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While vector modes are usually ignored in cosmology since they are not produced during inflation they
are inevitably produced from the interaction of density fluctuations of differing wavelengths. This effect
may be calculated via a second-order perturbative expansion. We investigate this effect during the
radiation era. We discuss the generation mechanism by investigating two scalar modes interacting, and we
calculate the power of vector modes generated by a power-law spectrum of density perturbations on all
scales.
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I. INTRODUCTION

High-precision data from observations of the cosmic
microwave background (CMB) [1] and large scale struc-
ture (LSS) [2] provide strong evidence for a nearly spa-
tially flat universe with a primordial spectrum of adiabatic,
Gaussian and nearly scale-invariant density perturbations.
The standard cosmological model provides a remarkable
theoretical basis for these and other observed features of
our universe. Perturbations generated from inflation give a
nearly scale-invariant spectrum of scalar (density) pertur-
bations, and tensor (gravitational wave) modes, with am-
plitudes which are typically within a few orders-of-
magnitude of each other. However, within this paradigm
the amplitude of any corresponding vector modes is zero
since a scalar field cannot support vector modes at linear
order [3]; even if they were generated during inflation,
vectors decay rapidly after they leave the Hubble radius
during inflation, whereas scalars and tensors are typically
frozen on super-Hubble scales, and only decay when they
reenter the horizon. A generic prediction of inflation is
therefore no vector modes.

There is an important caveat to this argument. Vector
modes are generated via the nonlinear interaction of scalar
(and tensor) perturbations of differing wavelength, and
therefore inflation must generically predict a spectrum of
vector modes, but at second-order in a perturbative expan-
sion. Indeed, observations of the scalar spectrum requires
this to be so independently of whether inflation is the
correct model of the early universe or not. We shall con-
sider the generation of vectors from scalars in some detail.
The analogous process of gravitational wave generation by
scalar-scalar interaction has been investigated [4–19], and
the work presented here is closely related to these studies.

We shall principally expand on work of Mollerach et al.
[20], who considered the effect of secondary vectors on the
CMB. We shall investigate the generation method of vec-

tors from two scalar modes (we show that unlike gravita-
tional waves, vectors cannot be generated by a single
mode), and we shall calculate the power spectra of the
vector part of the metric in the radiation era. Our aim here
is to principally discuss how vectors are generated, and get
an overall estimate as to the magnitude and distribution of
vectors at the end of the radiation era. How the results here
relate to observables in the CMB, and the spectrum of
vectors today, is left for future work.

Other people have discussed second-order vector modes
before. Most recently, Mena et al. [21] considered second-
order vector modes in a collapsing universe. Matarrese
et al. [22] discussed the generation of primordial magnetic
fields from density perturbations (although see [23]).
Various other work has discussed vector mode generation
on a more formal level [11,12,24–28].

There are a variety of other mechanisms which predict
vector modes, all of which must happen after inflation, and
usually predict a spectrum of modes on small scales. Such
sources include cosmic strings [29], topological defects
[30], fine-tuned anisotropies in collisionless neutrinos
[31] and the presence of an primordial magnetic field
[32–35]. The generated vector modes are highly non-
Gaussian. Second-order inflationary vector modes consid-
ered here are also non-Gaussian and have a �2-distribution.

Vector modes are likely to play a more prominent role in
cosmology in the coming years, through their contributions
to the CMB [24–26,36– 40], which will impact on the B-
mode polarization and could be the dominant contribution
when compared with the second-order gravitational waves
[20] (assuming one is able to subtract the lensing signal).
They are also crucial in magnetogenesis [22,32–35,41–
49] as the magnetic field vector has a dominant vector part.
It is therefore appropriate to now consider in more detail
the spectrum of vector modes which we know must exist
by virtue of second-order effects.

The paper is organized as follows. In Sec. II we consider
the formalism for investigating the generation of vectors
from scalars. Then, in Sec. III we discuss the power spectra
of vectors in the radiation era for power-law scalar modes.
We also investigate the generation mechanism of vectors
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by considering the interaction of two distinct scalar modes.
Finally, we conclude in Sec. IV.

II. GENERATION OF VECTOR MODES FROM
DENSITY PERTURBATIONS

We shall consider perturbations of a flat Robertson-
Walker background up to second order. The metric is
decomposed as

 �g �� � g�� � �
�1�g�� � �

�2�g��; (1)

where Greek indices run from 0; . . . ; 3 and Latin indices
run from 1; . . . ; 3. We are only investigating the second-
order vector modes sourced by the first-order scalar per-
turbation; therefore, we have scalar degrees of freedom at
first order, ��1�g��, while the second-order perturbations,
��2�g��, are pure vector modes, and second-order equa-
tions are therefore meaningful when projected out accord-
ingly. Our metric in terms of conformal time with a
longitudinal gauge chosen, is given as

 �g 00 � �a
2�1� 2��1��; �g0i � �

1
2a

2S�2�i ;

�gij � a2�1� 2��1���ij;
(2)

where ��1� is the first-order Bardeen potential, and S�2�i
describes the gauge-invariant [21] second-order vector
modes, so that @iS�2�i � 0. As there is no ambiguity in
what follows we shall drop the order superscripts and
just write � and Si.

A. Density perturbations at linear order

We shall consider the generation of vectors from scalars
during the radiation era below, but for now we shall con-
sider the situation where we have a linear constant equation
of state, c2

s � wwhere w � p=� and cs is the sound speed.
We shall assume that the first-order matter perturbations
are adiabatic, i.e., that pressure perturbations obey ��1�p �
c2
s�
�1��. Then the first-order equation of motion for the

Bardeen potential in Fourier space is [50]

 �00�k; �� � 3H �1� c2
s��

0�k; �� � c2
sk

2��k; �� � 0;

(3)

where a prime denotes differentiation with respect to con-
formal time �.

In the radiation era, the scale factor, the conformal
Hubble rate and energy density evolve as a��� � a0

�
�0

,

H � a0
a �

1
� and � / ��4, and the general solution to (3),

with c2
s �

1
3 is

 

�r�k; �� �
Ar�k�

�k��3

�
sin
�
k����

3
p

�
�
k����

3
p cos

�
k����

3
p

��

�
Br�k�

�k��3

�
k����

3
p sin

�
k����

3
p

�
� cos

�
k����

3
p

��
: (4)

We shall ignore the decaying mode—that is terms with a
Br�k� coefficient.

Assuming that the fluctuations are Gaussian, we may
introduce Gaussian random variables, Ê, with unit variance
and the property

 hÊ��k1�Ê�k2�i � �3�k1 � k2�: (5)

We can then separate the length and directional depen-
dence of functions of k and write ��k; �� � ��k; ��Ê�k�
and Ar�k� � Ar�k�Ê�k�.

The power spectrum for the first-order scalar perturba-
tion can be defined through

 h���k1; ����k2; ��i �
2�2

k3 �3�k1 � k2�P��k; ��: (6)

At early times during the radiation era the power spectrum
becomes

 P ��k� ’ Ar�k�
2 k3

486�2 : (7)

Relating the Bardeen potential to the comoving curvature
perturbation at early times gives us

 Ar�k�2 �
216�2

k3 �2
R�k�; (8)

where �2
R is primordial power spectrum for the curvature

perturbation R. Current observations show �2
R � 2:4�

10�9 at a scale kCMB � 0:002 Mpc�1, and is almost inde-
pendent of wave number on these scales [1].

B. Second-order vector modes

The vector perturbations at linear order satisfy an evo-
lution equation and a momentum constraint equation
which can be found by calculating the i� j and 0� i parts
of the Einstein field equations (EFE’s) respectively [21]. In
the case of a perfect fluid (at first order only) there is no
source in the vector evolution equation and it admits
solutions proportional to 1=a2. The momentum constraint
equation relates the vector perturbation to the 3-velocity
perturbation, which in the perfect fluid case would be zero.
However, the respective equations at second order differ
significantly. First, as we will see, the evolution equation is
sourced, allowing for the generation of vector modes.
Second, the momentum constraint no longer excludes the
existence of vector perturbations, provided we are only
considering a perfect fluid up to first order (see [21]).

We calculate the evolution equation for Si in the usual
manner, by expanding the EFE’s up to second order, keep-
ing terms quadratic in the first order quantities. We start
with the trace reversed EFE’s

 

�R	
 � 8�G� �T	
 �
1
2 �g	
 �T� � 8�G ��	
: (9)

The second-order space-space part of the Ricci tensor can
be written as
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 ��2�Rij � ��2�RV
ij � �

�2�R�S;S�ij ; (10)

where we have

 ��2�RV
ij �

1
2@�iS

0
j� �H@�iSj�; (11)

which contains only the second-order term; and
 

��2�R�S;S�ij �

�
8
�
a00

a
�H 2

�
�2 � 16H��0 � 2�02

� 2��00 � 2�r2�� 2�@m���@m��	�ij

� 4��@i@j�� � 2�@i���@j��; (12)

which are the quadratic first-order scalar perturbations.
The second-order trace reversed space-space part of the

energy momentum tensor is
 

��2��ij � a2
��1� w����1���ij

� �1� w���@i��1���@j��1��	: (13)

It is obvious that we require the following zeroth and first-
order equations,

 H 2 � 8
3�Ga

2�;

and

 @i��1� � �
1

4�Ga2��1� w�

@i�

0 �H �@i��	:

Note that the terms with �ij as a coefficient will not play a

role since the �ij terms are eliminated by the operator V̂
lm
i

defined below. Because of the limited quantities we keep in
our metric the tensorial equations we calculate are only
valid for vector modes, and so these must be projected out.

We define the Fourier transform of the vector perturba-
tion as

 Si�x; �� �
1

�2��3=2

Z
d3k
S�k; ��ei�k�

� �S�k; �� �ei�k�	e
ik�x; (14)

where the two orthonormal basis vectors e and �e are

orthogonal to k. We shall use the operator V̂
lm
i to extract

out the divergenceless vector from a rank-2 tensor

 V̂ lm
i � �

2i

�2��3
Z
d3k0k0�2

Z
d3x0k0l
ei�k

0�em�k0�

� �ei�k0� �em�k0�	eik
0��x�x0�: (15)

This operator will remove any rank-2 tensor which is
constructed from derivatives of a scalar potential.
Specifically, any second-order scalar perturbations will
be removed and therefore such perturbations have been

neglected in our analysis. The action of this operator is to
produce a rank-1 vector which is a pure vector mode.
Further details concerning the operator can be found in
the appendix.

We can then obtain, from the i� j component of the
EFE’s, the evolution equation for the second-order vector
perturbations

 V̂ lm
i �@�lS

0
m� � 2H@�lSm�� � 2V̂

lm
i �lm; (16)

where the source term is given by

 �lm � �4��@l@m�� �
2�1� 3w�
3�1� w�

�@l���@m��

�
4

3H 2�1� w�

�@l�0��@m�0� � 2H �@l��

� �@m�0�	: (17)

For either polarization, the evolution equation in Fourier
space for the vector mode becomes

 S0�k; �� � 2HS�k; �� � ��k; ��; (18)

where the source term ��k; �� is an appropriate convolu-
tion over the quadratic first-order quantities,

 ��k; �� � �
4i

k2�2��3=2
kiej�k�

Z
d3k0�k0ik

0
j�

�

�
10� 6w
3�1� w�

��k0; ����k� k0; ��

�
4

3�1� w�H 2���
�0�k0; ���0�k� k0; ��

�
8

3�1� w�H ���
��k0; ���0�k� k0; ��

�
:

(19)

The general solution for S�k; �� can be written as

 S�k; �� �
1

a2���

Z �

�0

d~�a2�~����k; ~��: (20)

We have set the initial conditions for the vector mode to
zero at � � �0.

1. Power spectrum

The power spectrum of the induced vector mode is
defined as

 hS��k1; ��S�k2; ��i �
2�2

k3 �3�k1 � k2�PV �k; ��: (21)

Substituting the solution (20) into (21) we find
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 hS��k1; ��S�k2; ��i �
1

a4���

Z �

�0

d~�2

Z �

�0

d~�1a
2�~�1�a

2�~�2�h�
��k1; ~�1���k2; ~�2�i

�
16

�2��3a4���


km1 e
n�k1�	
k

i
2e
j�k2�	

k2
1k

2
2

Z �

�0

d~�2

Z �

�0

d~�1a
2�~�1�a

2�~�2�
Z
d3k01

Z
d3k02�k

0
1mk

0
1n�

� �k02ik
0
2j���k

0
1; jk1 � k

0
1j; ~�1���k

0
2; jk2 � k

0
2j; ~�2�hÊ

��k01�Ê
��k1 � k

0
1�Ê�k

0
2�Ê�k2 � k

0
2�i (22)

where

 ��K1;K2;�� �
10� 6w
3�1�w�

��K1;����K2;��

�
4

3�1�w�H 2�~��
�0�K1;���0�K2;��

�
8

3�1�w�H �~��
��K1;���

0�K2;��:

However, Wick’s theorem tells us that

 hÊ��k01�Ê
��k1 � k

0
1�Ê�k

0
2�Ê�k2 � k

0
2�i

� hÊ��k01�Ê
��k1 � k

0
1�ihÊ�k

0
2�Ê�k2 � k

0
2�i

� hÊ��k01�Ê�k
0
2�ihÊ

��k1 � k
0
1�Ê�k2 � k

0
2�i

� hÊ��k01�Ê�k2 � k
0
2�ihÊ

��k1 � k
0
1�Ê�k

0
2�i: (23)

Therefore, the power spectrum of the induced vector mode
is
 

PV �k; �� �
1

k�5a4���

Z �

�0

d~�2

Z �

�0

d~�1a
2�~�1�a

2�~�2�

�
Z
d3k0�kak0a�
eb�k�k0b	
e

j�k�k0j	

���k0; jk� k0j; ~�1�
�k
ik0i���k

0; jk� k0j; ~�2�

� �kik0i � k
2���jk� k0j; k0; ~�2�	: (24)

In order to compute the integrals over Fourier space, we
first introduce the dimensionless variables u and v, where

 v �
k0

k
and u �

�������������������������������������
1� v2 � 2v cos�

p
:

If we rewrite Eq. (24) using spherical coordinates in
Fourier space, we can carry out the azimuthal integral
trivially. Using the two new variables, the power spectrum
then becomes
 

PV �k; �� �
k8

16�4a4���

Z �

�0

d~�2

Z �

�0

d~�1a
2�~�1�a

2�~�2�

�
Z 1

0
dv

Z v�1

jv�1j
du�uv��v2 � 1� u2�

� 
�u2 � 1� v2�2 � 4v2	

���kv; ku; ~�1�f�u
2 � 1� v2���kv; ku; ~�2�

� �u2 � 1� v2���ku; kv; ~�2�g: (25)

The power spectrum can now be calculated once the power
spectra (initial conditions) for the scalar modes are chosen.

III. VECTOR MODE POWER SPECTRA

We shall now investigate the power spectrum of the
induced vector modes during the radiation era.

After substituting for the first-order solution for � for
the radiation era, the power spectrum then becomes

 

PV �k; �� �
�243�2

4�k��4
Z 1

0
dv

Z v�1

jv�1j
duP��ku�

� P��kv�F �u; v; x�; (26)

where

 

F �u; v; x� �
1

�uv�8
�v2 � 1� u2�
�u2 � 1� v2�2 � 4v2	

�
Z x

x0

d~x1I1�~x1�

�
�u2 � 1� v2�

�
Z x

x0

d~x2I1�~x2� � �u
2 � 1� v2�

�
Z x

x0

d~x2I2�~x2�

�
; (27)

and x is another dimensionless variable defined as x � k�,
and x0 � k�0. We have defined the functions

 I j�x� �
X5

m�1

X4

n�1

sin�	nx�
n�
Mj
nm

xm�1 ; (28)

with the coefficients 	n, 
n, and Mj
nm defined as

 
n �
�
2

1
0

� �
and 	n �

1���
3
p

�u1� �b
u1� �a

� �
; (29)
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 M1
nm �

u2�2

18 b 0 �16u
2 � 1

2�
2�a� u�1 0 3b

0 u2�
6
��
3
p 1� u�2

2
��
3
p a 0 �

���
3
p
�1�

���
3
p
ub 0

 !
; (30)

 M2
nm �

u2�2

18 b 0 �12u
2 � 1

6�
2�a� u�1 0 3b

0 u2�
2
��
3
p 1� u�2

6
��
3
p a 0 �

���
3
p
�1�

���
3
p
ub 0

 !
: (31)

Here we have defined the matrices 1, 0, a and b as

 1 �
1
1

� �
; 0 �

0
0

� �
; a �

1
�1

� �
; b �

�1
1

� �
: (32)

As we have four integrals to carry out it is useful to calculate them analytically where possible. We can do this for the
x-integrals to get
 Z x

x0

d~xI j�~x� �
X5

m�1

X4

n�1

Mj
nm

��Xm�3

k�1

�m� k� 3�!

�m� 2�!
	kn sin

�
	n~x�
n �

k� 2

2
�
�

~x�2�k�m�
�
x

x0

�
	�m�2�
n

�m� 2�!

�
Si�	n~x� cos

�

n �

m
2
�
�
� Ci�	n~x� sin

�

n �

m
2
�
��

x

x0

�
: (33)

For the radiation era we assume that all modes are well
outside the horizon when the interaction begins and there-
fore can set x0 � 0.

A. Interaction of scalar modes

Before calculating the power spectrum for the case of
power-law scalar modes, it is useful to investigate how the
vector modes are generated from individual scalar modes.
It has been shown that a single scalar mode with an
isotropic distribution will induce second-order gravita-
tional waves [14]. This is not the case with vector modes:
scalar modes of differing wavelengths need to interact to
generate vector modes, as we shall see. To investigate this
we choose then a scalar power spectrum of the form

 P ��k� �
4
9A

2�2
R�kCMB�f�
ln�k1=k�	 � �
ln�k2=k�	g;

(34)

where A is the mean amplitude of each wave number, ki,
relative to the observed amplitude of the primordial power
spectrum, �2

R�kCMB�, at wave number kCMB � ki. We
assume for simplicity that they both have the same ampli-
tude. Carrying out the u and v integrals, we then find that
the vector power spectra becomes, in terms of vi � ki=k,

 P V �k; �� � 26 244A4�4
R

k1k2

x4k2 
F �v1; v2; x�

�F �v2; v1; x�	 (35)

provided v1 � 1> v2 > jv1 � 1j, and is zero otherwise.
Therefore modes are induced for all wave numbers k such
that k1 � k2 > k> jk1 � k2j, and are scattered into angles
such that u1 � v2, and u2 � v1 (a further requirement
from carrying out the integration). In the case where only
one input mode is present, so v2 � v1, this inequality
becomes k1 > k=2 while we also have v1 � u1, as in

[14]; from Eq. (27) with u � v, however, we see that F
vanishes in this case. Therefore, we can see that vector
modes cannot be induced by a single scalar degree of
freedom. The physical reason for this is because vector
modes are associated with rotational degrees of freedom. A
consequence of k1 � k2 is that �1 � 
�2, i.e., the input
modes only have momentum along the same axis in
Fourier space. Consequently, there is no angular momen-
tum generated, and hence no vectors.

Provided that k1 � k2, we can have vectors induced over
the appropriate range of wavelengths. Closely separated
scalar modes will produce a much broader spectrum of
vector modes while modes of vastly differing wavelengths
will produce a very narrow range of vectors, with wave
numbers close to the largest input wave number. Note that
as the generated wave numbers are restricted from above
and below, we cannot expect any noise on large scales, as is
the case for gravitational waves. This is also evidenced by
the fact that one input mode cannot produce any vectors—
there would be nothing to set the long wavelength cutoff in
that case.

In Fig. 1 we show the induced vector modes as a
function of x for various v1 with v2 � 1 (so we require 0<
v1 < 2), i.e., the evolution of modes of wave number k �
k2. While the generated mode is outside the Hubble radius,
there is power-law growth, with PV � �

2. When k2 enters
the Hubble radius, the principle generation of vector modes
stops shortly thereafter, and the induced modes start to
decay as ��4. This continues until the longer wavelength
mode enters the Hubble radius at k1� � 1) x� 1=v1.
This then generates a further burst of vector modes, which
we can see by progressively more pronounced knees, as
v1 ! 0, in the curves at late times. For the case when v1 �
1:5, on the other hand, we see some confusion as the modes
enter the horizon more-or-less together, before decaying as
normal.
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Thus we see that vector modes are only efficiently
generated when at least one of the scalar modes is entering
its Hubble radius—provided another scalar mode exists to
help seed the vector mode. This explains why we have
knees in the evolution of the generated vector modes, since
two interacting scalars enter the Hubble radius at different
times. The power generated into vectors as each mode
enters depends on the relative ratio k1=k2. Modes of similar
wavelength generate more overall power, because they are
entering at the same time; modes that are widely separated
in wave number do not generate as much overall power but
produce more pronounced knees instead.

B. Power-law scalar modes

Let us now investigate the spectrum of vector modes
from power-law scalar modes. To do this, we assume that
the input power spectrum is

 P ��k� �
4

9
�2

R

�
k

kCMB

�
ns�1

; (36)

where the index ns tells us the tilt of the spectrum relative
to scale-invariance, ns � 1, and kCMB is a pivot scale for
the power spectrum [1]. The induced vector modes are then
given by

 P V �k; �� �
729�4

R

�k��4

�
k

kCMB

�
2�ns�1�

F ns�x�; (37)

where F ns�x� is defined as

 F ns�x� �
Z 1

0
dv

Z v�1

jv�1j
du�uv�ns�1F �u; v; x�: (38)

We integrate this numerically, and show the results in
Fig. 2 for the case ns � 1. The tilt of the scalar power
spectrum tends to affect the amplitude of second-order

modes on large scales at the level of a few percent
[14,20]. Viewing x as time for constant k, we see that the
modes grow as �, peak when inside the Hubble radius and
decay as ��4. While the modes are decaying there are faint
oscillations as shown in the top panel of the figure. This
Figure can also be interpreted as the power spectrum at
fixed time, showing the usual features.

It is worth mentioning that we have taken the upper limit
of the k0 integral to be infinity. In reality there is a cutoff
from the end of inflation, at � � ��, corresponding to
modes which are inside the Hubble radius at that time,
k� � 1=��, so giving a finite upper limit to the v-integral,
v� � k�=k (although this is on very small scales in reality).
This causes a break from linear scaling in x in the power
spectrum for x & 1=v�, and we may analytically find the
leading behavior of Eq. (26) is PV �

32
15v�x

2. Why is this
the case?

In the interacting delta function case we saw that modes
are efficiently produced—and grow like x2 —when both
modes are outside the Hubble radius; once one is inside
and the other outside there is effectively no generation of
vectors. In power-law case, then, the modes which are
generating vectors are those outside the Hubble radius,
providing an effective cutoff to the v-integral of v�
1=x, so giving us growth / x, when v� � 1=x. When we
have the cutoff v� on the other hand, for early times when
�< 1=k�, all relevant modes are outside the Hubble ra-
dius, and interact coherently giving us growth / �2. For
�> 1=k�, modes which have entered the Hubble radius no
longer contribute to the generation of modes outside the

FIG. 2 (color online). The power spectrum of vector modes
induced by scale-invariant scalar modes. Scalar modes outside
the Hubble radius interact to give power-law growth at until the
modes enter the Hubble radius. Thereafter the modes decay as
normal vectors, with some gentle oscillatory features.

FIG. 1 (color online). The power spectrum of vector modes
induced by two interacting scalar modes. Although maximum
power is generated in the scenario k1=k2 � 1 shortly after the
Hubble radius is crossed, at late times scalar interactions with
vastly differing wavelengths produce more power once the long-
wavelength mode enters the Hubble radius.
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Hubble radius giving weaker growth / x. Of course, we are
not in a position here to analyze times before inflation ends,
but this helps us understand why we have the x-scaling
behavior we do.

IV. CONCLUSIONS

An important feature of inflation is the lack of vector
modes: if they were observed to have a similar spectrum
and amplitude to the scalars then this could prove difficult
for inflation, and lend favor to other theories of the early
universe, e.g. Pre Big Bang scenarios and Ekpyrotic mod-
els [21,51,52]. However, there is a �2-distribution of vec-
tors produced by inflation as a consequence of the
nonlinear interaction of scalar modes, which has received
relatively little attention to date.

We have investigated the generation of vector modes
induced by primordial density perturbations during the
radiation dominated era. Performing a perturbative expan-
sion to second order, we isolated the scalar terms which
source the vector perturbations. We then calculated the
power spectrum of the metric vector mode, and analyzed
its form. In order to understand the generation of modes we
investigated individual scalar modes generating vectors,
and demonstrated that, contrary to the case of gravitational
waves, vector modes cannot be generated by an isotropic
distribution of scalars of a single wavelength, owing to the
spin-1 nature of vector modes: rotational degrees of free-
dom must be generated by scattering of nonparallel input
modes. We then demonstrated that vectors are generated by
modes of differing wavelength whenever one of the two
scalar modes is entering the Hubble radius. The amplitude
of the generated modes depends on the ratio of input wave
numbers; maximum power is generated when the modes
are not too widely separated. After investigating the gen-
eration of modes, we then presented the power spectrum
for scale-invariant scalar modes, displaying our results in
terms of the variable x � k�: i.e., they may be interpreted
the temporal evolution of a single scalar mode, or the
power at a fixed time. Interestingly the maximum power
generated is the same at all times, but the position of this
peak changes with wavelength, such that x� 1)
k� 1=�. This is due to the fact that the modes are effi-
ciently generated as they enter the Hubble radius, and are
not generated significantly while outside.

There are some open questions raised by the study
presented here. In particular, it is not clear how the power
spectrum for Si we have calculated will be related to
observable quantities. It is gauge invariant so must be
observable, by the results presented in [53]; it also repre-
sents all possible degrees of freedom of vectors generated
by scalars, under the conditions laid out here. Thus,
although there may be a ‘‘better’’ variable, it must be
related to Si by quadrature (plus some further scalar-
squared contributions). The effects we have presented
here will have interesting implications for a variety of

phenomena such as the CMB; the issue of how significant
is left for future work.
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APPENDIX: THE EXTRACTION OPERATOR

In this section we consider the extraction operator dis-
cussed in this paper. We start by defining the Fourier basis
used for the purposes of harmonic decompositions. An
arbitrary scalar in real space can be expressed as a
Fourier integral

 S�x; �� �
1

�2��3=2

Z
d3kS�k; ��eik�x: (A1)

A divergence free vector in real space can then be ex-
pressed as a Fourier integral

 Va�x; �� �
1

�2��3=2

Z
d3k
 �V�k; �� �ea�k�

� V�k; ��ea�k�	eik�x; (A2)

where ea�k� and �ea�k� are orthogonal parity vectors, which
are also orthogonal to k. Similarly, a transverse traceless
tensor (a tensor mode) in real space can be expressed as

 Tab�x; �� �
1

�2��3=2

Z
d3k
T�k; ��qab�k�

� �T�k; �� �qab�k�	eik�x; (A3)

where the two polarization tensors qab and �qab can also be
expressed in terms of the parity vectors ea and �ea, and are
orthogonal to k. An arbitrary symmetric trace-free spatial
tensor in real space
 

Aab�x; �� � 
@a@b �
1
3�ab@

c@c	A
�S��x; ��

� @�aA
�V�
b� �x; �� � A

�T�
ab �x; ��;

which has explicit scalar, vector and tensor contributions.
We can also express Aab as a Fourier integral
 

Aab�x; �� �
1

�2��3=2

Z
d3k

�
�

�
kakb �

1

3
�abk2

�
A�S��k; ��

� iA�V��k; ��k�aeb� � i �A�V��k; ��k�a �eb�

� A�T��k; ��qab � �A�T��k; �� �qabgeik�x: (A4)
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The even-parity vector contribution can then be extracted
in Fourier space by applying the following operator
 

V̂
lm
i � �

2i

�2��3
Z
d3k0k0�2

Z
d3x0k0l
ei�k

0�em�k0�

� �ei�k0� �em�k0�	eik
0��x�x0�: (A5)

Applying the operator V̂
ab
l to Eq. (A4) gives

 

A�V�l �x; �� � V̂
ab
l Aab

� �
2i

�2��3
Z
d3k0k0�2

Z
d3x0k0a
el�k0�eb�k0�

� �el�k0� �eb�k0�	eik
0��x�x0�Aab�x0; ��: (A6)

The extraction of the vector component is made possible
by taking advantage of the various properties of both the
parity vectors (ea and �ea) and the polarization tensors (qab
and �qab). We now consider as an example one possible
contribution from the first-order squared terms. For sim-

plicity we start with contributions from a term made up of
the product of first-order scalars and do not reconstruct in
real space, looking only at the Fourier amplitudes.
Consider a term of the type

 �@a@b� �
1

�2��3

�Z
d3k1��k1; ��e

ik1�x

�

�

�Z
d3k2��k2; ����k2ak2b�e

ik2�x

�
: (A7)

The Fourier amplitude of the vector part of this is then
 


�@a@b�	�V��k� �
2i

�2��3=2

Z
d3k2��k� k2; ����k2; ��

�
ka
eb�k� � �eb�k�	k2ak2b

k2 ; (A8)

where we have carried out a real space integral and a
k-space integral.
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