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We construct a class of scalar field models coupled to matter that lead to the dependence of masses and
coupling constants on the ambient matter density. Such models predict a deviation of couplings measured
on the Earth from values determined in low-density astrophysical environments, but do not necessarily
require the evolution of coupling constants with the redshift in the recent cosmological past. Additional
laboratory and astrophysical tests of �� and ��mp=me� as functions of the ambient matter density are
warranted.
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I. INTRODUCTION

Perhaps the most astonishing fundamental observation
of the last decade was the discovery of dark energy. So far,
all cosmological data are consistent with the simplest
possibility: dark energy is just a new fundamental constant
of nature, which does not evolve over cosmological red-
shifts. On the other hand, it is intriguing to think about
alternative explanations associated with this profound
change in infrared physics. The most straightforward way
of implementing such a change is the introduction of a new
ultralight scalar degree of freedom associated with quin-
tessence [1]. The coupling of this scalar field to matter may
be the source of new cosmological phenomena such as an
apparent ‘‘breakdown’’ of Lorentz invariance connected to
the cosmic microwave background frame, the existence of
a ‘‘fifth force’’ mediated by scalar exchange, or a change of
couplings and masses with time. Thus, the search for these
exotic effects acquires a new actuality in the ‘‘dark en-
ergy’’ age.

A potential hint on the difference between the laboratory
values of the fine-structure constant � [2,3] and the one
derived from quasar absorption spectra at high redshifts
[4], ��=���0:6� 10�5 (z� 0:5–3), has triggered a
series of new phenomenological and theoretical studies
of ‘‘changing couplings’’ [5–16]. Subsequent studies that
employed the same ‘‘many multiplet method’’ have shown
�� consistent with zero with the same accuracy [17]
(however, a critical discussion of this result is found in
[18]). In a recent development, the comparison of H2

spectra obtained in the laboratory and at high redshifts,
yielded the first hint of a possible change of mp=me at the
three sigma level [19], whereas the analysis of the inver-
sion spectrum of ammonium at z � 0:68 led only to an
upper limit on ��mp=me� [20]. Null results for time evo-
lution of couplings are reinforced by the chemical compo-
sition of Oklo rocks [21] and meteoritic abundances of
rhenium, that provide stringent constraints and go back to
z� 0:2� 0:4 [22,23]. Finally, a look into the much deeper
past, to the time of the big bang nucleosynthesis (BBN)

[24–26], leads to the conclusion that the couplings could
be different from present day values by no more than a few
percent at that time.

Despite the controversial status of the nonzero claim for
��=� there have been a significant number of attempts
[5–16,27–29], to build simple models that could account
for possible effects of order O�10�5�. Theoretical models
of the variation of other couplings were discussed in
Refs. [25,30]. The simplest Lagrangian that enables the
variation of � was written down by Bekenstein [27], and
involves the coupling of an ultralight scalar field to the
kinetic term in the electromagnetic Lagrangian,
�F

’
M�
F��F

��, where M� is a large energy scale, compa-
rable to the Planck scale and �F is a constant. An attractive
consequence of this interaction is the absence of the evo-
lution of the coupling in the radiation dominated epoch
after the annihilation of electron-positron pairs [27]. The
drift of � in time comes about later during the matter
dominated epoch due to a nonzero, O�10�4 � 10�3�, elec-
tromagnetic contribution to the nucleon mass, which sup-
plies a coupling of ’ to the baryon energy density. The
time evolution of �, including the sign, is calculable in
terms of one free parameter, ��F=M��2, and the result is a
linear dependence of � on the logarithm of the redshift in
the matter dominated epoch. Unfortunately, between red-
shifts z� 1 and z � 0, ��=� is predicted to be far too
small in the minimal model of Bekenstein; several orders
of magnitude below the modern observational capabilities,
once the fifth-force constraints on �F=M� are taken into
account. In attempt to resuscitate this model, it has been
suggested that a coupling to dark matter [8,9,28] and/or a
self-interaction potential [10,11] of the scalar field can
drive its evolution in a much more efficient way than the
baryon energy density. Inescapably, these models have
more parameters (i.e. a nearly arbitrary potential V�’�),
which results in a loss of predictivity. Thus almost any
redshift dependence for ��z�, including oscillatory behav-
ior, is possible, and no concrete predictions can be obtained
from these theoretical models. If the experimental limits on
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�� are enforced, it has proven to be difficult to remain
consistent with a substantial change in the fine structure
constant at z� 1 and satisfy Oklo and meteoritic con-
straints. Still, fairly large classes of models (see e.g.
Refs. [12,14–16]) are known to pass these requirements.
On the downside, if V�’� supplies the driving force for the
scalar field, there are no convincing arguments why ’
would not evolve deep into the radiation domination epoch
resulting in vastly different couplings during the BBN. In
addition to these specific difficulties, there is a generic
naturalness problem that all such models suffer from: it
is difficult to argue that the mass of ’, as well as other
terms in V�’�, are protected to the scale of 10�33 eV to
allow for the requisite late evolution, and at the same time
allow the ’-field to have significant couplings to matter
fields. Any conceivable loop effect or nonperturbative
QCD vacuum condensate would tend to induce mass pa-
rameters about 20 orders of magnitude in excess of
10�33 eV (See e.g. [31]).

In all models of changing couplings discussed so far in
the literature, the temporal change of � dominates over the
possible spatial variation of �. Although some suggestions
were made that the spatial variation may dominate over
temporal variations [32], no explicit models where found
to date. In Bekenstein-type models, the spatial variation of
couplings is caused by matter inhomogeneities and thus
follows the profile of the gravitational field. If the coupling
of the scalar field to matter is not stronger than the matter-
gravity coupling, one expects the change in ’ to be less
than the variation of the metric. For example, the difference
between coupling constants on the surface of the Earth an
in orbit is not going to exceed 10�10 and in practice will be
much smaller once fifth-force constraints are imposed. In
this paper, we show that such a conclusion is not generic,
and there is a whole class of models where spatial varia-
tions can be more pronounced than the cosmological var-
iations in the recent past, opening new possibilities for
searching for �� and �m as functions of the matter
density.

A key to this proposal is to choose the couplings of a
scalar field to matter to be much stronger than gravita-
tional. At first glance this would appear to only worsen the
problem of a fifth force induced through scalar exchange.
However, this might not happen if the matter density itself
leads to the effective suppression of the linear scalar field
coupling to matter [33,34], and/or the range of the scalar-
mediated force becomes shorter than the one needed for
conventional fifth-force experiments [35–38]. Models that
escape prohibitive fifth-force constraints may predict spa-
tial variation of � and mp=me that exceed recent temporal
variations. As we will show in the remainder of this paper,
such constructions can be achieved if the dynamics of the
scalar field in low-density environments is determined by
its self-potential, while in regions of large overdensities,
the dynamics of’ is set by its coupling to matter. In a large

subclass of such models where the matter-’ coupling is
much stronger than gravitational, the temporal evolution
happens on the time scales that are much shorter than
cosmological. In these models, the global temporal evolu-
tion of the scalar field could be finished a long time ago,
and on average the ‘‘cosmological’’ values of masses and
coupling constants remain constant in space and time. We
denote the values of couplings and masses in rarefied low
density regions as f�r;mrg. The value of the coupling
constants on Earth or in any high-density environment
can be different and are labeled as f�d;mdg. In the next
sections we discuss the essential features of the model,
determine observational constraints on its parameters and
argue that independent tests of �d � �r between different
points in space are indeed warranted.

II. SCALAR FIELD MODELS OF ����AND m���

The starting point for our analysis is the matter-gravity-
scalar field action,
 

S� �
Z
d4x

�������
�g
p

�
�
M2

Pl

2
R�

M�
2

2
@��@��� V���

�
X
i

BFi���
4

F�i���F�i���

�
X
j

	 � jiD= j � Bj���mj
� j j


�
; (2.1)

which can be viewed as a generalization of a scalar-tensor
theory of gravity. In this expression, MPl � �8�GN�

�1=2 is
the reduced Planck mass, � is a dimensionless scalar field
withM� being the analogue of the Planck mass in the scalar
sector. The functions BFi��� give the �-dependence to the
gauge couplings in standard model (SM), and the sum is
extended over all SM gauge groups.  j represents standard
model fermions that are coupled to � via the functions
Bj���. After performing a �-dependent rescaling of the
matter fields, one is allowed to remove the �-dependence
of the kinetic terms for the SM fermions  i and keep only
couplings to the mass terms. If needed, the interaction (2.1)
can be generalized further to include Higgs bosons, cold
dark matter particles, etc.

Among couplings to the SM model fields, the couplings
to quarks, gluons, photons and electrons are the most
important. At lower energies, we can abandon the quark-
gluon description in favor of an effective coupling to
nucleons and reduce (2.1) to a more tractable form,
 

S� �
Z
d4x

�������
�g
p

�
�
M2

Pl

2
R�

M�
2

2
@��@��� V���

�
BF���

4
F��F��

�
X

j�n;p;e

	 � jiD= j � Bj���mj
� j j


�
: (2.2)
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Since we are going to consider couplings of � that are
essentially much stronger than gravitational, the stability
of the model will require that V��� and the Bi��� functions
have a minimum with respect to �. In what follows, we
shall adopt the following ansatz,

 V��� � �0 �
1
2�2����0�

2 � . . . ;

Bi��� � 1� 1
2�i����i�

2 � . . . ;
(2.3)

where ellipses stand for cubic, quartic etc. contributions
around the minima. Here �i, �0 and �i are arbitrary
dimensionless numbers; �0 and �2 have dimensions of
	Energy
4 and we are tempted to choose �0 to be equal to
the current dark energy density to ‘‘solve’’ the dark energy
problem.

A further simplification of the quadratic ansatz comes
from the assumption that the proton and neutron Bp�n�
functions are mostly induced by the gluon B-function,
and thus are approximately equal. With these simplifying
assumptions, we can take

 �n ’ �p � �m; �n ’ �p � 1; �0 � 0: (2.4)

The normalization of �p�n� to one can be attained by
rescaling M�. In principle, a negative value for � is also
possible, but in this section we shall restrict our discussion
to positive �’s. Of course, the relations (2.4) are only
approximate, and possible violations at the �1–10 per
mill level are naturally expected due to the nonzero quark
and electromagnetic content of nucleons. The choice of
�0 � 0 can always be achieved by a constant shift of �.
The ansatz (2.3) and (2.4) is very similar to the Damour-
Polyakov model [34] (see also [33]), where all couplings to
matter fields exhibit the same minimum. In the same vein,
we assume the same minimum �m for BF��� function.
There are two important differences in our approach com-
pared to the Damour-Polyakov models: we take M� to be
much smaller than the Planck mass, and introduce a self-
interaction potential that has a different minimum than the
minimum of the Bi��� functions.

In this section we disregard higher-order nonlinear cor-
rections to Veff , postponing their discussion to Sec. IV.
Furthermore, we assume a region of relatively uniform
matter density �. In such regions, the scalar field equation
of motion takes the following form

 M2
����

@Veff

@�
� 0; (2.5)

where the effective potential is given by

 Veff � �0 �
1
2�2�

2 � 1
2����m�

2�: (2.6)

This potential creates the minimum for the scalar field at

 �min � �m
�

���2
; (2.7)

and the physical (canonically normalized) excitation ’

around this minimum has a mass

 m2
eff��� �

�2

M2
�

�
�

M2
�

�
1

	2
eff

: (2.8)

By definition, the longest range for the ’-mediated force is
achieved in vacuum at � � 0. It is instructive to present a
numerical formula for 	eff at �� �2:

 	eff � 7� 10�3 cm�
M�

1 TeV

�
1024 GeV cm�3

�

�
1=2
;

(2.9)

which shows that for an extreme case with a weak-scaleM�
and terrestrial matter densities the range of the force falls
under 1 mm.

If the spatial extent of the mass distribution is much
larger than the Compton wavelength of the physical ex-
citations of � the effective interaction with a ‘‘test’’ nu-
cleon takes the following form,
 

Lint � �mN
�NN
�
1�

�2
m�2

2

2��2 � ��2

�
’
M�

�m�2

��2 � ��
�

’2

2M2
�

�
; (2.10)

from where we can read a �-dependent mass of a nucleon,

 mNeff � mN

�
1�

�2
m�2

2

2��2 � ��2

�
; (2.11)

and the scalar-field-corrected Newtonian interaction poten-
tial between two nucleons separated by distance r,

 U�r� � GN
m2
N

r

�
1� exp��meffr� �

2M2
Pl

M2
�

�2
m�2

2

��2 � ��
2

�
:

(2.12)

Perhaps the most interesting case to consider is �2 � �
for low density environments, such as e.g. the interstellar
medium, and �2  � for high density environments such
as stars and planets. In that case, the change in the nucleon
mass and the fine structure constant can be expressed as

 

�mN

mN
�
mNr �mNd

mN
’
�2
m

2
;

��
�
�
�r � �d

�
� �

�F�
2
m

2
;

(2.13)

and we assume that �2
m and �F�2

m are much less than one.
Notice that �F can be as large as �F �O�100� without
violating the assumption that �n ’ �p ’ 1.

III. EXPERIMENTAL CONSTRAINTS ON THE
MODEL

All experimental constraints on the model described by
(2.10) can be divided into two broad categories. The con-
straints coming directly from the quadratic couplings of �
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to matter to a large extent do not depend on the position of
the minimum of � and on whether this minimum can be
reached for a realistic size of an overdensity in question.
The second group of constraints follows from the linear
coupling of � to matter, which are very sensitive to the
position of � and on the size of the overdensity.

A. General remarks on chameleon-type models

Before we proceed with the analysis of our model, we
would like to make several remarks regarding chameleon
models. It has been shown that an appropriate choice of
self-interaction potentials [35] relaxes gravitational and
astrophysical constraints on the density dependent inter-
actions of the scalar field [39] caused by a shift in the field
�. Density dependent couplings could in principle cause a
shift in the field value as well as its mass. However, the
magnitude of the shift will depend sensitively on the local
density and the length scale over which the shift occurs.
For the chameleon mechanism to work, we must require
that @Veff=@�� M2

�R�2
� or m2R2 � 1, where R is the
characteristic scale of the density enhancement and 
� is
shift in � from the low density (cosmological) solution of
� to the local value. When this condition is satisfied, the
field and its mass inside the overdensity and away from the
boundary will be determined by the solution of a spacially
homogeneous equation @Veff=@� � 0.

To begin with, let us consider models with a linear
coupling to density

 Veff � V�’� � ��’; (3.1)

where we use the canonical normalization for the kinetic
term of ’ and choose � � M�1

� . In chameleon models
with a quartic potential, V�’� � 	’4, the shift in ’ is tiny
as long as 	 is not tremendously small. The effective mass
when @Veff=@’ � 0 is 	1=6����1=3 and for 	�O�1� is far
greater than R�2

� . In this case, as for all stiff potentials, the
local environment determines the field dependent cou-
plings. Another example is the quintessencelike potential
V�’� � M5=’ with M� 10�24MPl. The cosmological
background solution for ��M�1

Pl gives ’�MPl so that
the potential and cosmological density are of the same
order of magnitude. Naively, the local solution of
@Veff=@’ � 0 would yield ’2 � M5MPl=�� � 10�27M2

Pl
taking �� � 10�93M4

Pl. However in this case, the gradient
term in Eq. (2.5) dominates and the correct solution for the
local value of � is a small shift from the background value
of order 
’� ��R2

�=MPl or 
’� gR�MPl � 10�9MPl

where g is the local acceleration on the Earth’s surface.
In this case, the chameleon mechanism is not operative. It
can be restored if one adds a constant, M4 to V�’�. By
doing so, the mass scale, M, can be made significantly
smaller M� 10�30MPl [36] and now the background so-
lution for ’ yields a very small value ’� 10�15MPl. In
this case, the gradient terms can be safely neglected and the
local solution for ’ is indeed given @Veff=@’ � 0. A

similar argument can be made to show that the local
density has virtually no effect on the background field
value for potentials of the form V�’� � ��4 ln�’=MPl�
with �� 10�3 eV that was discussed recently in [40].

B. Exact solutions for spherical (under)overdensities

The model based on the effective potential (2.6) consid-
ered in this paper is simple to analyze, as the field equa-
tions are linear. This allows us find an analytic solution for
a spherical region of constant density, and consider both
large and small M� limits. The general form of the solution
for � as the function of radius for a spherical region of
density �1 of maximal extent R surrounded by the infinite
region of density �2 takes the following form:

 ��r� �
�
�1 �

A
r sinh�m1r�; r < R;

�2 �
B
r exp��m2r�; r > R;

(3.2)

where the constants of integration

 A �
��2 ��1��1� Rm2�

m2 sinh�m1R� �m1 cosh�m1R�
;

B � exp�m2R�

�
��2 ��1��sinh�m1R� � Rm1 cosh�m1R��

m2 sinh�m1R� �m1 cosh�m1R�
;

(3.3)

are uniquely determined by boundary conditions, for which
the physical choice is ��1� � �2 and �0�0� � 0. In these
formulas, m1, m2, and �1, �2 are the mass and vacuum
expectation values calculated according to (2.8) and (2.7)
for � � �1, �2. Equation (3.2) is a generalization of the
solution previously found in Ref. [39].

Adapting this solution to the case of �1 � �� and R �
R�, it is easy to see that in the limit of large M�, or more
precisely m1R� ’ �

1=2
� M�1

� R�  1, the solution simpli-
fies to a quadratically rising function on the inside and a
1=r-falling function on the outside (for simplicity, we also
take �2, �2 ! 0 leading to �2 � 0),

 ��r� �

8<
:��1�

m2
1r

2

6 �
m2

1R
2

2 �; r < R;

�1
m2

1R
3

3r ; r > R:
(3.4)

It is easy to see that this solution exactly follows the
gravitational potential profile, with �1 � �m. The change
in the nucleon mass between r � R� and spatial infinity is
 

�mN

mN
�

1

2
��2�1� ��2�R���

� �gR�� �
M2

Pl�
2
m

M2
�

� �10�9 � 10�8� �
�2
mM

2
Pl

M2
�

: (3.5)

which is exactly what one anticipates in a linearized scalar-
tensor theory of gravity with the relative strength of spin-0
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to spin-2 exchange given by 2M2
Pl�

2
m=M

2
�. Furthermore,

this limit, namely �1=2
� M�1

� R�  1 is guaranteed in our
model as long as M� > 1013 GeV. This regime is of no
further interest to us in this paper, as it has been inves-
tigated in a number of previous publications.

The opposite regime is achieved when m1R� 1, in
which case the interior solution quickly adjusts to � �
�1 for r < R. Moreover, if in addition m2R� 1, the
spherical symmetry of the problem becomes irrelevant,
and the solution degenerates into � being frozen to its
respective minima, �1 and�2, everywhere in space except
for a small region near the surface separating two density
regions. Defining this surface as z � 0, we can write down
a simplified form of (3.2) which now takes the form:

 ��x� �
��1 �

��2��1�m2

m1�m2
exp�m1z�; z < 0;

�2 �
��1��2�m1

m1�m2
exp��m2z�; z > 0:

(3.6)

A smooth boundary would lead to an adiabatic adjustment
of� between its minima provided that the Compton length
of the scalar is much less than the characteristic scale of
density change. For the atmosphere this scale is given by
�atm � 1=jd log��atm=���=dzj � 1 km, and the adjust-
ment of the scalar field will occur as long as

 	eff��atm�  �atm; (3.7)

ensuring that in a terrestrial laboratory environment � is
exponentially close to �min (2.7). Neglecting the small
�2-proportional contribution to the scalar field mass, we
find that the condition (3.7) implies that

 M�  1 km� �1=2
atm ���! M�  109 GeV (3.8)

Clearly, this choice of M� selects scalar models that are
significantly more strongly coupled than MPl-normalized
models and therefore the behavior of � on Earth will
depart drastically from the gravitational potential �g00 �
1. Next we explore whether the choice of strong coupling
(3.8) can survive gravitational and astrophysical
constraints.

C. Astrophysical constraints

First we discuss the astrophysical constraints on the
model which employs a �2 coupling to photons and nu-
cleons (the linear coupling is suppressed by ��2=�1�

2 and
is assumed to be  1). It is clear that the quadratic
coupling will be less severely constrained than a linear
coupling by the thermal emission rate of�-quanta from the
hot interiors of stars. Indeed, the overall emission rate
scales as M�4

� rather than f�2
a as one would routinely

find in an axion-type model. As a result, instead of a lower
limit to fa or order 109 � 1010 GeV, we expect to find a
much more relaxed bound on M�, of the order of the
electroweak scale.

Let us calculate the emissivity of � quanta due to pair
annihilation of photons. The amplitude for this process is

induced by the �F�
2F��F

�� term in the Lagrangian,
leading to a cross section for this process in the center of
mass frame,

 �!�� �
�2
F

M4
�

!2

32�
: (3.9)

This cross section results in an energy loss (Energy/vol-
ume/time) for a thermalized gas of photons at the level of

 �!�� � n2
h2!�!��i �

��3��
63

�2
FT

9

M4
�

’ 0:06�
�2
FT

9

M4
�

: (3.10)

Comparing this to the typical limit on � � �x�core <
10�14 MeV5 that follows from the constraints on the emis-
sivity of light particles in cores of supernovae [41],
 

�x & 1019 erg g�1 s�1 at �core � 3� 1014 g cm�3;

Tcore � 30 MeV; (3.11)

we obtain a typical sensitivity to the coupling of � to
photons,

 M��
�1=2
F * 3 TeV: (3.12)

This limit is admittedly not very precise, as it is quite
sensitive to the temperature of the core, and more conser-
vative assumptions about Tcore may result in relaxation of
(3.12) by a factor of a few. Other channels of�-production
from light species, such as e! e�� or e�e� ! ��
will be further suppressed by the smallness of electromag-
netic couplings or by the ratio of me=T.

The constraint (3.12) is not far the limits on the 6-
dimensional Planck scale M6 in models with two large
extra dimensions where gravity is allowed to propagate
[42–44] in extra dimensions. This is not a total coinci-
dence: in models with two large extra dimensions the total
emissivity of Kaluza-Klein gravitons also scales as M�4

6 .
We note that due to the high power of temperature in the
emission rate (3.10) the supernovae constraints are ex-
pected to be superior to other astrophysical constraints
from energy loss mechanisms derived from the consider-
ations of red giants, old neutron stars, etc. (See Ref. [41]
for further details).

Similar considerations can be applied to the bremsstrah-
lunglike emission process N � N ! N � N ����,
where again pairs of � are emitted. This process is im-
portant because the density of neutrons inside the core is
rather large. Here, instead of performing a detailed calcu-
lation which is perhaps not warranted, we use a simple
Weizsacker-Williams-type estimate for the energy loss.
Specifically, we estimate the probability of energy loss in
a collision of two nucleons to be the product of elastic
nucleon-nucleon cross section �NN and the probability of
an emission of certain amount of energy into �-quanta by
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an initial or final state nucleon,

 hE�vi �
1

12�4

T3m2
N

M4
�

�
T
mN

�
1=2
�NN; (3.13)

which leads to an energy loss of

 �NN!NN�� � �NN �
n2
NT

7=2m3=2
N

12�4M4
�

; (3.14)

where and nN is the number density of neutrons ’ �=mN .
For the relevant range of energies �NN can be taken on the
order of 25 mbn [44]. Using the same parameters as before
(3.11), we arrive at the constraint on M�,

 M� * 15 TeV; (3.15)

which is very similar to (3.12). With these constraints, we
conclude that the effective range of ’-force in terrestrial
environment (2.9) can indeed be as short as a millimeter.

D. Gravitational force constraints

Gravitational force constraints on the model are by far
the most complicated as they depend very sensitively on
the effective distance range this force is probed at.

Could the laboratory measurements of the gravitational
force improve over the astrophysical bounds (3.12)? First,
we look at the exchange by two quanta of ’ that does not
depend on �min. Such an exchange leads to a 1=r3 poten-
tial,

 V � �
1

r3

m2
N

64�3M4
�

; (3.16)

which is limited by recent searches for deviations from the
gravitational 1=r behavior at short distances [45].
Specifying the constraints on phenomenological coeffi-
cient �3 from Ref. [46] to our model prediction (3.16),
we arrive at
 

V � ��3
GNm2

N

r
1 mm2

r2 with

�3 < 1:3� 10�4 ���! M� > 2 TeV; (3.17)

which is very close to the astrophysical bounds (3.12) and
(3.15). We note again that the transition from a 1=r to a
1=r3 potential that may occur in our model at short dis-
tances is very similar to the transition expected in theories
with two large extra dimensions.

Constraints from the Yukawa part of (2.12) are some-
what less straightforward to implement. For a range of
O�10�2 � 1 cm� in a medium, the constraint on its
strength [46] specialized to our case with the use of
(2.12) takes the following form

 

�2
mm

2
N�2

2

4�M2
��

2
& few� 10�40; (3.18)

or

 

�2
m

10�6
�

�
TeV

M�

�
2
�

�
�2

eV4

�
2

& 1012 � 1013; (3.19)

where we took � ’ 10 g=cm3 for the density of molybde-
num used in experiments of Ref. [45]. Perhaps an even
more convenient from of the same constraint arises when
we trade �1=2

2 =M� for 1=	vac, the range of �-force in the
vacuum,

 

�2
m

10�6
�

�
M�
TeV

�
2
�

�
km

	vac

�
4

& 103 � 104: (3.20)

Constraints (3.19) and (3.20) do not look intimidatingly
stringent, and indeed can be satisfied by an appropriate
choice of M�, �m and �2. It is also important to note that
these constraints can be satisfied with a relatively short-
range�-mediated force in vacuum, that could be shorter in
range than e.g. typical distances within the solar system.

Clock comparison constraints and constraints on the
variations of couplings are of particular interest to us in
this paper. The now classic comparison of atomic clocks at
an altitude of Rorbit � 104 km with clocks on the ground
have produced the limit of 2� 10�4 on possible deviations
from predictions of general relativity [47] (as quoted in the
review [48]),

 

j�!Hj

!H

& 2� 10�4 � j��R�� ���Rorbit�j � 5� 10�13;

(3.21)

where �!H is the extra frequency shift of the hydrogen
maser added to the shift predicted by general relativity, and
��r� is the gravitational potential at distance r from Earth’s
center. In our model, the difference between clock fre-
quency on the ground and in orbit would receive an addi-
tional correction from the difference of coupling constants
and masses caused by ��:

 

�!H

!H
�

���4m2
egpm�1

p �

�4m2
egpm

�1
p

� �

�
��2

2

�
� �1� 2�e � 4�F�; (3.22)

where for simplicity we assumed the same scaling for
�QCD and quark masses with � which keeps the proton
g-factor gp fixed as a function of distance. The density of a
medium surrounding the satellite is certainly very low, and
thus it is tempting to take ��2 � �2

m. Note however, that
if the in-medium range of the force is much shorter than a
typical scale of a satellite, Lsat � 1–10 m, with its average
density being Msat=L

3
sat � 100 kg=m3 � 0:1 g=cm3, the

scalar field inside a satellite will roll back to its in-medium
value, resulting in an exponential suppression of ��.
Therefore, we expect the clock comparison constraint to
be at the level of
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 �2
m exp��2Lsat=	eff� � j1� 2�e � 4�Fj & 10�12;

(3.23)

noting that the precise amount of exponential suppression
would also depend on the position of clocks inside the
satellite. Although very powerful forM� * 108 GeV when
the exponential factor is of order one, Eq. (3.23) is not
particularly constraining for an interesting range of
1 TeV<M� < 100 TeV, as the value of �-field inside
the satellite would be very close to that on the surface of
the Earth.

Straightforward constraints on �2
m can be deduced from

the comparison of coupling constants measured in cosmo-
logical settings and in the laboratory. Interpreting the null
results of [17], j��=�j< 10�5, in terms of parameters of
our model, we obtain the constraint

 j�Fj�
2
m < 2� 10�5: (3.24)

However, should one accept the criticism expressed in
Ref. [18], and interpret the result in [4] as a nonzero value
of ��, then one predicts �F�2

m � 10�5, and the sign of �F
comes out to be positive (for positive �F, the low density
environments have a larger coefficient in front of F2

�� and
therefore a smaller value of � in agreement with [4]). In a
similar fashion, the indication of a nonzero ��me=mp� [19]
can be interpreted as a nonzero value for the ��e � �p��2

m

combination. Another interesting possibility occurs for a
choice of parameters when �� � �2 * �qso, where �qso is
the average density in a quasar absorption system. In this
case, not only does one expect a variation in the couplings
measured in these systems, but one would expect a shift in
� from one absorption system to another as function of
their density.1 An additional analysis of data in Refs. [4,17]
searching for ���� correlation might be warranted.

It is also very important to stress that the Oklo constraint
on �� does not carry any weight in our model. Indeed, the
Oklo phenomenon obviously occurred in large density
environment, which means that � � �m with good accu-
racy back at the time the Oklo reactor was active, as well as
it is now. As to the constraints from meteorites [22],
similarly to Eq. (3.23), one expects an exponential sup-
pression of the effect by the density of meteorite, as long its
size is larger than the �-field penetration length, Lmet >
	eff .

E. Cosmological constraints

Cosmology can constrain the presence of new degrees of
freedom in the Universe. Big bang nucleosynthesis can in

principle impose a constraint on a number of new relativ-
istic degrees of freedom that carries a comparable amount
of entropy as photons or neutrinos. It is very easy to see,
however, that even if � is initially thermally excited, its
decoupling occurs well before the neutrino decoupling
because M�2

�  GF. Since traditionally the BBN con-
straints are expressed in terms of the number of ‘‘new
neutrino species’’, we can immediately conclude that �
contributes to this number as 4=7 or less and thus cannot be
ruled out on the grounds of light element abundances [26].
It is interesting to note that the position of � during the
time of BBN is close to �m, as the energy density of
nonrelativistic matter during BBN is comparable to the
terrestrial � making the BBN sensitivity to �� far less
than (3.24).

The late time evolution of � can be rather uninteresting.
The scalar field remains at� � �m until the moment when
� drops below �2, after which it settles towards � � 0.
Since M�  MPl, the vacuum mass m0 � �1=2

2 =M� is
much larger than the Hubble scale at which ���2 and
any oscillations around the minimum are very efficiently
damped. Thus, the transition from � � �m to to � � 0
was completed when ���2 � eV4 at redshifts z�
103–104. The amount of energy released in such a transi-
tion is ��2

m�2, and has a negligible effect on the expan-
sion history, as �2

m is constrained to be much less than 1.
An interesting possibility emerges when �2 is compa-

rable to the matter energy density at redshifts z� 1. Then,
the evolution of the coupling constants in time towards the
minimum at � � 0 would occur on cosmological scales,
while remaining frozen at � ’ �m on galactic scales
where the matter energy density is larger than the average
cosmological energy density by many orders of magnitude.
This choice of parameters serves as a concrete realization
of scenario proposed in [50], where it was suggested that
the cosmological evolution of � may proceed in some
sense independently from the evolution of � in higher
density environments (see also [51] for a related discussion
of �GN as a function of cosmological environment). In our
model, with �2 � �c, cosmological evolution of � would
not proceed indefinitely into the future but only up to the
moment when � reaches its low-density minimum at zero.
Once again, this behavior is possible only because of the
increased coupling strength to matter, M�  MPl.

IV. NONLINEAR MODELS

In this section we reintroduce nonlinear corrections to
Veff���. In fact, several of such models were discussed in
the ‘‘chameleon’’ literature [35–38], where potentials
Veff � V��� ��� with different choices of V��� were
extensively investigated. As we saw earlier, the quadratic
coupling of � to matter allows one to escape many strin-
gent constraints, and we intend to keep this feature in this
section. To make our discussion more concrete, we limit
the form of the potential V��� to have only even powers of

1In this sense, the observed scatter in � may be real and due to
a local environmental effect. In this case, a variation of the
density within the absorber. A related solution (which does not
require new physics) accounted for the scatter through another
environmental effect, namely, the variation of the isotopic abun-
dance of Mg [49].
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� and require the coupling to matter to have the same
extremum,

 Veff �
1
4�4�

4 � 1
2�p�2 � q���

2 ��0: (4.1)

Such a Lagrangian may result, for example, from a discrete
symmetry �! ��. To ensure overall stability, we must
choose �4 to be positive. p and q are taken to be �1, and
we maintain �2 > 0. Another way to interpret the model
(4.1) is to say that we allow for ‘‘tachyonic’’ value of the
mass of � in (2.8) but ensure an overall stability of the
potential by introducing positive �4 contribution. The
cosmological consequences of late time phase transitions
were explored in [52].

The most interesting model of this type arises from the
choice of parameters that allow for the spontaneous break-
ing of the discrete symmetry, p � �q.

 p � �1;

q � �1

)

�
h�2i � 0 for � > �c � �2;
h�2i � ��1

4 ��2 � �� for � < �c � �2:

(4.2)

It is of course tempting to choose the critical value of
matter density �c in excess of the average cosmological
energy density, so that on average there is a breaking of the
discrete symmetry in cosmological environments.
However, in matter overdensities of sufficient spatial ex-
tent the symmetry is restored, leading to the erasure of the
cosmological vacuum expectation value h�i. The differ-
ence between masses and couplings between dense and
rarefied environments are given by

 

�r � �d
�

� ��F
���2

2�4
;

mr �md

m
�
���2

2�4

(4.3)

In the broken phase (low-density environments), there is
a linear coupling of the Higgs field �� h�i to matter, that
creates a contribution to the Newtonian force between two
test particles,
 

U�r� � GN
m2
N

r

�
1� exp��meffr� �

2M2
Pl

M2
�

�2 � �
�4

�

for � < �c � �2; ; (4.4)

 m2
eff �

�2 � �

M2
�

: (4.5)

Near the ‘‘phase transition,’’ � ’ �2, the range of the force
mediated by ’ becomes infinite. In the unbroken phase,
only the quadratic coupling of � to matter survives, which
as we saw before, significantly relaxes all constraints on
the parameters. In other words, the constraint (3.17) is still
operative while (3.19) is no longer applicable, provided
that �2 <��.

As a side remark, we note that there is another interest-
ing spin-off of (4.1) with the following choice of parame-
ters: p � �q � 1 and �star & �2 & �core, where �core is a
typical density inside a stellar core during a supernovae
explosion. In this setup the scalar field keeps its zero
expectation value everywhere except for the extremely
dense environments where it is allowed to roll to h�2i �

0. Therefore, for this choice of model parameters, there are
no consequences for the terrestrial and cosmological tests
of ��. There is, however, an interesting possibility that the
nucleon mass experiences a shift during the supernova
explosion, which in turn may influence the energetics of
the explosion and affect the total luminosity (see e.g. [53]
where the linear change in strong coupling is discussed in
connection with supernova explosions). If the couplings of
neutrons and protons to �2 are different, this model can
enhance the environmental dependence of the total SN
type Ia luminosity, thus affecting the accuracy with which
cosmological parameters can be extracted from supernovae
data. The detailed discussion of such possibilities falls
outside the scope of our paper.

V. DISCUSSION

A. On a possibility for new tests of ���� and m���

One possibility to search for the environmental change
of masses and couplings caused by a change in density is to
try and recreate a low-density environment in the labora-
tory. The best quality vacuums available today achieve a
density at the level of 105 particles=cm3, which creates a
matter density comparable to eV4. Taking �2 � �2 � �1,
and using the generic solution (3.2), we calculate the
resulting shift of� and the change in the coupling constant
between the center and the walls of a spherical chamber of
radius R,

 

��r� R� ���r� 0�

�
’
�F�2

m

2

� 1
36 �

R
	vac
�4 for R=	vac 1;

1 for R=	vac * 1:

(5.1)

Similar changes will be experienced by masses of particles.
Notice that the parametric dependence of (5.1) is very
similar to (3.20), and plugging �2 and �m that saturate
this constraint we find that
 

��r�R����r� 0�

�

��F

�
TeV

M�

�
2
�

��10�17�10�16��� R1 m�
4 for R=	vac 1;

�10�15�10�14���	vac

1 m�
4 for R=	vac * 1:

(5.2)

These shifts are extremely small, but perhaps are not so far
away from the modern capabilities of frequency measure-
ments that can be sensitive to the relative shifts as low as
10�15 [54]. Further gain in sensitivity can be achieved with
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substances that have a large enhancement factors that
connect �!=! with ��=� [55].

To put (5.2) in perspective, we compare this with the
result obtained for ��=� between two points separated
vertically by�1 m in the original Bekenstein model with a
massless scalar field. In that model, the coupling of � to
matter is linear and very weak, and the equivalence prin-
ciple tests require that �2

F�MPl=M��
2 < 10�6 (see e.g. Fig. 2

of [8]). In the Bekenstein model, ��=� � �F��, where
�� is the difference in� over 1 m above the surface of the
Earth. The solution for � is given by

 � �
�m�r2

6M2
�

; (5.3)

where �m is the coupling of the scalar to matter (this can be
obtained easily from the massless limit of the solution
given in [39]). In the Bekenstein model, this is absent in
the Lagrangian but is induced by the coupling of the scalar
to the electromagnetic field in the nucleon. Roughly, one
finds �m � 10�4�F [8]. Therefore �� is simply

 �� �
�m�R�h

3M2
�

�
10�4�Fgh

3

�
MPl

M�

�
2

(5.4)

where h � 1 m is the vertical separation of the two points.
Putting all factors together one arrives at

 

��
�
�1 m� � �g� 1 m� � 10�4�2

F

�
MPl

M�

�
2

& 10�26

Bekenstein model;
(5.5)

where g is again the free-fall acceleration at the Earth’s
surface. This is well below any detection sensitivity for the
foreseeable future. The difference between (5.2) and (5.5)
is an enormous factor of 9 orders of magnitude that can be
traced back to the fact that equivalence principle is checked
at macroscopic distances far better than gravity at distances
under 1 mm. Chameleon models do not allow one to make
a simple universal estimate of an allowed shift because
they depend in a crucial way on the form of the self-
interaction potential. Widely discussed chameleon models
would not allow for a large spatial variation, even if one
departs from the universal coupling of chameleon field to
matter. This is again related to the extremely tiny values of
chameleon field relative to the Planck mass, and O�1=MPl�
size of the chameleon coupling to matter.

Estimates for ��me=mp� similar to (5.2) involve a differ-
ent factor, �e � �p � �e � 1. It turns out that this factor
can much larger than unity by up to 2 orders of magnitude.
The difference comes about due to relaxed astrophysical
constraints on �e=M2

�. Indeed, the rate of e� � e� ! ��
is additionally suppressed relative to (3.10) by a factor of
�me=T�2, thus allowing for a much larger value of �e.

If a nonlinear model of the scalar field such as that
described by Eq. (4.1) is realized, an artificially created
underdensity may lead to the shift of couplings according
to (4.3). For the shift to occur, one needs �r<R <�2 <
�r>R and R>M��

�1=2
2 , which would allow for the broken

phase to be created within r < R volume.

B. Astrophysical checks

The possibility of an environmental dependence of cou-
pling constants calls for new tests of ����� and
��me=mp����. In Bekenstein-type models where couplings
evolve in time, there is a clear gain from testing � at
maximally available redshifts. On the contrary, in the
models discussed here, there is no gain in the size of the
effect at large redshift for tests of �����, and therefore one
could search for new test sites within our galaxy. Atomic
and molecular absorption lines in the interstellar medium
could be an example where extremely narrow lines can be
detected. Another beneficial aspects of testing for varia-
tions within our galaxy is the possible access to heavier
elements where relativistic effects are significantly en-
hanced. It remains to be seen whether O�10�5� sensitivity
for ��=� achieved in the QSO absorption spectra can be
improved upon using galactic lines.

VI. CONCLUSIONS

We have demonstrated that a scalar coupling to matter
can be much stronger than the gravitational coupling in
Damour-Polyakov type models. The quadratic nature of
coupling to matter allows one to escape the most prohibi-
tive astrophysical and gravitational constraints, as only
pair-production or pair-exchange of �-quanta are allowed.
The environmental dependence of masses and coupling
constant can come about from the shift in the expectation
value of � between dense and rarefied environments. We
have shown that such shifts could be at a detectable level,
and could indeed be probed with astrophysical tests within
our galaxy and in laboratory clock comparison
experiments.
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