615. This result is a direct consequence of studying
the signal at fixed comoving number density: while the
clustering of the mass is much smaller at higher redshift,
the high redshift haloes are significantly more biased. At
fixed number density, the two effects approximately cancel
out, keeping the net clustering signal fixed. This is impor-
tant in view of the fact that galaxies of approximately
constant comoving density represent a popular choice for
the target sample galaxy to measure the BAO signature
over a range of redshifts, i.e. the LRG.

C. Statistical properties and model fitting

In this section we examine the statistical properties of
the halo-halo correlation functions and present our model
fitting analysis.

Figure 4 shows again the simulation results in real space
and for the smallest (top) and largest (bottom) bins in halo
mass, at z � 0 (left) and z � 1 (right). Figure 5 shows
again the results in redshift space. In each panel, symbols
show the mean value of �hh for the given bin in r, averaged
over the 50 simulations; shaded regions show the standard
deviation over the 50 realizations, and error bars show the
error on the mean (they are smaller than the shaded regions
by a factor of

������
50
p

	 7).
The first point to note is that the scatter amongst realiza-

tions is remarkable, given that each one of our boxes is
about 3 times larger than the volume probed by the SDSS
LRG sample. We further emphasize that at least in redshift
space this is likely to be a lower bound on the true under-
lying scatter, since there is no contribution to the variance
from virial motions of the dark matter particles or galaxies.
Clearly, enormous volumes will be required to measure
�hh, and thus the galaxy correlation function, to the preci-
sion required for percent precision cosmology, and this
justifies our earlier assertion at the beginning of this
section.

Comparing now the scatter exhibited in the z � 0 real
space low mass halo sample with that found for the high
mass sample, at a first glance we see that the scatter appears
to decrease as halo mass increases; and this trend is also
exhibited in redshift space data. However as one goes to
higher redshifts no obvious trend is apparent between low
and high mass samples. Comparing halo samples at the
same fixed number density but at different epochs, we see
that the scatter is much reduced for the low mass halo
sample, but roughly constant for the higher mass sample.
This suggests that what is meant by ‘‘high’’ or ‘‘low’’ mass
is a very subjective quantity: ‘‘low’’ mass here must mean
relative to the typical halo mass at that epoch. However as
we shall show shortly these trends with halo mass and
measured epoch cannot be characterized so naively.

We now turn to our modeling of the data. Based on our
discussion from Sec. II, we now attempt to fit the correla-

tion functions by assuming that each can be described as a
linearly biased version of the linear theory correlation
function, smoothed with a Gaussian filter. There are thus
two free parameters for such fits—the scale of the
Gaussian smoothing filter RG and the overall amplitude
of the bias, which we define b2

1 � �hh�r�=�Lin�r�, where
�hh�r� is the halo-halo correlation function. Note that for
this theoretical case we shall assume that the transfer
function and hence the cosmological model are fully speci-
fied, which for our simulations they are of course, however
in reality one should consider fitting for these parameters
jointly with other cosmological parameters, albeit with
constraints from external data, i.e. CMB, etc., since these
should not be considered known a priori for a realistic
case.

The best-fit model parameters for each sample were
determined by generating a 2D cubical grid of models
over the ranges b1 2 �0:5; 10:0� and Rf 2 �0:5; 10:0�,
spaced by steps of 0.01, and then computing the �2 for
each, with the final best-fit model being identified as the
one with the minimum returned value. Explicitly the �2 we
minimize is

 �2�b̂1; R̂f� � �YTĈ�1
h�hhi

�Y; (10)

where we define the ensemble average difference vector

 

�Y � �y� ymod�xjb̂1; R̂f�; (11)

with �y � � ��hh
1 ; . . . ; ��hh

N � and x � �r1; . . . ; rN�, and where
ymod is a vector of model values. Ĉh�hhi is our estimate of
the covariance matrix of the mean correlation functions

 Ĉ h�hhi � �y
T � y� �yT � �y�=Nreal; (12)

where � is the direct product operator and we divide by the
number of realizations, 1=Nreal, because we are estimating
the covariances of mean quantities. The inversion of the
above covariance matrix was performed using the singular
value decomposition (SVD) algorithm [49]. The models
were fit over the range of scales �65h�1 Mpc< r<
140h�1 Mpc� in 21 equal bins in radius giving
�3:5h�1 Mpc per bin.

Consider now the three thin solid curves, the central line
represents the best-fit smoothed and scaled linear theory
correlation function; and the best-fit values for b1 and Rf,
along with their respective �2 values are also reported in
each panel. Interestingly, we note that the bias factors in
the redshift space figures, recovered from this fitting pro-
cedure, roughly agree with our earlier estimates from
simply considering the data points around r�
70 Mpc=h. For comparison the dashed lines show the
best-fit unsmoothed linear theory correlation function
with a linear bias. Clearly this model does not provide a
reasonable fit to the simulation data over the range of
scales presented.
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FIG. 4 (color online). Mean (solid points), scatter (shaded region), and error on the mean (error bars) for the halo-halo correlation
functions measured in the ensemble of 50 simulations. The long dashed curves show the linearly biased, linear theory; the central solid
curve shows linear theory, smoothed with a Gaussian filter radius R and linearly biased b (best-fit values for these parameters are
expressed in the figure annotations). The inner and outer solid curves enclosing the best-fit model show the expected scatter in the
continuum limit and the discrete Poisson sample limit, respectively—see text for full explanation. The vertical lines represent the local
maximum of the linear theory � (right most dashed line) and the best-fit smoothed linear theory model (solid line) and the best-fit
Tchebychev polynomial fit (triple-dot dashed lines). The bottom panels show the ratio of the measurements to the central solid line and
again the error bars are the errors on the mean.
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We may now make a prediction for the variance of the
correlation function in each bin by assuming that the
underlying density field from which the correlation func-
tions were generated is well described by a Gaussian
random field. Following [50–54], the covariance matrix
for bin averaged correlation function, in the limit of small

bin sizes �r=r� 1, can be written

 �C ��hh�ij � h ��hh
i

��hh
j i � h

��hh
i ih

��hh
j i

�
1

V�

Z dkk2

2�2 j0�kri�j0�krj��
2
Phh�k�; (13)

FIG. 5 (color online). Same as the previous figure, but in redshift space.
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where ��hh
i is the bin averaged correlation function in bin i,

V� is the simulation volume, j0 � sin�x�=x is the zeroth
order spherical Bessel function and where �2

Phh is the
Gaussian variance per mode in the halo-halo power spec-
trum, which for a discrete Poisson sampling of the halo
field, can be written

 �2
Phh�k� � 2

�
Phh�k� 


1

�nH

�
2
; (14)

where we write our smoothed halo-halo power spectrum, at
linear order in the overdensity perturbation and bias, as

 Phh�kjRf� � V�hj�h�kjRf�j2i � b̂2
1PLin�k�W2�kR̂f�: (15)

For the purposes of numerical evaluation of the above
formulae, we follow [51] and note that one may rewrite
the contribution to the covariance coming from the term
1= �n2

H as follows:

 

2

V� �n2
H

Z d3k

�2��3
j0�kri�j0�krj� � �Ki;j

2

�n2
HV�V�ri�

; (16)

where the volume associated with each shell is: V�ri� �
4�r2

i�r. The variance in the correlation function is then
simply given by setting i � j in Eq. (13). Using our
Gaussian smoothed linear model for Phh�k� ensures that
the integrals over the Bessel functions converge rapidly.
For a more detailed discussion of convergence properties,
see [51].

Considering again the best-fit smoothed model in each
panel, surrounding it are two sets of solid lines, a thick
inner set and a thin outer set. The inner lines show the
scatter between realizations that one would predict using
the continuum limit of Eq. (14), that is when 1= �nH ! 0. In
this case, the theoretical predictions clearly underestimate
the true scatter in �hh for all bins in halo mass, with the
discrepancy being slightly worse for the lowest mass bin.
The outer solid curves now show the effect of including the
discreteness contribution from 1= �nH in Eq. (14). Note that
in implementing Eq. (16) it was essential to correctly
account for the binning in the correlation function. In
most cases, and especially for the z � 1 correlations, this
additional contribution provides a much improved descrip-
tion of the measured scatter. However, at low redshift and
for the lowest mass haloes considered the theoretical esti-
mate of the scatter appears too small. This is likely a
consequence of the growing non-Gaussian contributions
to the variance from the connected trispectrum and bispec-
trum [53–55] and that the discrepancy between high and
low mass halo samples may be caused by the effect of
nonlinear halo bias terms entering the variance estimate.

Returning to the issue of how the scatter depends on the
samples. Considering again our expression for the
Gaussian error on the power spectrum, Eq. (14), we see
that the relative error per mode can be written:

 

�hh
P

Phh
�

���
2
p �

1

1

�nHb
2
1PLin�k; z�

�
: (17)

Thus we see that the relative scatter may increase in three
ways: as halo bias decreases; as halo number density
decreases; and as the power-spectrum amplitude changes
with time. For our constructed samples these effects con-
spire in such a way that it is no longer trivial to isolate
trends. Rather than attempting to follow this path we
simply note that to say anything substantiative we must
consider the full covariance matrix, since a decrease in
diagonal covariance can be traded for an increase in off-
diagonal covariance—which is just as important in the
fitting. We shall reserve the important issue of power-
spectrum and correlation function covariance for a future
study.

Lastly, we note that for very sparse samples of haloes the
theoretical prediction given by Eq. (13) actually represents
a lower bound, since there should be a further (non-
Gaussian) shot-noise contribution of the order
�Ki;j2 ��hh

i =� �n
2
HV�V�ri�� [51]. However, for our purposes

this term is unimportant, since ��hh
i � 1.

D. Evidence for shifts: ‘‘Eppur Si Muove’’

We now illustrate very clearly the effects of ‘‘apparent’’
shifts on the peak position of the correlation function,
arising from the operation of smoothing, and explore the
hypothesis that the peak position also exhibits large-scale
‘‘physical’’ motion.

Before we commence with this investigation we note
that since our simulations used the transfer function gen-
erated at z � 49, our linear theory acoustic peak is slightly
less sharp than that which obtains from using the transfer
function at z � 0 (which is more correct). This means that
the apparent shifts will be overestimated, since, as was
discussed in Sec. II, smoothing affects more a weaker peak.
For dark matter clustering, a calculation using renormal-
ized perturbation theory [36] shows that the apparent shift
is overestimated by about a factor of 2 by using the transfer
function calculated at z � 49. However, the physical shifts
are not changed significantly.

Considering again Figs. 4 and 5, as noted above, the
(blue) dashed lines in each panel show the associated
biased but unsmoothed linear theory correlation functions,
and clearly these do not provide a good fit to the data. The
corresponding vertical dash lines show the position of the
local maximum of this curve—the unperturbed acoustic
peak: rUp � 106h�1h�1 Mpc. Now consider the best-fit
smoothed models (central solid magenta), these clearly
(by eye) provide a much improved fit to the data. On
finding the local maximum of these smoothed models,
we see that in all cases the peak has been shifted to smaller
scales. These are denoted in each panel by the solid ma-
genta vertical lines and with their values reported in the
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top-right of each panel as rSp, with ‘‘Sp’’ meaning
smoothed peak.

Considering these smoothed model inferred peak posi-
tions, we note several important trends:

(i) All maxima lie on smaller scales than rUp;
(ii) For halo samples considered at the same epoch and

in both real and redshift space, the shifts from rUp

increase with increasing halo mass;
(iii) Considering halo samples of the same fixed number

density at different redshifts, the shifts are reduced
for the higher redshift samples;

(iv) Shifts are increased in the redshift space;
(v) Best-fit filter scale increases with halo mass.

The spread of values in the smoothed model shifts �Sp �

�rUp � rSp�=rUp, span the range �Sp � 1:0%–5%, with the
largest values being obtained as per the trends described
above. These shifts, it can be argued [30], fall under the
banner of apparent shifts—arising from the local collapse
and rearrangement of matter. However, following our dis-
cussion of the transfer function, we expect that these shifts
would be reduced by a factor of �2 for the z � 0 transfer
function: �Sp � 0:5%–2:5%. We also note that in the recent
literature a number of procedures have been proposed to
tackle these apparent shifts and, modulo the choice of filter
function, most of these methods should be able to success-
fully correct for these effects. However, we now draw
attention to the last of our bullet points and note the fact
that the best-fit filter scale Rf, increased with halo mass.
This implies that methods that are tested and tuned to
extract BAO information using only the dark matter distri-
bution will fail to incorporate this effect—we return to this
in Sec. III E.

Turning now to the question of ‘‘physical’’ shifts, it is
clear that the smoothed model does not provide consis-
tently good fits to the measurements for all our samples. To
see this more clearly, the bottom section of each panel
shows the ratio of the measured points to the best-fit
smoothed linear model. From examination of these results
it is clear that there is some evidence for structure in these
residuals—typically, on scales smaller than the true acous-
tic peak position we find that the data points lie above the
best-fit smoothed model. This trend is most apparent for
the present day high mass halo samples, but is less clear for
the lowest mass. This can be further quantified by use of
the �2 test as an indicator for the ‘‘goodness-of-fit’’: for
N � 21 data bins and m � 2 parameters, the probability
P��2 > 36:19jn � 19� � 0:01. Thus on inspection of the
�2 values in Figs. 4 and 5 we see that only in two instances
are the mean data in agreement with this and these are for
the present day low mass samples in real and redshift
space. Based on these data we are led to reject our null
hypothesis and accept the possibility that there is a physical
motion of the peak.

One alternative to the ‘‘physical motion’’ hypothesis is
that the filter choice is somehow special—and had we

chosen the ‘‘special’’ filter then this would reconcile our
results. This view is problematic, since in order to model
all of the above trends such a filter would have to be highly
contrived. Thus, based on the above evidence, it seems that
something like the second term in Eq. (1) is present and
generating a shift in the position of the peak.

In the next section, we provide details of a physically
motivated model that may offer some insights into the
origin of the dependence on halo mass of the shifts in the
acoustic peak position.

Before continuing, it is of interest to characterize the
peaks in the correlation function data using a purely arti-
ficial parametrized model that simply matches the data in
the least square sense. For this we write the model of the
correlation function as a sum over the orthogonal
Tchebyshev polynomials, Ti�x�, i.e.

 ymod�r� � �hh�r� �
Xm
i�0

aiTi�x�r��; (18)

and x�r� here is a mapping that transforms the r-range into
the range x 2 ��1; 1� so that we may use the normalized
polynomials. We then, as before, find the coefficients ai
that minimize our �2 Eq. (10) and polynomials up to
degree 9 were used to describe the data and, for simplicity,
in the fitting we have used only the diagonal elements of
the covariance matrix to make the constraints. These arti-
ficial models along with the locations of their local maxima
at the acoustic scale are presented in Figs. 4 and 5 as the
(green) triple-dot dash curves, and the values of the max-
ima are noted in the top-right hand corner of each panel as
rTp. For the high mass samples the shifts, �Tp � �rUp �

rTp�=rUp, are significantly enhanced relative to linear
model, and for the case of the highest mass halo sample
at z � 0 in redshift space, the best-fit model had no local
maximum.

We may now be more definite in what we mean by a
physical shift: we shall say the percentage physical shift
away from the true peak is �Phys � j�Sp � �Tpj. The physi-
cal shifts appear to be smaller than the apparent shifts and
are roughly of the order �0:4%–3:0% at z � 0:0 for real
and redshift space data and they are somewhat mitigated at
higher redshifts. Tables II and III collect together the
apparent, total, and physical shift values for the halo
samples in real and redshift space, respectively. As we
shall discuss in the following section these physical shifts
are not accounted for in the recent methods proposed to
correct for the nonlinear evolution of the BAO peak
position.

E. Alternative BAO reconstruction methods

Recently a number of procedures have been proposed
to correct the BAO peak position for the effects of the
large-scale structure systematics (see for example
[11,16,23,28,30]). These methods essentially allow for
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smoothing in configuration space and possible broadband
tilts in the underlying power spectrum. Since the correla-
tion function is the Fourier space dual of the power spec-
trum, these methods should also be equally applicable in
configuration space.

First, consider those methods that attempt to correct the
measured power spectrum for tilting by fitting away an
arbitrary constant—this is in response to ideas from the
halo model that lead us to consider a generalized Poisson
shot-noise correction (see for example [56]). On Fourier
transforming this model it does nothing to the peak of the
correlation function and so may be dismissed.

Second, consider a model that is designed to damp out
the acoustic oscillations, but then restore the linear theory
power using a smooth (no BAO) version of the linear
power [30], e.g.

 PNL�kjR� � e�k
2R2
b2PLin�k� 
 �1� e�k

2R2
�b2Psmooth

Lin �k�:

(19)

In the configuration space the first term transforms into the
smoothed linear model Eq. (15), and as we saw this will
generate apparent shifts. Considering the second term, we
see that this function has no information about the acoustic
scale. Figure 6 shows this model for a range of smoothing
filter scales—in all cases, it is flat around the acoustic
peak. Moreover, the ratio �NL�rjR�=�Lin�rjR�< 1 for all
smoothing scales, whereas the measured residuals can
exceed unity on scales smaller than the acoustic peak
(cf. Fig. 4 and 5). We therefore deduce that a model like
Eq. (19) is inadequate.

Lastly, we note that a more sophisticated method for
correcting the spectrum for the nonlinear systematics was
proposed by [16]. However, this method was recently
looked at in great detail by [36], for the most optimistic
case—dark matter in real space. There it was shown that,
although the method accounts for broadband tilting of the
underlying power spectrum, it was unable to correct for the

shift of the peak due to mode coupling. Since these mode-
coupling terms are even more enhanced in the halo-halo
power spectrum (see [34]) we expect that this method will
not correct for all of the physical shifts found in the
previous section.

In passing, we note that it is not straightforward to draw
a direct connection between what we call the physical shift
and what [36] describe as mode-coupling shifts. It is likely
that what we have called a physical shift is an underesti-
mate of the mode-coupling effects. To understand why, we
note that while the renormalized perturbation theory for-
malism has yet to be extended to haloes, we may suppose

FIG. 6 (color online). Expected behavior of the residuals in the
correlation function arising from the alternative approach to
BAO model fitting of [30], where the broadband, but smooth,
linear power is restored. From top to bottom the lines show the
effects where a smoothing scale of Rf � f2; 4; 8gh�1 Mpc=h was
taken. This method does not replicate the S shaped structure of
the residuals found in the data.

TABLE II. Shifts in the BAO peak position as a function of halo sample in real space.

SAMPLE Rf�h
�1 Mpc� b1 �Sp�%� �Tp�%� �Phys�%�

z � 0 z � 1 z � 0 z � 1 z � 0 z � 1 z � 0 z � 1 z � 0 z � 1
M1 5.35 2.52 1.41 2.32 1.5 0.00 1.10 0.85 0.38 0.85
M2 5.25 2.52 1.71 2.72 1.32 0.00 5.20 0.09 2.92 0.09
M3 6.51 3.94 2.52 3.94 3.30 0.47 4.40 0.57 1.13 0.09

TABLE III. Shifts in the BAO peak position as a function of halo sample in redshift space.

SAMPLE Rf�h�1Mpc� b1 �Sp�%� �Tp�%� �Phys�%�

z � 0 z � 1 z � 0 z � 1 z � 0 z � 1 z � 0 z � 1 z � 0 z � 1
M1 6.26 3.38 1.56 2.57 2.83 0.18 4.90 2.16 2.07 1.98
M2 6.97 4.04 1.91 2.88 4.60 0.66 6.13 1.20 1.51 0.57
M3 6.92 4.54 2.62 4.09 4.40 0.70 NA 1.80 NA 1.10
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that the RPT decomposition of the 2-pt clustering signal
will still be valid, i.e. there is some propagator which
multiplies the linear theory power, and some sum of
mode-coupling terms. Suppose the halo propagator has
almost the same form as the dark matter propagator, so
the effects of the nonlinear bias mainly affect the mode-
coupling pieces. Since the propagator is akin to a Gaussian
smoothing term, this term acts just like the simple
Gaussian smoothing model we fit to the simulation data.
If the effects of the other (mode-coupling) term were
negligible, or did not depend strongly on halo mass, then
we would expect the scale of the best-fit smoothing filter to
also be independent of halo mass. It is not, suggesting that
the mode-coupling term depends on halo mass. That the
scale of the best-fit smoothing filter is larger for the more
massive haloes (Table II and III) indicates that our best-
fitting Gaussian filter is trying to account for some of the
shifting that is actually due to the mode-coupling terms.

We shall now pursue an analytic approach that we think
provides insight into the physics behind the shifts.

IV. A PHYSICAL MODEL FOR THE SHIFTS

This section presents a simple physical model for esti-
mating the effects of nonlinear clustering and bias on the
position of the local maximum of the correlation function.
[36] discuss a more accurate model for the correlation
function of the dark matter; the approach below allows
one to address how the peak shifts are affected if the
measured correlation function comes from a biased tracer
of the dark matter field.

A. The pair conservation equation

The perturbed continuity equation for the collisionless
CDM fluid can be written,

 

@�1
 ��x; 	��
@	


r � ��1
 ��x; 	��v�x; 	�� � 0; (20)

where ��x; 	� � �
�x; 	� � 
b�	��=
b�	�, is the dimen-
sionless density perturbation at comoving position x and
conformal time 	 (d	 � dt=a�t�, where a�	� is the expan-
sion factor from the Friedmann equation); 
b�	� is the
homogeneous background density; and v�x; 	� � x0 �
dx=d	 is the proper peculiar velocity field [57,58].

We can now use Eq. (20) at position 1, say, multiply by
�1
 �2� for position 2, and add the same expression with
indices 1 and 2 interchanged ��i � ��xi��. Taking expec-
tation values of the result yields the pair conservation
equation [58–61]:

 

@�1
 ��r; 	��
@	


r � ��1
 ��r; 	��v12�r; 	�� � 0; (21)

where the divergence is with respect to the vector that
separates the pair r � x1 � x2, and the pairwise infall
velocity is

 v 12�r; 	� �
h�1
 �1��1
 �2��v1 � v2�i

�1
 ��r; 	��
; (22)

where by statistical isotropy we used that h�1v1i �
h�2v2i � 0.

We can rewrite Eq. (21) in a more convenient form, by
changing time variable from conformal time 	 to the linear
growth factor D
. In particular, if

 � � lnD
; (23)

then d	 � d�=�H f�, where H � d lna=d	 and f �
d lnD
=d lna. We may also write velocities in a similar
fashion and scale out their dependence on linear theory.
Namely, v � �H fu, where r � u � � in the linear the-
ory. Then, dividing Eq. (21) by �1
 ��r; 	�� yields

 

@ ln�1
 ��r; ���
@�

� u12 � r ln�1
 ��r; ���

� r � u12�r; ��: (24)

Owing to the fact that large-scale flows have no vorticity,
the pairwise velocities are directed along the separation
unit vector r̂, so u12 � u12r̂. Hence Eq. (24) becomes

 

@ ln�1
 ��r; ���
@�

� u12�r; ��
@ ln�1
 ��r; ����

@r

� ��r; ��; (25)

where we have defined ��r; �� � r � �u12�r; ��r̂� to be the
divergence of the pairwise infall velocities u12�r�. Note,
that this equation may be thought of as a differential
equation for ln�1
 �� given an ansatz for u12 [59], or
‘‘vice versa’’ [61].

B. Solution by characteristics

The general solution of Eq. (25) can be found by the
method of characteristics (see for example [62]), which
illustrates quite clearly how any feature in the correlation
function will move as clustering develops.

The continuity equation (and thus the pair conservation
equation) is a prime example of a hyperbolic partial dif-
ferential equation. Information propagates from the initial
conditions to the final conditions through curves, called
characteristics. The characteristics are simply the equa-
tions of motion of pairs,

 

dr
d�
� �u12�r; ��: (26)

The solution of this equation gives r���, and this converts
the left-hand side of Eq. (25) into a total derivative. Thus,
one obtains an ordinary differential equation along the
characteristics:

 

d ln�1
 ��r; ���
d�

� ��r; ��; (27)

and it should be understood that it is a function of time �
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only, after using the characteristic solution r���, Eq. (26).
Thus Eq. (27) simply gives the logarithmic rate of change
of the two-point correlation function as it evolves along the
characteristic curve. The fully evolved correlation function
may then be obtained straightforwardly, at any chosen
epoch, through integration along the characteristic between
the initial and final epoch:

 1
 ��r; �� � �1
 �0�r0�r; ����

� exp
�Z �

0
��r�0 �r; ��; �

0�d�0
�
; (28)

where r0�r; �� is the initial separation that corresponds to r
at time �, and similarly for r�0 . The exponential factor
comes from the fact that the correlation function is not
conserved along characteristics because the right-hand side
of Eq. (27) is nonzero. Since we are mostly interested in
significant growth after the initial perturbations are laid
down (�� �0), the term in the first parenthesis can be
safely approximated as unity. Hence, all the evolution is
encoded in � and the characteristics. Note that this solu-
tion is exact; it only becomes useful, though, if one can
model the pairwise infall velocities.

C. Linear theory velocities

For what follows, it will be convenient to define

 

�� 0�r0; �0� � e2�0
3

r

Z P0�k�
k

j1�kr�d3k; (29)

where P0�k� is the power spectrum at some initial time
�0 � 0 and where j1�y� � �sin�y� � y cos�y��=y2 is the
first order spherical Bessel function. In linear theory, pair-
wise infall velocities, at time �, can be written [58,60]

 u12�r; �� � 2e2�
Z P0�k�

k
j1�kr�d

3k �
2r
3

e2� ��0�r� (30)

[63]. The divergence of pairwise velocities in linear theory
can be obtained directly from Eq. (30) by taking the
divergence,

 ��r; �� � rr � �u12�r�r̂� �
1

r2

@
@r
�r2u12�r��;

� 2e2�
Z
P0�k�j0�kr�d3k;� 2e2��0�r�; (31)

with �0 the initial (linear) correlation function at �0 � 0.
Equation (30) allows us to solve for the characteristics in

linear theory. Two-point information at separation r0 and
time �0 � 0 propagates by time � to a separation r (less
than r0, due to clustering) so that, from Eq. (26)

 e 2� � 1 �
Z r0

r

3
��0�r�

dr
r
: (32)

Figure 7 shows the solution of this equation (r as a
function of redshift) for initial separations r0 close to the
acoustic peak of the two-point correlation function. If this

were the only effect, i.e. if the right-hand side of Eq. (27)
were zero, then the correlation function would be con-
served along the characteristics (solid blue line shown in
Fig. 7) and this alone would give about 0.2% shift in the
acoustic peak position by z � 0. However, as mentioned
above, the correlation function grows along the character-
istics. This growth is governed by the divergence of the
infall velocities, and, for large �, it is this contribution
which dominates. Indeed, we have not yet even included
the linear amplification of the correlation function, result-
ing from the right-hand side in Eq. (27).

Including the divergence of infall velocities using
Eq. (31), makes Eq. (28) for the two-point function

 1
 ��r; �� � �1
 �0�r0�r; ����

� exp
�

2
Z �

0
�0�r�0 �r; ���e2�0d�0

�
: (33)

If the flow of characteristics caused by the nonlinear term
in Eq. (25) is ignored, then r 	 r�0 	 r0, and so

 1
 ��r� 	 �1
 �0�r�� exp��0�r��e
2� � 1��

	 1
 �0�r�e2�: (34)

The final expression follows if the term in the exponential
is small; notice that it equals the linear perturbation theory
expression for � at time �.

FIG. 7 (color online). The flow of characteristics in linear
theory for initial separations close to the acoustic peak of the
two-point function, every 1h�1 Mpc. For each scale we show
results for dark matter (solid, solutions of Eq. (32)), and linearly
biased tracers (solutions of Eq. (50)) having z � 0 bias factors of
b � 1:4 (dashed line) and b � 2 (dot-dashed line). The peak in
the linear correlation function is located at r � 106h�1 Mpc for
the cosmological model we use in this paper.
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At first sight, the solution of Eq. (33) appears to require
many evaluations of Eq. (32). However, the integral over�0

in the exponential piece of Eq. (33) may be transformed
using the characteristic curve, whence

 2e2� � d�e2� � 1� � �
3

���r�

dr
r
: (35)

Thus on performing this change of variables, the term in
the exponential of Eq. (33) becomes

 ) 3
Z r0

r

dr0

r0
�0�r0�
��0�r

0�
: (36)

However, on noting that d�r3 ���r��=r3 � 3��r�dr=r, we
find that this may be further simplified to

 )
Z r3

0
��0�r0�

r3 ��0�r�

dx
x
: (37)

Therefore, Eq. (33) is really rather simple:

 1
 ��r; �� � �1
 �0�r0��
r3

0
��0�r0�

r3 ��0�r�
; (38)

and a single evaluation of Eq. (32) gives r0�r; ��, and hence
the nonlinear value of ��r�.

D. Connections to previous work

At late times e2� � 1. Hence, on the large scales where
�0 � 1, Eq. (34) implies that 1
 ��r� 	 exp����r��,
where ���r� � e2��0�r� is the linearly evolved correlation
function. This is precisely the relation between the corre-
lation function of a log-normal field and that of the under-
lying Gaussian field from which it was derived. Of course,
this analysis has assumed that r 	 r�0 	 r0; Fig. 7 shows
that this is inappropriate at late times. Nevertheless, it
provides a nice illustration of why the log-normal has
proved to be such a useful approximation, and why the
approximation breaks down [64]. Note that, both in linear
theory and in the log-normal approximation for the non-
linear evolution, the position of the acoustic peak does not
shift [66].

Our Eq. (38) has the flavor of an approach pioneered by
[59,67], who argued that

 1
 ���r; �� � �r0=r�
3 (39)

should provide a good approximation to nonlinear evolu-
tion. In effect, their approach sets

 1
 ��r; �� �
�
r0

r

�
3 @ lnr0

@ lnr
: (40)

If we set 1
 �0�r0� ! 1, then we have

 1
 ��r; �� �
�
r0

r

�
3 ��0�r0�

��0�r�
; (41)

our expression follows from inserting the linear velocities

in the characteristics—it is not an ansatz. Note that this
relation changes if nonlinear velocities are used.

E. Inaccuracy of linear theory velocities

In linear theory the divergence of infall velocities
��r; �� is, modulo a factor of 2, given by the linear two-
point function itself (cf. Eq. (31)) and this has a static
(independent of �) peak at the unperturbed position.
Hence, there is a competition between �, which prefers
the peak to stay unshifted, and the flow of characteristics,
which induce a shift towards smaller scales (Fig. 7). A
consequence of this is that, using linear velocities is ex-
pected to underestimate the true peak shift. (The top -left
panel of Fig. 9 shows this explicitly, as we discuss later.)
Using Eq. (38) one obtains a shift of about 0.1% at z � 0,
half of that due to the flow of characteristics.

This underestimate results from the fact that, while the
pairwise infall velocity may be reasonably well described
by linear theory on large scales, its divergence deviates
from linear theory more strongly, due to the scale depen-
dence of nonlinear corrections [41,68]. This is graphically
illustrated in Fig. 8. Although � / � in linear theory, by
z � 0, nonlinear effects have washed out any sign of an
acoustic peak in �!

FIG. 8 (color online). The divergence of pairwise infall (dark
matter) velocities � as a function of scale measured in numerical
simulations at z � 0 (solid squares) and at z � 1 (solid tri-
angles). In linear perturbation theory, �=2 is equal to the linear
correlation function—and at z � 0 and z � 1 the linear models
are represented by solid light (red) and dark (blue) lines, re-
spectively. Notice that at z � 1 the acoustic peak is visible in �,
but by z � 0 the nonlinear effects have completely washed out
any trace of it.
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In practice, a characteristic that probes scales slightly
smaller than the unperturbed acoustic peak will experience
more growth of the two-point function at late times. This
leads directly to an enhancement that dominates over the
effect of the flow of characteristics, and results in a sub-
stantially enhanced shift over the linear case (and as we
will show this enhancement is about 1 order of magnitude).
In this sense the flow of characteristics only gives a lower
bound to the shift in the peak position due to mode cou-
pling. Clearly, in order to proceed, we require a model for
the nonlinearity of the infall of pairwise velocities, and, in
particular, its divergence �.

F. Beyond linear theory velocities

There are two types of nonlinear contributions to the
pairwise infall velocity. This can be seen more clearly by
rearranging Eq. (22) into the form

 u 12 �
h��1 
 �2��u1 � u2�i 
 h�1�2�u1 � u2�i

1
 �
: (42)

If we insert the standard perturbation theory (hereafter, PT)
expansions for � and u [57], then we see that the first term
in the numerator is second order in ��x; �0�, and the
second term is of third order, which in linear theory aver-

ages to zero. We can set the denominator equal to unity,
since � is of order 10�3 on the scales of interest and we are
after much larger (1%–10%) effects. As mentioned in the
previous subsection, the effects from nonlinear mode cou-
pling on u12�r; �� on these scales are negligible (� 1%),
and hence play almost no role in shaping the characteristic
curves (which, as we said, lead to shifts of only �0:2% in
linear theory for dark matter). They do, however, have a
significant impact on the source term in the right-hand side
of Eq. (27), which dictates how fast the two-point function
grows along the characteristics.

Equation (42) thus leads to the following decomposition

 ��r; �� � �2�r; �� 
�3�r; ��; (43)

where the two terms on the right-hand side are defined
�2 � 2r � h�1u2i and �3 � 2r � h�1�2u1i. Considering
the first term, on using the standard PT expansions for
the density and divergence of the velocity field ([57] and
see also footnote [63]), we find that �2 can be written

 �2�r; �� � 2
Z
P���k; ��j0�kr�d3k; (44)

and

 P���k; �� � e2�P��0 �k� 
 e4�P��1 loop�k�; (45)

is the cross-power spectrum of the density and velocity
divergence expanded to fourth order in the standard PT.
The first term is the usual one from linear theory P��0 � P0,
and P��1-loop is the ‘‘one-loop’’ correction to P�� from PT.
The middle panel of Fig. 6 in [68] shows that this term
describes rather well (much better than for the density
power spectrum) the deviations from linear theory at large
scales. Thus,

 �2�r; �� � �0
2�r; �� 
�1-loop

2 �r; ��: (46)

Considering the second term in Eq. (43), we find that

 �3�r; �� � 2r � h�1�2u1i;

� 2e4�
Z
d3k1d3k2eik12�r

k12 � k2

k2
2

B����k1; k2�;

(47)

where r � x1 � x2, k12 � k1 
 k2 and B��� is the
density-velocity divergence-density bispectrum:
h��k1���k2���k3�i � B����k1; k2��D�k1 
 k2 
 k3�. Ap-
pendix A provides explicit expressions for �1-loop

2 �r� and
�3�r� expressed up to 1-loop in the standard PT, and
written in terms of the initial power spectrum.

A substantially improved model for the nonlinear corre-
lation function � results from including these nonlinear
terms in Eq. (28). Before showing this explicitly, the next
subsection discusses how the effects of galaxy/halo biasing
can be included in our analysis.

FIG. 9 (color online). The real-space two-point correlation
function for dark matter (top) and haloes (bottom) at z � 0
(left) and z � 0:5 (right). Table I describes the three bins in
halo mass; �hh is largest for the most massive haloes. The dashed
lines in the top panels show linear theory for the dark matter,
solid lines are the predictions of our model, Eq. (51), and
symbols show the measurements. The dotted line in the top-
left panel shows our model when only linear theory velocities are
used; it is almost indistinguishable from simple linear theory,
demonstrating that inclusion of the nonlinear contributions to the
(divergence of the) velocity field is vital.
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G. Extension to biased tracers

The analysis above has been useful for understanding
the motion of the acoustic peak in the dark matter correla-
tion function. However, since the observations will not
measure the mass directly, but instead the clustering of
some set of biased tracers of the density field, i.e. some
sampling of the galaxy distribution, the method of charac-
teristic curve solutions will be more useful if we can extend
it to describe these biased tracers. At first glance, it is not
obvious that this can be done, owing to the fact that haloes,
and the galaxies that they host, are created and destroyed
through merging, so their comoving number density is not
conserved. Thus one might naively conclude that any such
approach based on continuity arguments must be suspect.
However, some thought shows that this problem is not
insurmountable.

Consider the motion of some halo today, its trajectory is
the result of the previous history of motions of its constitu-
ent particles. Thus, for instance, one may speak of the
motion of the center of mass of the particles that make
up the halo, at, say, the present time. In particular, one may
also speak of the position and velocity of its center of mass
even at high redshifts when the halo itself does not yet exist
as a single virialized entity. This was the point made by
[69]; provided appropriate care is taken of how the bias
associated with these tracer particles evolves, the continu-
ity equation can indeed be used to relate � to v12. The
argument above remains true if each halo is represented not
by one but by many tracer particles, and the number of
tracer particles depends on halo mass. The positions of
each of these tracers can be followed back in time, so their
number is conserved. These tracers have some effective
bias factor at the time they are identified; provided one
accounts for the evolution of this bias, the continuity
equation can be used. Since the argument above works
for any set of tracers, it is as valid for galaxies as for haloes.
Note, in particular, that detailed knowledge of the origin of
the effective bias factor is unnecessary. E.g. if two sets of
tracers have the same abundance and bias factor at one
epoch, but one tracer populates a wide range of halo
masses, and the other two narrow but rather separate
mass bins, the evolution of the effective bias factor will
be the same.

Fortunately, describing the evolution of the bias for
‘‘objects’’ that are neither created nor destroyed is rather
straightforward [69–74]: For a set of tracer particles that
are related to the underlying dark matter through a linear,
local, deterministic mapping, the time evolution of their
bias (b��� � �
�x; ��=��x; �� where 
 represents either
haloes or galaxies), can be written

 b��� � 1 � �bi � 1�e��; (48)

where bi denotes the bias at the initial time � � 0. Thus to
incorporate this bias model into our theoretical model, we
must simply make the following replacements:

 �0 ! b2
i �0; �2 ! b����2; �3 ! b���2�3;

(49)

in the expressions above. Here we have used the standard
assumption that the velocity field of any set of biased
tracers is itself unbiased, and that �3 depends only quad-
ratically on the density field, where we have neglected
subleading terms (see [72]).

With these changes, Eq. (32) for the characteristics
becomes

 e 2� � 1
 2�bi � 1��e� � 1� �
Z r0

r

dr
��0�r�

: (50)

Figure 7 shows solutions to this expression for tracers that
have bias factors of b � 1:4 and b � 2 at z � 0. It shows
that the flow of characteristics towards small scales is
enhanced if b > 1; and this is as expected, because infall
velocities are proportional to the bias factor [69].

Our model for the nonlinear correlation function of
biased tracers means that Eq. (28) becomes

 

1
 ��r; �� � �1
 b2
i �0�r0�r; ����

� exp
�Z �

0
d�0�b��0��2�r�0 �r; ��; �0�


 b��0�2�3�r�0 �r; ��; �0��
�
: (51)

Note that the linear theory solution of this equation may be
recovered directly by setting: �2 � �0

2; �3 � 0; and r0� �
r � r0 in the expression above. Whence,

 ��r� 	 b���2�0�r�e
2�; (52)

and this is the generalization of Eq. (34).

H. Comparison with simulations

Figure 9 compares our model for the nonlinear correla-
tion function, Eq. (51), with our measurements of (real
space) � for the dark matter (top) and haloes (bottom) at
z � 0 (left) and z � 0:5 (right). The halo measurements
are the same as those presented previously, except that now
we only show scales which are within �15h�1 Mpc of the
initial acoustic peak.

Our model for the dark matter, Eq. (28), matches the
measurements rather well; the solid lines are a substantial
improvement over linear theory (dashed lines). Our model
predicts that the peak has shifted to 105h�1 Mpc by z �
0:5, about a 1% effect; this is in good agreement with a
more rigorous calculation based on RPT [36]. By z � 0 our
model for �dm predicts that the peak has shifted to
98h�1 Mpc, roughly an �8 percent shift. This disagrees
by over a factor of 4 with the RPT calculation (apparent
and physical shifts included); this overshoot is not surpris-
ing, when given the fact that one-loop PT is known to
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overestimate the nonlinear power spectrum by tens of
percent on small scales, even though the one-loop
density-velocity divergence power spectrum does well at
reproducing the cross-power spectrum as measured from
numerical simulations at intermediate scales [68].

Turning now to the results for the dark matter haloes, we
see that Eq. (51) provides a very good description of the
measurements. We emphasize that there are no free pa-
rameters in this model. The only noncosmological parame-
ters in the model are the bias factors and as discussed
earlier, these are measured directly from the simulations
to make the predictions (see Sec. III B for our estimated
values for the halo mass bins listed in Table I).

When the bias factor is large, then the dominant non-
linear correction comes from �3 because it scales as b2.
For the dark matter, the nonlinear correction coming from
�1-loop

2 is the dominant one. The figure shows that our
model does not predict any significant trend with halo
mass, although this would likely change if we were to
include nonlinear bias (e.g. [34] suggest higher mass hal-
oes will show enhanced nonlinear effects). Our model
requires knowledge of how these nonlinear bias terms
evolve (i.e., the analog of Eq. (48)): this evolution is given
in [75,76].

V. CONCLUSIONS

We have used analytic methods and a very large en-
semble of numerical simulations to study how the position
of the baryonic acoustic peak in the two-point correlation
function, �, remnant of the tight coupling between photons
and baryons before recombination, is affected by the clus-
tering systematics: nonlinear mass evolution, bias, and
redshift space distortions; and we have examined these
effects as a function of cosmological epoch and as a
function of several trace particle types—i.e. halo samples
picked to evolve with constant comoving number density.

We have investigated a toy model for the evolution of �
(Sec. II) that was simply a Gaussian bump plus a power law
and we showed that, if nonlinear evolution was manifest as
a Gaussian smoothing of the true �, then the acoustic scale
was not well recovered through simply measuring the local
maximum—and this we described as an apparent shift of
the peak. However, if there was a change in the underlying
broadband power then this we said would lead to a a
physical motion of the peak.

We presented results from our numerical simulations
(Sec. III A). Our total simulated volume corresponded to
�105 Gpc3h�3, approximately the same size volume that
the proposed Stage IV, JDEM mission, ADEPT intends to
survey [43]. Therefore our results and analysis are of direct
relevance to that and similar missions. From these simula-
tions we measured � for the dark matter and haloes. We
found, at z � 0 in both real and redshift space, that the true
position and shape of the linear theory function did not
match well that of the measured data—there being an

enhanced signal on scales smaller than the unperturbed
peak scale.

We then performed a more careful analysis, and fitted
the correlation function data using the Gaussian smoothed
linear theory model. This provided a much improved fit. In
all cases the inferred peak positions from these models
were shifted to smaller scales, with typical shifts being of
the order �0:5–3:0h�1 Mpc—including a factor of �2
correction for the transfer function; the shifts were en-
hanced for the highest mass haloes/rarest objects and in
redshift space. However they were alleviated for higher
redshifts. We concluded that this was direct evidence for
‘‘apparent motion’’ of the acoustic peak. We also noted that
many of the recently proposed BAO reconstruction meth-
ods do attempt to account for this apparent shifting of the
peak.

We then showed that the smoothed linear model was not
a perfect fit to the data, in particular, for highly biased
haloes and their galaxies the fit was poor. Using the �2 test
we ruled out this model at the 99% significance.
Furthermore, through inspection of the residuals of the
fitting we found�10%–20% excess of amplitude on scales
smaller than the unperturbed acoustic scale. We concluded
that this was supporting evidence for the hypothesis that
nonlinear evolution was inducing a physical motion of the
acoustic peak. We characterized the physical shifts by
finding the local maximum of smooth polynomial fit to
the data and subtracting from it the linear model peak
position. We found that these shifts were of the order
�0:0–3:0h�1 Mpc for the samples considered. We noted
that these—which represent broadband tilting plus the
more pernicious mode-coupling effects—are not ac-
counted for in recently proposed schemes to correct the
signal in the power spectrum.

In our analysis of the simulation data we also presented
evidence that the simple Gaussian-based calculation for the
variance (Eq. (13)) of � that included the Poisson shot-
noise contribution provided a good description of the ex-
pected error on the measured � for haloes (Figs. 4 and 5).
In detail the Gaussian error model was found to under-
estimate the simulations for haloes at the present day.
Adding non-Gaussian terms from the trispectrum and bis-
pectrum may improve this further.

For future BAO missions that aim to use the power
spectrum of clusters, the expected sample variance esti-
mates that use the Gaussian plus Poisson model, will give
reasonable estimates of the variance. Directly extrapolat-
ing our analysis to make a statement about the variance
estimates for BAO galaxy surveys is complicated. Our
analysis has dealt with the clustering of the halo centers
and does not include the virial motions of particles/gal-
axies internal to the halo—adding in this layer of reality
may lead to increased variance. Furthermore, if galaxies
appear only in haloes, then using the galaxy number den-
sity estimate as the Poisson shot-noise error as is common
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practice, will underestimate the sample variance when
there is more than one galaxy per halo. We expect that
the effective number density of the haloes that host the
galaxies in the survey will be a better reflection of the
errors. We shall reserve this issue for future study.

We then presented an analytic model that was able to
capture the main observed effects from the nonlinear evo-
lution of the mass and bias. The model was based upon a
study of the gravitationally driven mean streaming motions
of particle pairs. These motions both smooth out the initial
peak, and, more importantly, shift it (Fig. 7). In essence,
our model simultaneously accounts for both the smoothing
and the shifting of the acoustic peak. We first discussed the
model in the context of the dark matter (Eq. (28)), and then
showed how it could be extended to describe the nonlinear
evolution of � for biased tracers, such as galaxies and
clusters of galaxies as well (Eq. (51)). For the dark matter,
our approach is less reliable than that of RPT (see [36] for a
discussion of this). However, we think it has substantial
merit, owing to the fact that it permits a simple description
of how the shifting of the acoustic peak is modified for
biased tracer particles. It also allows us to see the problem
from a different perspective. One could combine the
strength of both methods, by replacing the modeling of
the divergence of pairwise velocities by its RPT descrip-
tion, for that one would need to calculate the bispectrum
contribution to �3.

The measured shifts in the acoustic peak position for the
dark matter and the biased tracers, are qualitatively con-
sistent with the effects of the clustering systematics on the
power spectrum [34]. This owes to the fact that the power
spectrum and correlation functions are a Fourier transform
pair. Thus small scale damping and tilting of the linear
power spectrum can lead to both smoothing and tilting of
the correlation function, and the generation of the mea-
sured apparent and physical motion of the peak.

However, these recovered shift values appear substan-
tially larger than those currently quoted in the literature
from other analytic arguments [30]. One possible explana-
tion for this is that the divergence of the pairwise velocity
field is substantially more nonlinear than the density field
on these large scales (Fig. 8). Had we simply used linear
theory velocities in our analytic model then we would have
considerably underestimated the measured shifts. Using
perturbation theory was crucial (Eqs. (43)–(47)) for our
model to get the close agreement with the numerical
measurements.

If unaccounted for, the percent-level changes we have
measured in the acoustic scale will lead to biased determi-
nations of cosmological parameters (and see [11]).
However, the agreement between our model and the simu-
lations suggests that, although such pernicious shifts are
present, it may be possible to construct analytic tools that
allow us to correct for them. This is the subject of ongoing
work.
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APPENDIX A: THE DIVERGENCE OF INFALL
VELOCITIES IN PERTURBATION THEORY

This appendix provides expressions for �1-loop
2 �r� and

�3�r� from the standard PT.

1. �1-loop
2 in the standard PT

�1-loop
2 is given by Eqs. (44) and (45), and is an integral

over the 1-loop contribution to the velocity divergence-
density power spectrum. In the standard perturbation the-
ory this can be written [68]:

 

P��1-loop�k� � 2
Z
F2�k� q; q�G2�k� q; q�P0�jk� qj�

� P0�q�d
3q
 3P0�k�

Z
�F̂3�k; q� 
 Ĝ3�k; q��

� P0�q�d
3q; (A1)

where the functions F2�k; q� and G2�k; q� are the second
order, symmetric, density, and velocity divergence kernels
from PT [57]. These are written:

 F2�k; q� �
5

7



1

2
�k;q

�
k
q


q
k

�



2

7
�2
k;q; (A2)

 G2�k; q� �
3

7



1

2
�k;q

�
k
q


q
k

�



4

7
�2
k;q; (A3)

where �k;q � k � q=jkjjqj. The functions F̂3�k; q� and
Ĝ3�k; q� are the angle averages of the third order PT
density and velocity kernels. These may be written:

 F̂ 3�k; q� �
Z dq̂

4�
F3�k; q;�q�

�
1

24

�
6k6 � 79k4q2 
 50k2q4 � 21q6

63k2q4



�q2 � k2�3�7q2 
 2k2�

42k3q5
ln

��������k
 qk� q

��������
�

;

(A4)

SMITH, SCOCCIMARRO, AND SHETH PHYSICAL REVIEW D 77, 043525 (2008)

043525-18



 Ĝ 3�k; q� �
Z dq̂

4�
G3�k; q;�q�

�
1

24

�
6k6 � 41k4q2 
 2k2q4 � 3q6

21k2q4



�q2 � k2�3�q2 
 2k2�

14k3q5
ln

��������k
 qk� q

��������
�
: (A5)

2. �3�r� in the standard PT

�3�r� is related to the density-velocity divergence-
density bispectrum through two Fourier transforms
(Eq. (47)). In the standard PT this bispectrum is:

 B����k1;k2; k3� � 2F2�k2; k3�P0�k2�P0�k3�


 2G2�k1;k3�P0�k1�P0�k3�


 2F2�k1; k2�P0�k1�P0�k2�: (A6)

In order to proceed we require some further pieces of
information. First, the closure relation for k-modes gives
us k3 � �k1 � k2. Second, statistical homogeneity and
isotropy means that the bispectrum can be written as a
function of three variables: the length of two sides of a
triangle and the angles between them, i.e. we should at the
end of our calculation be able to write B����k1;k2; k3� �
B����k1; k2; �12�. Third, the addition theorem for spherical
harmonics allows us to rewrite the angles between any two
vectors in terms of their own angles in some arbitrary
Cartesian system:

 cos�12 � cos�1 cos�2 
 sin�1 sin�2 cos��1 ��2�;

(A7)

where the angle between the two vectors k1fk1; �1; �1g and
k2fk2; �2; �2g is �12. Some lengthy algebra then leads us to
the following expression for �3�r�:

 

�3�r� � 2
�Z

d3kP0�k�j1�kr�k
Z
d3qP0�q�

��
q
k
k̂ � q̂
 1

�
2G2�k; q�

jk
 qj2
�
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�
1
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; (A8)

where we have introduced the useful auxiliary function

 �m
‘ �r� �

Z
d3qP0�q�j‘�qr�q

m: (A9)
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