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Belinskii, Khalatnikov, and Lifshitz (BKL) conjectured that the description of the asymptotic behavior
of a generic solution of Einstein equations near a spacelike singularity could be drastically simplified by
considering that the time derivatives of the metric asymptotically dominate (except at a sequence of
instants, in the ‘‘chaotic case’’) over the spatial derivatives. We present a precise formulation of the BKL
conjecture (in the chaotic case) that consists of basically three elements: (i) we parametrize the spatial
metric gij by means of Iwasawa variables ��a;N a

i�; (ii) we define, at each spatial point, a (chaotic)
asymptotic evolution system made of ordinary differential equations for the Iwasawa variables; and
(iii) we characterize the exact Einstein solutions �, N whose asymptotic behavior is described by a
solution ��0�, N �0� of the previous evolution system by means of a ‘‘generalized Fuchsian system’’ for the
differenced variables �� � �� ��0�, �N �N �N �0�, and by requiring that �� and �N tend to zero on
the singularity. We also show that, in spite of the apparently chaotic infinite succession of ‘‘Kasner
epochs’’ near the singularity, there exists a well-defined asymptotic geometrical structure on the
singularity: it is described by a partially framed flag. Our treatment encompasses Einstein-matter systems
(comprising scalar and p-forms), and also shows how the use of Iwasawa variables can simplify the usual
(‘‘asymptotically velocity term dominated’’) description of nonchaotic systems.
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I. INTRODUCTION

The works [1–3] of Belinskii, Khalatnikov, and Lifshitz
(BKL) proposed a description of the asymptotic behavior
of the gravitational field in the vicinity of a spacelike
singularity of a D � 4 spacetime satisfying the vacuum
Einstein equations. They also investigated the D � 5 vac-
uum Einstein case as well as the D � 4 spacetime with a
massless scalar field [4]. Finally, they analyzed more gen-
eral Einstein-matter systems (e.g. Einstein-Yang-Mills) in
[5]. Extension of the BKL analysis to higher dimensions
was addressed within the context of pure gravity in [6,7]. It
is convenient to express the BKL analysis using
Hamiltonian methods. This leads to considering the motion
of a particle in an auxiliary Lorentzian space submitted to
the influence of a linear superposition of exponential po-
tential walls [1,8–12]. This approach allows for a relatively
easy generalization of the work of BKL to any spacetime
dimension and with any p-form field content [12].

As argued by BKL, a drastic simplification in the
Einstein equations occurs near a spacelike singularity (lo-
cated at proper time t � 0) in that the partial differential
equations for the metric can be essentially replaced by
ordinary differential equations with respect to time. In
physical terms this corresponds to an effective decoupling
of spatial points x1 � x2 as t! 0. Depending on the
specific theory at hand (spacetime dimension, field content,
couplings to the dilatons), the BKL approach leads one to
expect two possible types of behavior:

(i) Nonchaotic behavior (or Monotonic power law): the
spatial scale factors (and the dilaton fields e� if any)

behave at each spatial point in a monotone, power-
law fashion in terms of the proper time as one
approaches the singularity at t � 0, i.e. at each spa-
tial point the asymptotic form of the metric looks
like a Kasner metric. On the other hand, the p-form
fields A have limits as t! 0. Theories exhibiting this
asymptotic behavior are, for instance, pure gravity in
D � 11 [6,7,13], and gravity coupled to a scalar field
in any dimensions [4,14].

(ii) Chaotic behavior: at each spatial point, the asymp-
totic behavior is given by a chaotic [15,16] succes-
sion of an infinite number of increasingly shorter
Kasner regimes as one goes to the singularity.
Important examples of theories exhibiting this
asymptotic behavior are pure gravity in D � 10
[6,7], and the bosonic sector of all supergravities
associated with the low energy limit of string or
M theory [17].

The nonchaotic case has been formulated in rigorous
mathematical terms by considering an auxiliary asymptotic
dynamics called the ‘‘asymptotically velocity term domi-
nated’’ (AVTD) system [18]. The AVTD system is ob-
tained by neglecting all the spatial derivatives in the
considered Einstein-matter system. Einstein equations
then reduce to ordinary differential equations (ODEs).
The solutions of this asymptotic system are precisely given
by Kasner-like metrics. Fuchsian methods [19,20] can then
be used to prove that, given a solution of the velocity
dominated system, there exists a (geometrically unique)
solution of Einstein’s equations that asymptotically ap-
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proaches this solution. These Fuchsian methods have been
used to mathematically describe cosmological singularities
in various simplified contexts: Gowdy spacetimes [19],
plane symmetric spacetimes with a massless scalar field
[21], polarized and half-polarized U�1� symmetric vacuum
spacetimes [22–24], spacetimes with collisionless matter
and spherical, plane, or hyperbolic symmetry [25], and a
particular subset of general Gowdy spacetimes [26]. It has
also been possible to use Fuchsian methods to mathemati-
cally describe singularities without any symmetries: nota-
bly for the Einstein-scalar system [14], and for many
Einstein-matter models including pure gravity in D � 11
dimensions [13].

By contrast, the general inhomogeneous chaotic case has
not yet been tackled by rigorous mathematical methods.
The BKL conjectural behavior has been consolidated both
by Iwasawa-variable based analytical treatments [12], and
by a conformal Hubble-normalized orthonormal frame
approach [27–29]. In addition, it is also supported by
numerous numerical results [30–35]. The conformal
Hubble-normalized orthonormal frame approach [27–29]
has given a mathematical formulation of the original (3	
1) BKL conjecture as the past attractor of a certain dy-
namical system.

The purpose of this paper is to present a new mathe-
matically precise formulation of the BKL conjecture in the
general �d	 1�-dimensional chaotic case with arbitrary
menu of p-forms. Our formulation will use in an essential
way an Iwasawa decomposition of the spatial metric (see
Sec. II A for precise definition). Our approach can be
viewed as being a ‘‘chaotic analogue’’ of the AVTD for-
mulation of the nonchaotic case in that it is based on
rewriting the Einstein-matter evolution equations in the
form of a ‘‘quasi-Fuchsian system’’ which generalizes
the Fuchsian systems used in the AVTD approach
[13,14,19–26]. More precisely, we shall describe the
asymptotic dynamics of the gravitational field for
Einstein-matter systems, at each spatial point, by a well-
defined asymptotic evolution system made of ODEs.

In addition to formulating a precise conjecture for the
chaotic BKL behavior, we also address the question of
whether or not geometrical structures can be defined at
the singularity and what are these asymptotic geometrical
structures. According to the Iwasawa-based approach,
most of the metric variables possess well-defined limits
at the singularity: the off-diagonal variables, i.e. all the
variables except the diagonal1 metric components (and the
dilaton).2 This means, in particular, that for these variables,
initial data can be assigned at the singularity. The other
variables, i.e. the diagonal variables, have no limit at the

singularity. Although the off-diagonal variables have finite
limits, they are (co)frame (and gauge) dependent and
thereby they do not have a priori a clear geometrical
meaning. Nevertheless, we can wonder whether it is pos-
sible to extract some geometrical information from these
asymptotic values. It turns out that this is possible, but that
this asymptotic geometrical structure is less ‘‘rigid’’ in the
chaotic case at hand than it was in the nonchaotic case. In
the nonchaotic case, the asymptotic geometrical structure
is simple to describe. The solution is asymptotically given,
at each spatial point, by a Kasner-like metric [13,14]. The
(spatial) Kasner metric is, in d spatial dimensions,

 gij�t� � t2p1lilj 	 t
2p2mimj 	 . . .	 t2pdrirj; (1)

where the pi’s (i � 1, 2, 3) are the Kasner exponents
subject to the Kasner conditions. [Note that this metric
possesses a curvature singularity at t � 0 and that the
distances are no longer defined at this singularity, since
either gij!t!01 or gij!t!00.] The Kasner coframes, i.e.
the coframes that diagonalize, at each spatial point, the
second fundamental form kij with respect to gij have finite
limits at the singularity (up to independent rescalings they
are simply given by !1

K � lidx
i, !2

K � midx
i; . . . ; !d

K �
ridx

i) and therefore provide a basis of preferred directions,
i.e. a ‘‘directional frame’’ (and coframe). See Fig. 1.

For chaotic systems, we could have expected, from the
BKL description of the asymptotic dynamics of the metric
as a never-ending chaotic succession of Kasner epochs at
each spatial point, that no privileged directions can be
defined at the singularity especially in view of the effect,
discovered in [2], of a ‘‘rotation’’ of Kasner frames be-
tween two successive Kasner epochs. However, we show in
Sec. VI that an asymptotic geometrical structure can be
defined at the singularity. This structure is less precise than
a frame but more precise than a flag3, and therefore we will
call it a partially framed flag. The precise meaning of this
notion is explained in the sequel.

This paper is organized as follows. We first review in
Sec. II the Iwasawa variables ‘‘cosmological billiards’’ of
[12] in order to introduce our notation and stress important
features for our purposes. Then, to gain some intuition for
how to define the asymptotic system of evolution equations
parametrizing a ‘‘generic’’ solution of an Einstein-matter
system in the chaotic case, we revisit in Sec. III the non-
chaotic case treated in [13,14]. Our new approach is based
on Hamiltonian methods and Iwasawa variables, which
simplify the previously done analyses.4 More precisely,
we define an asymptotic system of evolution equations
and we rewrite the Hamiltonian Einstein-matter evolution

1Here ‘‘diagonal’’ refers to the variables �a (a � 1; . . . ; d) in
the Iwasawa decomposition of the spatial metric, gij �P
ae
�2�aN a

iN
a
j, where N a

i is upper triangular. See
Sec. II A for more details.

2A short review of the billiard picture is presented in Sec. II.

3Let us recall that a complete flag, in a given d-dimensional
vector space Vd, is the geometrical structure defined by giving
oneself a nested sequence of subvector spaces of increasing
dimensions ; � V0 
 V1 
 V2 
 . . . 
 Vd with dim Vi � i.

4A comparison between the two analyses is done in
Appendix C.
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equations in terms of the difference between the solution of
the full evolution equations and the solution of this asymp-
totic system. Then we argue that the so-obtained ‘‘differ-
enced system’’ of equations is of the Fuchsian type.5 We
also treat the constraints by defining asymptotic constraints
which, when they are satisfied, imply the vanishing of the
exact constraints. Next we turn to our main purpose in
Sec. IV, that is to give a mathematically precise formula-
tion of the chaotic BKL behavior. This is achieved by
defining again an asymptotic system of evolution equations
which is a system of ordinary differential equations though
it is not necessarily an AVTD system. We then formally
rewrite the Hamilton equations in terms of the difference
between the solution of the full evolution equations and the
solution of the asymptotic system. Finally, we argue that a
stronger version of the usual Fuchs theorem is likely to
remain valid in the chaotic case. In the last section, we
show that for chaotic systems, partially framed flags are
the asymptotic geometrical structures that stay well defined
at the singularity.

Finally, let us mention that the recent paper [29] has
studied the relationship between the Iwasawa-based bil-
liard approach used here and the conformal Hubble-
normalized orthonormal frame approach to cosmological
singularities [27,28]. Let us emphasize again that very
useful features of the Iwasawa-variable approach are
(i) to allow for a clear separation between the few metric
variables which have no limits as t! 0 and all the other
metric and matter variables which do admit limits as t! 0,
and (ii) the possibility to treat in a uniform way very
general systems (with an arbitrary menu of matter fields)
in arbitrary dimensions. In addition, our use of first order

Hamiltonian formalism plays a useful role in streamlining
the Einstein-matter dynamics.

II. APPEARANCE OF TODA-LIKE WALLS IN
EINSTEIN-MATTER HAMILTONIANS IN

IWASAWA VARIABLES

The general systems considered are of the following
form:
 

S�g��;�; B
�p�� �

Z
dDx

�������������
��D�g

q �
R�g� � @��@

��

�
1

2

X
p

1

�p	 1�!
e�p�F�p��1����p	1

� F�p��1����p	1

�
	 . . . : (2)

Units are chosen such that 16�GN � 1, GN is Newton’s
constant and the spacetime dimension D  d	 1 is left
unspecified. Besides the standard Einstein-Hilbert term the
above Lagrangian contains a dilaton field � and a number
of p-form fields B�p��1����p (for p � 0). The generalization to
any number of dilatons is straightforward. The p-form field
strengths F�p� � dB�p� are normalized as

 F�p��1����p	1 � �p	 1�@��1
B�p��2����p	1�

 @�1
B�p��2����p	1 � p permutations:

As a convenient common formulation we have adopted the
Einstein conformal frame and normalized the kinetic term
of the dilaton � with weight one with respect to the Ricci
scalar. The Einstein metric g�� has Lorentz signature
�� 	 � � �	� and is used to lower or raise the indices; its
determinant is denoted by �D�g. The dots in the action (2)

FIG. 1. (a) Nonchaotic behavior.—Sufficiently close to the singularity, the dynamics of the gravitational field can be approximated
by a Kasner-like metric at each spatial point. Let us focus on one particular spatial point where asymptotically the metric is given by
ds2

spatial � �t
2p1 lilj 	 t2p2mimj 	 . . .	 t2pdrirj�dxidxj. When t! 0, the directions for which the Kasner exponent pi is negative are

stretched while the ones with positive exponent are squeezed. At the singularity, these directions are still defined. (b) Chaotic
behavior.—Now instead of a Kasner-like metric at each spatial point, there is a never ending chaotic succession of Kasner epochs
before reaching the singularity. Are there still some preferred directions at the singularity? Or is some other structure of the metric
preserved asymptotically?

5We recall Fuchs’s theorem in Appendix B.
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above indicate possible modifications of the field strength
by additional Yang-Mills or Chapline-Manton-type cou-
plings [36,37]. The real parameter �p measures the
strength of the coupling of B�p� to the dilaton. In the
following, for simplicity, we shall treat the case where
there is no dilaton � and indicate what changes occur
when � is present.

A. Iwasawa variables

Let us give a schematic review of the Iwasawa-variable
cosmological billiards. For a detailed derivation, we refer
to [12].

We choose a slicing of the spacetime we want to con-
struct, MD � Md � R, such that the singularity occurs at
the coordinate time � � 	1. We shall define the time
slicing � by requiring that the ‘‘rescaled lapse’’ ~N �
N=

���
g
p

(where g � detgij) is equal to some given (weight
�1) time-independent density ��1�x� on Md. For simplic-
ity, we take ��1�x� � 1 in the coframe !i we use, so that
~N � 1, N �

���
g
p

. In other words our time coordinate is
linked to the ‘‘proper time’’ dt � �Nd� by d� �
�dt=

���
g
p

. The slicing is built by use of pseudo-Gaussian
coordinates defined by a vanishing shift Ni � 0, lapse
N��; xi� �

���������������
g��; xi�

p
��1�x

i� �
���������������
g��; xi�

p
, and metric

 ds2 � ��N��; xi�d��2 	 gij��; x
i�!i�xk�!i�xk�: (3)

Here !i�x� � !i
j�x�dx

j is a coframe on the given (ana-
lytic) spatial manifold Md.6 One of the useful technical
tools we shall employ here consists of replacing the d�d	
1�=2 metric variables gij, by a new set of variables: d
‘‘diagonal degrees of freedom’’ �a, together with d�d�
1�=2 ‘‘off-diagonal degrees of freedom’’ N a

i where N is
restricted to be an upper triangular matrix (N a

i � 0, if
i < a) with ones on the diagonal (N a

i � 1, if a � i), such
that

 gij �
Xd
a�1

e�2�aN a
iN

a
j: (4)

We shall refer to the algebraic decomposition (4) as the
Iwasawa decomposition of the metric.7 In d � 3, the com-
ponents of the metric read explicitly,

 

g11 � e�2�1
;

g12 �N 1
2e
�2�1

;

g13 �N 1
3e
�2�1

;

g22 � �N
1

2�
2e�2�1

	 e�2�2
;

g23 �N 1
2N

1
3e
�2�1

	N 2
3e
�2�2

;

g33 � �N
1

3�
2e�2�1

	 �N 2
3�

2e�2�2
	 e�2�3

(5)

from which one gets (uniquely)

 

�1 � �
1

2
lng11;

�2 � �
1

2
ln
�
g11g22 � g

2
12

g11

�
;

�3 � �
1

2
ln
�

g

g11g22 � g2
12

�
;

N 1
2 �

g12

g11
;

N 1
3 �

g13

g11
;

N 2
3 �

g23g11 � g12g13

g11g22 � g2
12

:

(6)

In the cosmological context, one could refer to the ‘‘di-
agonal metric variables’’ e��

a
as the ‘‘scale factors.’’ In

[12] the �’s and the dilaton (when present) were collec-
tively denoted �� � f�a;�g. In the case considered here
(no dilaton), we shall use labels from the beginning of the
latin alphabet (a; b; c; . . . ; e) to denote the ‘‘diagonal var-
iables’’ �a. All other variables are called ‘‘off-diagonal
variables’’ and are denoted Q,

 Q � fN ;B�p�g;

where B�p� are the B�p� expressed in the generalized
Iwasawa coframe �aiwa, �aiwa

:�N a
j!

j, e.g. we have
Bi1...ip �: N a1

i1
. . .N ap

ip
Ba1...ap . Note that, in the

Iwasawa coframe, the metric is diagonal: giwa
ab � e�2�a	ab.

B. Hamiltonian approach in Iwasawa variables

The Hamiltonian action corresponding to the action (2)
in any pseudo-Gaussian gauge, and in the temporal gauge
for the form fields (B0i1...ip�1

� 0), reads8

 

S�gij; �
ij; B�p�j1���jp

; �
j1���jp
�p� �

�
Z
dx0

Z
ddx

�
�ij _gij 	

1

p!

X
p

�
j1���jp
�p�

_B�p�j1���jp
�H

�
; (7)

6Note that in [12], a coordinate basis is used instead of a
general basis !i but the generalization is straightforward as long
as !i � !i

j�x
k�dxj does not depend on time.

7Indeed, it is linked to the Iwasawa decomposition of the
vielbeins V a

i 2 SL�d;R� (such that gij � V a
iV

a
j) which

reads V � KAN where K 2 SO�d�, A is a diagonal matrix
and N is a nilpotent matrix. The Iwasawa variables are uniquely
specified by requiring that K 2 SO�d� be the unit matrix.

8The term �� _� should be added (inside the parenthesis) in the
action if a dilaton is present.
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where the Hamiltonian density9 H is10

 H  ~NH (8)

 

H � �ij�ij �
1

d� 1
�ii�

j
j 	

X
p

1

2p!
�
j1���jp
�p� ��p�j1���jp

� gR	
X
p

g
1

2�p	 1�!
F�p�j1���jp	1

F�p�j1���jp	1 ; (9)

where R is the spatial curvature scalar. The dynamical
equations of motion are obtained by varying the above
action with respect to the spatial metric components, the
spatial p-form components, and their conjugate momenta.
In addition, there are constraints on the dynamical varia-
bles,

 H � 0 �Hamiltonian constraint�; (10)

 H i � 0 �momentum constraint�; (11)

 ’
j1���jp�1

�p� � 0 �Gauss law for each p-form� (12)

with11

 H i :� �2�jijj 	
X
p

1

p!
�
j1���jp
�p� F�p�ij1���jp

(13)

 ’
j1���jp�1

�p�
:� �

j1���jp�1jp
�p� ; (14)

where the subscript jj stands for the spatially covariant
derivative.

As shown in [12] (and as we will see explicitly for some
of the terms below) the Hamiltonian density of weight 2,
H , expressed in the Iwasawa variables has the following
structure:

 H ��;Q;�;P� �K	V ; (15)

where
 

K �
1

4
Gab�a�b;

V �
X
A

cA�Q;P; @x�; @
2
x�; @Q; @

2Q�e�2wA���:

Here Gab is the inverse of the quadratic form Gab which is
defined by Gabd�

ad�b :�
Pd
a�1�d�

a�2 � �
Pd
a�1 d�

a�2.
Note the important fact that this metric has a Lorentzian
signature ��;	; . . . ;	�. P stands for fP i

a; E
a1...ap
�p� g, where

the P i
a’s are the momentum conjugate to the N a

i’s and
the E

a1...ap
�p� ’s are the �

i1...ip
�p� —i.e. the momentum conjugate

to the B�p�i1...ip
’s—expressed in the Iwasawa frame. Note that

the P i
a’s are strictly lower diagonal (they exist only when

i > a and vanish when i � a).
Note the special structure of the (weight 2) Hamiltonian

density H with (i) a kinetic term �2 for a ‘‘point particle’’
of coordinates �a moving in (ii) a sum of ‘‘exponential
walls’’ (for their � dependence). We shall refer to them as
Toda walls e�2wA��� where the wA��� are certain linear
forms in the �’s. ‘‘Toda’’ refers to the well-known Toda
models involving such exponential walls. For instance, the
kinetic terms of the off-diagonal degrees of freedom N in
H give, when expressed in Iwasawa variables, terms pro-
portional to e�2��b��a� for b > a with coefficient propor-
tional to P 2. Therefore, the kinetic terms for the N ’s
furnish the walls wS ab � �b � �a called ‘‘symmetry
walls.’’ The kinetic terms of the p-forms in H yield a
sum of terms proportional to e�2we��� where wea1...ap��� �
�a1 	 . . .	 �ap (‘‘electric p-form walls’’). The curvature
term �gR in H gives terms proportional to e�2wabc���

wherewabc��� � �a 	
P
e�b;c�b�c��

e (‘‘curvature walls’’)
and their coefficients, when a � b, a � c, and b � c, are
given by �Ciwa

a
bc�

2. Here, the Ciwa are the structure func-
tions of the Iwasawa coframe �aiwa �N a

j�
j, d�aiwa �

� 1
2Ciwa

a
bc�

b
iwa ^ �

c
iwa. Note that the structure functions

Ciwa depend on the N ’s and the @xN ’s.
A heuristic analysis of the BKL limit indicates the

crucial role played by the linear forms wA���. Indeed, in
this limit the walls become infinitely sharp and are located
at the hyperplanes given by the linear forms wA��� � 0,
the motion is then restricted to the region of �-space
defined by the inequalities fwA��� � 0g. The set of domi-
nant walls is the minimal subset fwA���g—the indices A
belong to a subset of the indices A—such that the subset of
inequalities wA��� � 0 implies the full set of inequalities
wA��� � 0 8A.12 A crucial consistency condition for
these definitions, which is found to be satisfied for all
models, is that the coefficients of the dominant walls be
positive: cA � 0. We decompose the set of indices fAg for
the walls into the set of indices for the dominant walls fAg
and the remaining ones (‘‘subdominant walls’’) fA0g.
Moreover, another crucial structure of the potential is
that the dependence of the wall coefficients on spatial
derivatives is such that,

9Note that H is a density of weight 1 while H is a density of
weight 2.

10If a dilaton is present, the term 1
4�

2
� should be added in K as

well as exponential coupling e�p� in front of the term
gF�p�j1���jp	1

F�p�j1���jp	1 in M and e��p� in front of

�
j1���jp
�p� ��p�j1���jp in K. The term ggij@i�@j� should also be

added to M.
11If there are dilatons, the term ��@i� should be added to H i.

12The dominant linear forms can be identified in many physi-
cally relevant cases with the simple roots of a hyperbolic Kac-
Moody algebra [38–40].
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V �
X
A

cA�Q;P; @xQ�e
�2wA���

	
X
A0

cA0 �Q;P; @x�; @2
x�; @Q; @2Q�e�2wA0 ���; (16)

where the coefficients of the dominant walls are found
never to depend on f@x�; @2

x�g.
For instance, in the case of pure gravity in d space

dimensions, the d dominant walls comprise
(i) d� 1 dominant ‘‘symmetry’’ walls wSa�1a��� �

�a � �a�1 (a � 2; . . . ; d) and
(ii) one curvature wall w1d�1d��� � 2�1 	 �2 	 . . .	

�d�2. Note that in d � 3, w123 � 2�1 corresponds
to the (first of the) famous BKL walls of the form
a4 	 b4 	 c4, where a � e�2�1

, b � e�2�2
, c �

e�2�3
[1].

C. Hamilton evolution equations

Let us indicate, in a sketchy manner, the structure of the
Hamilton evolution equations following from (15),
 

@��
a �

1

2
Gab�b;

@��a �
X
A

�
2cAwAae�2wA��� 	 @x

�
@cA
@@x�

a e
�2wA���

�

� @2
x

�
@cA
@@2

x�
a e
�2wA���

��
;

@�Q �
X
A

@cA
@P

e�2wA ;

@�P �
X
A

�
�
@cA
@Q

e�2wA 	 @x

�
@cA
@@xQ

e�2wA

�

� @2
x

�
@cA
@@2

xQ
e�2wA

��
;

(17)

where cA � cA�Q;P; @x�; @
2
x�; @Q; @

2Q�, wAa denotes the
(covariant) components of the linear forms wA��� �
wAa�

a. The system (17) is the one that we will analyze
in detail in the sequel.

Let us recall the basic classification of the set of domi-
nant walls: either the fundamental chamber defined by the
dominant inequalities wA��� � 0 is contained within the
future (

Pd
a�1 �

a > 0) light coneGab�
a�b � 0, or it is not.

The first case defines what we call here chaotic systems,
while the second defines nonchaotic systems. For instance,
pure gravity in D � d	 1 is chaotic for d � 9 and non-
chaotic for d > 9. Note that this classification does not
correspond to the often used asymptotically velocity terms
dominated systems versus non-AVTD ones. Indeed, there
are AVTD systems that are chaotic. For instance, the
Einstein-Maxwell system (in any dimension D � d	 1)
is always chaotic and we shall see below that its asymptotic
chaotic behavior can be described as a naive AVTD trun-
cation of the full dynamics. Let us also mention that they
are non-AVTD chaotic systems that are equivalent to

AVTD chaotic systems. For instance, gravity coupled to a
�d� 2� form is chaotic and non-AVTD because driven by
its magnetic wall. However, by Hodge duality, it is equiva-
lent to the Einstein-Maxwell system which is chaotic and
AVDT.

As a warmup towards understanding the structure of the
evolution equations (17), we shall first consider the so-
called nonchaotic systems.

III. IWASAWA-VARIABLES TREATMENT OF
NONCHAOTIC SYSTEMS

In this section, we reformulate the results of [13,14] by
using the Iwasawa variables, within an Hamiltonian ap-
proach. Let us recall that the treatment used in [13,14]
consisted of rewriting Einstein-matter systems into a
Fuchsian form, i.e.

 @�u�Au � e���f�x; �; u; @xu�; (18)

where �> 0 and where the crucial conditions are (i) that
the source term f should be bounded when �! 	1
(while the other variables take their values in a bounded
set) and (ii) that the eigenvalues of the (space and time-
independent) matrix A be strictly larger than�� [20]; see
Appendix B for precise mathematical conditions. Then the
main result of the Fuchs theorem is that there exists a
unique solution u��; x� of (18) which tends to zero as �!
	1. Moreover, the exponential decay of the source e���

imposes a corresponding fast decay of solution which we
shall write as

 u � O�e��
�����;

where ���� can be any number satisfying 0<���� <�
[note that ���� can be as close as we want to �].

Here we are going to show that the evolution equations
in Iwasawa variables given by Eqs. (17) can be rewritten in
an alternative Fuchsian form which leads to a streamlined
derivation of the results of [13,14]. In order to do that, we
need to do two things: (i) define an asymptotic evolution
system whose solutions f��0�; ��0�; Q�0�; P�0�g parametrize
the generic asymptotic exact solutions f�;�;Q; Pg,
(ii) rewrite the system of Eqs. (17) in terms of the differ-
ences u between f�;�;Q; Pg and f��0�; ��0�; Q�0�; P�0�g
such that the system of equations for u is Fuchsian, and
(iii) define asymptotic constraints in such a way that the
exact constraints are satisfied if the asymptotic constraints
and the asymptotic equations of motion are fulfilled. This
is done in the sequel and implies by the Fuchs theorem that
there is a unique solution u that vanishes when � goes to
infinity; the Fuchs theorem also tells us how u goes to zero
as �! 	1. This result gives a precise sense in which the
approximate solutions f��0�; ��0�; Q�0�; P�0�g parametrize
the asymptotic behavior of the exact solutions f�;�;Q;
Pg. If the asymptotic solutions f��0�; ��0�; Q�0�; P�0�g are
general enough, it means that we have found the general
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asymptotic behavior of the gravitational field in the vicinity
of a spacelike singularity. [More precisely, we want here
that the solutions of the asymptotic system together with
the associated asymptotic constraints contain the same
number of arbitrary functions which is expected to enter
the general solution of the exact constrained Einstein-
matter system.] We will see that our new formulation is
significantly simpler than that of [13,14] and is suggestive
for approaching the chaotic case.

A. Definition of the asymptotic evolution equations

The first step is to define a simplified system of equa-
tions that describe the asymptotic dynamics of the fields.
There are, a priori, several choices for defining an asymp-
totic system when using Iwasawa variables. For instance,
we can either neglect certain terms directly in the
Hamiltonian or neglect some terms in the equations of
motion. One of these choices gives a system essentially
equivalent to the usually considered AVTD system in
[13,14]. It would consist in keeping only the symmetry
walls in the Hamiltonian (15). Here, we will consider a
technically simpler choice consisting of neglecting all the
walls. Concretely, this means that we define the ‘‘asymp-
totic Hamiltonian’’ as

 H ����0�; Q�0�;��0�; P�0�� �
1
4G

ab��0�a��0�b; (19)

the ��0��’s refer to the zeroth order approximation of our
general solution. The Hamilton equations corresponding to
the Hamiltonian (19) are

 

@��a�0� �
1
2G

ab��0�b ; @���0�a � 0;

@�Q�0� � 0; @�P�0� � 0:
(20)

The solutions of these Hamilton equations are schemati-
cally (suppressing indices),

 

��0� � p��	 ��; ��0� � p�;

Q�0� � Q�; P�0� � P�;
(21)

where p�, ��, Q�, P� do not depend on the time but
depend on the spatial coordinates xi.13 Note that the metric
corresponding to the ‘‘asymptotic solution’’ (21) does not
generically corresponds to a Kasner-type metric [i.e. a
metric of the type (1)]. Indeed, the Iwasawa ‘‘off-
diagonal’’ variables N ’s of a generic Kasner metric
have limits as �! 1 but are � dependent for finite �,
while the N a

i’s corresponding to the solution (21) are
constants [see paragraph 4.2 of [12] for explicit expression
of the Iwasawa variables of a Kasner metric].

B. Definition of the asymptotic constraints

As the asymptotic Hamiltonian constraint, it is natural to
take the asymptotic Hamiltonian (19),

 H �0� �
1
4G

ab��0�a��0�b; (22)

which has the useful property of being conserved along the
asymptotic evolution equations (20). Concerning the
asymptotic momentum constraints, we need to know their
structure in Iwasawa variables to be able to conclude. In
view of this, we first express the momentum conjugate to
the metric gij in terms of Iwasawa variables.

Let �iwa
ab :�N a

iN
b
j�

ij denote the Iwasawa-frame
components of the momentum conjugate to the gij. Using
this definition, the effect of the transformation of the
configuration variables fgijg ! f�a;N a

ig on their conju-
gate momenta is obtained from writing

 _g ij�
ij �

X
a

2e�2�a� _N a
i � _�aN a

i �N
�1i

c�iwa
ca

� _�a�a 	 _N a
iP

i
a;

from which we can extract that (we recall that the metric in
the Iwasawa frame is giwa

ab � e�2�a	ab so that �iwa
a
b �

e�2�b�iwa
ab)

 

�iwa
b
b � �

1
2�b no sum over b;

N �1i
c�iwa

c
a �

1
2P

i
a only for i > a:

In order to invert the above formula and get the �iwa
c
a in

terms of the �a and P i
a, let us rewrite the above equation

for all i and a as follows:

 N �1i
c 	� ��iwa

c
a �

1
2P

i
a��� 	 X

i
a�	�; (23)

where X is a matrix defined by this equation, and where we
have added to the various triangular matrices that appear an
index referring to the fact that it is an upper/lower trian-
gular matrix �	�=��� or a strictly upper/lower triangular
matrix �	�=���. We can now multiply Eq. (23) by N �

N �	� and obtain

 �iwa
b
a �

1

2
N b

i�	�P
i
a��� 	N b

i�	�X
i
a�	�: (24)

Let us decompose the matrix �iwa
b
a into its strictly lower

triangular part �iwa
b
a���, its diagonal part �iwa

b
b �

� 1
2�b, and its strictly upper triangular part �iwa

b
a�	�.

The projection of both sides of Eq. (24) on their strictly
lower triangular parts yields an explicit expression for
�iwa

b
a��� (for b > a), namely, �iwa

b
a��� �

1
2N

b
i�	�P

i
a�����b� a�, where

 ��x� :�
�

0 if x � 0
1 if x > 0:

Note now that �iwa
b
a�	�, being obtained from the symmet-

ric matrix �iwa
ab � �iwa

ba by lowering an index by the

13As is usual when discussing Fuchsian theorems one makes
the technical assumption that the spatial dependence of all the
initial data (p��x�; ���x�; . . . ) is real analytic.
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metric giwa ab � e�2�a	ab, can be related to �iwa
b
a��� in

the following way:

 �iwa
b
a�	� � e�2��a��b��iwa

a
b���: (25)

Finally, we have the following links:

 

�iwa
b
b � �

1
2�b no sum over b;

if b > a �iwa
b
a � �iwa

b
a��� �

1
2N

b
iP

i
a;

if a > b �iwa
b
a � �iwa

b
a�	� �

1
2e
�2��a��b�N a

iP
i
b:

(26)

Therefore, the �iwa
a
b��� are linear in P i

a and N i
a, while

the �iwa
a
b�	�’s depend also on the �’s though the

e�2��a��b� with a > b [see Eq. (25)], i.e. through symmetry
walls e�2wSba���.

Let us now express the momentum constraints in
Iwasawa variables H a. They read14

 �
1

2
H a � rb�iwa

b
a

� @b�iwa
b
a 	 �bdb�iwa

d
a � �dab�iwa

b
d

�
1

2
gcdgcd;b�

b
a;	

1

p!
Ea1...apF �p�aa1...ap ;

where the F �p�aa1...ap’s are the F�p�ii1...ip
’s expressed in the

Iwasawa basis and the �abc’s are the connection coeffi-
cients (with c denoting the differentiation index) in the
Iwasawa basis,

 �abc �
1
2e

2�a�	abe
�2�b;c		ace

�2�c;b�	bce
�2�b;a �

	 1
2��Ciwa

a
bc 	 e

�2��b��a�Ciwa
b
ac

	 e�2��c��a�Ciwa
c
ab�:

Note that�iwa
a
b is a tensorial density of weight 1. The Ciwa

are the structure functions of the coframes �aiwa, they are
related to the structure functionsC in the coframe!i by the
formula,

 � 1
2Ciwa

a
bc � @cN a

iN
�1i

b �
1
2N

a
iC

i
jkN

�1j
bN

�1k
c:

(27)

Inserting these results in the expression for the momentum
constraints gives

 

�
1

2
H a � @b�ba 	 Ciwa

c
cb�

b
a 	 Ciwa

d
ac�cd

�
1

2
�@a�d��d 	

1

p!
Ea1...apF �p�aa1...ap : (28)

Note that this is the general expression for the momentum
constraints expressed in the Iwasawa variables.

We then define the asymptotic momentum constraints by
discarding the �iwa

b
a�	� contributions in the exact con-

straint (28):
 

�
1

2
H a�0� :�

�
@b�iwa

b
a��� �

1

2
@a�a 	 Ciwa

c
cb�iwa

b
a���

	 Ciwa
d
ac�iwa

c
d��� �

1

2
Ciwa

c
ca�a

�
1

2
Ciwa

d
ad�d �

1

2
��d;a��d

	
1

p!
Ea1...apF �p�aa1...ap

�
�0�
;

no sum over a; sum over d (29)

where the overall bracket � ��0� means that one must do the
following replacements: �! ��0�, �! ��0�, Q! Q�0�,
P! P�0�. Finally this definition corresponds (besides the
replacement f�;�;Q; Pg ! f��0�; ��0�; Q�0�; P�0�g) to set-
ting to zero the symmetry walls e�2��a��b� (with a > b)
in the full momentum constraints. Along the solution (21)
of the evolution equations (20), the only time-dependent
term in H a�0� is�@a�d�0���0�d=2 � ��@apd���d=2 so that
we have the following relation:

 @�H a�0� � @aH �0� modulo equations �20�: (30)

From this relation, we conclude that, when the
Hamiltonian H �0� � 0 constraint is satisfied, the momen-
tum constraints are conserved when the asymptotic evolu-
tion system (20) is satisfied. Finally, it suffices to impose
the constraints H �0� and H a�0� at any fixed moment to
guarantee that they are satisfied for all time.

Similarly, the asymptotic Gauss constraint for each
p-form is defined to be the Gauss constraint with the
asymptotic variables Q�0�, P�0� instead of Q, P:

 

’
a1...ap�1

�p��0�
:� @ap��0�

a1...ap � 1
2Ciwa�0�

a1
bap
��0�

ba2...ap � . . .

� 1
2Ciwa�0�

ap�1
bap
�
�0�
a1...bap

	 Ciwa�0�
ap
apb
�
�0�
a1...ap�1b: (31)

These constraints are preserved by the time evolution since
the ��0�

a1...ap (which are some of the P�0�’s) and the
Ciwa�0�

a
bc [which depend on the N �0� 2 Q�0�’s via (27)],

are constants according to the asymptotic evolution equa-
tions (20).

14The comma in the expression gcd;b denotes the spatial de-
rivative in the Iwasawa frame, i.e. gcd;b � eiwa b

iei�gcd� where
eiwa b � eiwab

iei is the Iwasawa frame (dual to the coframe �biwa:
�iwa

b�eiwa a� � 	ba) and where ei � ei
j@j is the frame dual to the

basic coframe !i � !i
jdx

j used in Eq. (3). We will also some-
times denote gcd;b by @bgcd.
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C. Construction of a Fuchsian system for the
‘‘differenced variables’’

Let us introduce the differences ��, ��, �Q, �P via15

 

� � ��0� 	 ��; � � ��0� 	 ��;

Q � Q�0� 	 �Q; P � P�0� 	 �P;
(32)

and express the Hamilton equations in term of these vari-
ables. This gives
 

@� ���
1

2
�� � 0;

@� �� � 2cAwAe
�2wA���0��e�wA� ���

	 @x

�
@cA
@@x�

e�2wA���0��e�2wA� ���
�

� @2
x

�
@cA
@@2

x�
e�2wA���0��e�2wA� ���

�
;

@� �Q �
@cA
@P

e�2wA���0��e�wA� ���;

@� �P � �
@cA
@Q

e�2wA���0��e�wA� ���

	 @x

�
@cA
@@xQ

e�2wA���0��e�wA� ���
�

� @2
x

�
@cA
@@2

xQ
e�2wA���0��e�wA� ���

�
;

(33)

where cA � cA�Q�0� 	 �Q;P�0� 	 �P; @x���0� 	 ���;
@2
x���0� 	 ���; @�Q�0� 	 �Q�; @2�Q�0� 	 �Q��. Let us sketch

the proof that this system will be Fuchsian if all the
‘‘walls’’ wA��� entering Eq. (33) are such that the follow-
ing conditions hold:

 8 A; 8 x 2 U; wA�p��x��> 
> 0; (34)

where the p� is the initial datum entering Eq. (21) which
must also satisfy the constraint (22), i.e. Gabp�ap�b � 0,
as well as the asymptotic momentum constraints (29).
Here, U denotes some open domain within the analytic
d-dimensional manifold, on which one applies the Fuchs
theorem. The fact that the system (33) is indeed of the form
(18) for u � � ��; ��; �Q; �P� comes from two separated facts.
First the matrix A being

 

0 1
2 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; (35)

is a nilpotent matrix and therefore is (thanks to the recent
progress concerning Fuchsian systems [20]) an allowed
matrix A for a Fuchs system (see Appendix B).
Concerning the source term, let us show why the condi-
tions (34) guarantee that the ‘‘source term f’’—i.e. the

right-hand side of the system of Eqs. (33)—satisfies the
right properties. Essentially the Fuchsian conditions boil
down to requiring that the source term should be of order
O�e���� for some �> 0 when f ��; ��; �Q; �P; @x ��; @x ��;
@x �Q; @x �P; @2

x
��; @2

x
�Qg take their values in a bounded set

while � 2 ���;	1� (see Appendix B). The explicit time
dependence of the source has three origins

(1) the Toda walls whose (�) time dependence is ex-
ponential e�2wA���0�� � e�2wA�p����2wA����;

(2) the various space derivatives appearing in the right-
hand side of (33) can ‘‘bring down,’’ when operating
on e�2wA�p��x���, one (@x) or two (@2

x) powers of �;
(3) in addition, the dependence of the wall coefficients

cA on @x��0� and @2
x��0� means that, for some

walls,16 the coefficient cA can also involve one or
two powers of �.

Summarizing, the right-hand side of (33) is a sum of terms
of the form

 P���e�2wA�p���;

where P��� is a polynomial in �. If we choose a � strictly
smaller than all the quantities 2wA�p��x��> 2
 > 0 con-
sidered for any x 2 U and any type of wall A, we can
conclude that all the source terms in Eqs. (33) are of the
required order O�e���� for � 2 ���;1� and x 2 U.
Therefore, we can conclude that there exists a unique
solution f ����; x�; ����; x�; �Q��; x�; �P��; x�g of Eqs. (33)
that vanishes when �! 1. Moreover, this unique solution
satisfies (within the considered spatial domain U) the
following estimate as �! 	1:

 

�� � O�e��
�����; �� � O�e��

�����;

�Q � O�e��
�����; �P � O�e��

�����;

where 0<���� <� [� being strictly smaller than the
quantities 2wA�p��> 2
].

D. Constraints

It remains to be seen that if the asymptotic equations of
motions, and the asymptotic constraints (22), (29), and
(31), are satisfied, then the exact constraints (10)–(12)
will also be satisfied.

Let us first deal with the Gauss constraints (for nota-
tional simplicity, we shall consider the case of one p � 1
form, i.e. a Maxwell field). We recall, from Eq. (12) that, in
this case, the exact Gauss constraint (in Iwasawa-variables)
reads,

 ’ :� ra�a � @a�a 	 Ciwa
b
ba�

a � 0: (36)

This exact constraint is preserved by the exact equations of

15Where here ��0�, ��0�, Q�0�, and P�0� are given in (21).

16The walls depending on spatial derivatives of � are only
‘‘subdominant’’ gravitational walls, see [12].
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motions. We also recall that the asymptotic Gauss con-
straint (31), in our case, reads

 ’�0� :� ra��0�
a � @a��0�

a 	 Ciwa�0�
b
ba��0�

a � 0; (37)

and is conserved modulo the asymptotic equations of
motions (20). We impose that the asymptotic Gauss con-
straint (37) hold. Then, the fact that the difference between
the exact and asymptotic Gauss constraints are given by
exponential walls (entering the differences between the �
and��0� etc.) implies that the exact constraint (36) vanishes
when �! 	1. Finally, from the obvious fact that an
asymptotically vanishing quantity which is constant must
be zero, we can conclude that the exact Gauss constraints
are (weakly) fulfilled. In particular, the relationships
r�T

�� � 0 are satisfied.
Let us now consider the Hamiltonian and momentum

constraints. To show that they are satisfied, we will argue
that their evolution system is ‘‘Fuchsian’’ in some gener-
alized sense and therefore that there will be a unique
solution of this system that vanishes when �! 	1. The
Fuchsian system in question turns out to be homogeneous,
so that the unique solution that vanishes when �! 	1
must be exactly zero. Then we will discuss why the exact
constraints vanish when �! 	1 (when the asymptotic
constraints are satisfied) and conclude that, since they do,
they must be the unique vanishing solution, i.e. zero.

Let us first write down the evolution system satisfied by
the exact constraints as a consequence of the Bianchi
identities and the exact evolution equations. This reads17

 @�H � e�2
P

b
�b
�
raH a � 2

X
c

�c;aH
a
�
;

@�H a �raH � 0;

(38)

where the covariant spatial derivatives must take into
account the weights of the various densities: H a has
weight 1, and H has weight 2. The ‘‘source term,’’ i.e.
the right-hand side of the evolution equation for H , can be
rewritten as

 

X
a

e�2�a���
�
@aH a 	 2�a;aH a � 2

�X
c

�c
�
;a
H a

�
;

where �a��� �
P
b�a�

b is a subdominant curvature wall
(it corresponds to the special case of the curvature walls
wabc��� with a � b). Therefore, the source term is an
allowed one for the Fuchsian-like system (18) with u �

�H ;H a� and � strictly smaller than all the quantities
2�a�p��x��> ~
 > 0 considered for any x 2 U. However,
this homogeneous system is not really a Fuchsian system
because of the presence of the spatial derivatives term
raH in the second equation. The Refs. [13,14] tackled
this problem18 essentially by working with a suitably re-
defined H constraint, say �H � e��H . This redefinition
produces for f �H ;H ag a Fuchsian system if 0<�<
2�a�p�� [for all a and for all x 2 U, p��x� being as in
Eq. (21)]. However, we think that there might be other
ways of dealing with this problem. First, we expect that a
generalization of the Fuchs theorem exists for linear ho-
mogeneous systems of the type (38), stating that the unique
solution that vanishes when �!	1 is everywhere zero.
We then expect that one way to prove such a theorem is to
work with an extended set of variables fH ;H a;Ga �
@aH g and use the recent Ref. [20]. To summarize, the
system (38) is a Fuchsian-like system that possesses a
unique solution (which is zero because the system is ho-
mogeneous) that vanishes when �! 	1.

Moreover (i) as the definition of the asymptotic con-
straints H �0����0�; ��0�; Q�0�; P�0�� and H a�0����0�; ��0�;
Q�0�; P�0�� differs from the exact ones by neglecting some
explicit exponential walls in their mathematical expres-
sion, (ii) as �� ��0� etc. tends to zero [essentially as
O�e����], and finally (iii) as we have imposed the asymp-
totic constraints, we can conclude that the exact constraints
H ��;�;Q; P� and H a��;�;Q;P� tend to zero as �!
	1.

Finally, the constraints H and H a being uniquely
defined as being an asymptotically vanishing solution of
a homogeneous Fuchsian system, vanish for all times �.

Summary.—An asymptotic solution f��0���; x�;
��0���; x�; Q�0���; x�; P�0���; x�g (21) obeying the asymp-
totic constraints (22), the asymptotic evolution system
(20) and conditions (34), parametrizes a solution
f���; x�; ���; x�; Q��; x�; P��; x�g (32) of the full con-
strained Einstein-matter equations (this is pictured in
Fig. 2). Moreover, the asymptotic closeness of the two
solutions satisfies inequalities of the type

 

����; x� � �� ��0� � O�e��
�����;

�Q��; x� � Q�Q�0� � O�e��
�����;

����; x� � �� ��0� � O�e��
�����;

�P��; x� � P� P�0� � O�e��
�����;

(39)

where � is any number strictly smaller 8 x 2 U and 8A
than the quantities 2wA�p��x��> 2
, when �! 	1.

17See Eqs. (A16) and (A17). These equations were derived in a
coordinate basis and without matter. It is obvious how to get the
expression in a general basis. Moreover, we do not have to
consider matter since r�T�� � 0 [as a consequence of the
Gauss constraints (which are imposed to be satisfied) and the
matter equations of motion]. Therefore, we can just replace in
Eqs. (A16) and (A17) the expressions (A10) and (A11) by their
general expressions (10) and (11).

18We translate here the argument used in [13,14] in our choice
of variables and gauge.
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1. On the generality of the construction

An important fact to notice about the above construction
is that the solution of the asymptotic equations (21) subject
to the constraints (22) and (29) and asymptotic Gauss
constraints possesses as many arbitrary functions as one
expects to be present in the ‘‘general solution’’ of the
constrained Einstein-matter equations. The inequalities
(34) impose restrictions on these arbitrary functions but
do not change their number. Let us repeat that this con-
struction applies only in cases where the fundamental
chamber in �-space defined by the inequalities wA��� �
0 extends beyond the light coneGab�a�b � 0,

P
�> 0 as

illustrated in Fig. 2.

2. Comparison with the asymptotically velocity dominated
system

Appendix C compares the velocity dominated system of
[13,14] and our approach. The essential differences be-
tween the two approaches are the following: (i) they do not
use the same asymptotic system, (ii) the use of Iwasawa
variables allows for a more transparent treatment of the
‘‘source terms’’ in the Fuchsian equations [indeed, in
Iwasawa variables, it suffices to read off the exponential

terms in Eqs. (33)], (iii) the use of Iwasawa variables
avoids the technical problems linked to measuring the
‘‘difference’’ between the exact and asymptotic metrics
by writing �g�1

�0� g�
a
b � 	ab 	 t

�abab with some carefully
chosen �’s and an asymmetric matrix .

We should, however, remark that the two methods differ
in the extension of the open regions U where the Fuchsian
method can be used to construct the metric. In the method
of [13,14] one can cover the full analytic manifold by using
many small neighborhoods in which the frame approxi-
mately (but analytically) diagonalizes the second funda-
mental form K. In the Iwasawa approach one can work in
large open domains, but there is a problem connected with
the presence of codimension 2 submanifolds where two
eigenvalues of K coincide. This problem is briefly dis-
cussed in Appendix C. More work is needed to extend
the Iwasawa-variable approach so as to be able to cover the
full analytic manifold.

IV. IWASAWA-VARIABLES TREATMENT OF
CHAOTIC SYSTEMS

We now turn to our main purpose, which is to give a
precise formulation of the asymptotic BKL behavior in the
chaotic case. In this perspective, we follow the same
strategy as for the nonchaotic case:

(i) We first define an asymptotic evolution system, made
of ordinary differential equations that will describe
the generic asymptotic unconstrained dynamics of
the Iwasawa variables near a spacelike singularity.
Of course, the solutions f��0�; ��0�; Q�0�; P�0�g of the
asymptotic system are much more involved than a
Kasner-like behavior and cannot be given in a closed
form.

(ii) We then define asymptotic constraints whose van-
ishing is preserved by the above defined asymptotic
evolution system.

(iii) Next, we construct a ‘‘generalized Fuchsian sys-
tem’’ that describes the behavior of the differences
�� � �� ��0�, �� � �� ��0�, �Q � Q�Q�0�, and
�P � P� P�0� between an exact solution
f�;�;Q; Pg of the considered Einstein-matter sys-
tem, and a solution f��0�; ��0�; Q�0�; P�0�g of the
asymptotic evolution system. We then argue that,
given a solution f��0�; ��0�; Q�0�; P�0�g of the asymp-
totic evolution system, there exists a unique solu-
tion f ��; ��; �Q; �Pg of the differenced system which
goes to zero as �! 	1.

(iv) We formally show that, if the asymptotic con-
straints are satisfied, the full constraints satisfy a
generalized Fuchs system. We then argue that the
full constraints will be satisfied as a consequence of
the vanishing of the asymptotic ones.

Finally, our methodology suggests that one can indeed
parametrize a solution of the full constrained Einstein-

FIG. 2. Nonchaotic behavior.—This picture is a schematic
drawing of the asymptotic dynamics of the ‘‘diagonal variables’’
at a given spatial point x, this dynamics is represented in the
�-space. The dashed arrow represents the asymptotic solution
��0� (which is valid after the last collision on a wall and
corresponds to a free motion of the particle �). The exact
solution is sketched as a continuous curve. The idea is that the
approximate solution ��0� becomes better and better as �! 	1,
this is formalized by the Fuchs theorem that tells us precisely
how �� ��0� ! 0 when �! 	1, see the text. Note that here
we consider a nonchaotic system and that the ‘‘fundamental
chamber’’ determined by the walls is not contained within the
light cone.

DESCRIBING GENERAL COSMOLOGICAL SINGULARITIES . . . PHYSICAL REVIEW D 77, 043520 (2008)

043520-11



matter system by a solution of the system of ODEs defined
in (i).

Note: we use the same notation for the solution of the
asymptotic system of equations, asymptotic solutions,
asymptotic Hamiltonian etc. in the chaotic and nonchaotic
cases.

A. Definition of the asymptotic evolution equations

The billiard picture provides a guide for choosing a
suitable asymptotic evolution system since it gives us an
intuitive description of the asymptotic dynamics. In the
billiard approximation, the dynamics of the ‘‘diagonal
variables’’ �’s is described as a free Lorentzian motion
interrupted by reflections upon infinite-potential walls and
the ‘‘off-diagonal variables’’Q’s are frozen. Here, we shall
go beyond this simplified ‘‘sharp wall’’ billiard picture and
work with exponential (Toda) potential walls. The asymp-
totic system should completely determine the asymptotic
dynamics, given some suitable initial data. It is therefore
crucial to use a system of ordinary differential equations
(rather than partial differential equations) to characterize
the asymptotic dynamics, so that we are able to use theo-
rems about existence and uniqueness of solutions.

Motivated by these reasons, we define (for any chaotic
Einstein-matter system) an asymptotic evolution system in
the following way: for the ‘‘diagonal variables,’’ we keep
in the Einstein-matter equations (17) only the dominant
exponential walls while for the ‘‘off-diagonal variables,’’
we neglect all the walls in the equations of motion. These
prescriptions define an ‘‘asymptotic evolution system’’
which reads, in sketchy form:

 @���0� �
1

2
��0�;

@���0� �
X
A

2cA�Q;P; @xQ�wAe
�2wA���0��;

@�Q�0� � 0; @�P�0� � 0:

(40)

Here A labels the dominant walls only. As exhibited in
Eq. (16) the coefficients cA of the dominant Toda walls
depend only on the Q’s, P’s and the first spatial derivative
of the Q’s. It is crucial that they do not involve the spatial
derivatives of the �’s. The solutions of the last two equa-
tions in the system (40) are simply Q�0� � Q�0��x�, P�0� �
P�0��x�. Considering Q�0��x� and P�0��x� as given data, and
replacing them in the other equations of the system (40),
we see that the diagonal variables f��0�; ��0�g, at each given
spatial point x, satisfy a system of ODEs. It is then easily
checked that the latter system of ODEs follows from the
Hamiltonian H �:
 

H �Q�0�;P�0�� ���0�;��0��

�
1

4
Gab��0�a��0�b 	

X
A

cA�P�0�; Q�0�; @aQ�0��e
�2wA���0��:

(41)

Note that, from [12], the qualitative behavior (as �! 	1)
of the solution for such systems of equations is as follows:
the ��0�’s go to zero19 and the ��0�’s behave approximately
as in the sharp billiard picture (free motions ‘‘p�	 const’’
interrupted by collisions against the walls e�2wA���).

B. Definition of the asymptotic constraints

It is natural to define the asymptotic Hamiltonian con-
straint to be

 H �0� :�
1

4
Gab��0�a��0�b

	
X
A

cA�P�0�; Q�0�; @aQ�0��e�2wA���0��: (42)

Like in the nonchaotic case the asymptotic Hamiltonian
constraint (42) coincides with the asymptotic evolution
Hamiltonian (41), and is therefore preserved by the asymp-
totic time evolution. Let us now define the asymptotic
momentum constraints as the formal limit of the ‘‘full’’
momentum constraints when �! 	1. We start from the
general expression (28) for the momentum constraints. In
view of what was recalled from [12], �! 0 as �! 	1
[after imposing (42)], so that we can discard the terms
linear in � in the previously considered nonchaotic asymp-
totic momentum constraints (29) (which neglected expo-
nential walls that we still formally neglect). We therefore
define the asymptotic momentum constraints as follows,
 

�
1

2
H a�0� :�

�
@b�iwa

b
a��� 	 Ciwa

c
cb�iwa

b
a���

	 Ciwa
d
ac�iwa

c
d��� 	

1

p!
Ea1...apF �p�aa1...ap

�
�0�
;

no sum over a; sum over d; (43)

where the F �p�aa1...ap’s are the F�p�
�i��i1�...�ip�

’s expressed in the

Iwasawa basis, where ��0�
b
a��� is defined as the right-hand

side of the second Eq. (26) and where the overall bracket
� ��0� means that one must do the replacements Q! Q�0�,
P! P�0�. Note that the momentum constraint (43) con-
tains only the time-independent quantities N �0�, @xN �0�,
Q�0�, P�0� and therefore is trivially preserved by the time
evolution.

Finally, the asymptotic Gauss constraint for each p-form
is defined to be the Gauss constraint with the asymptotic
variables Q�0�, P�0� instead of Q, P, i.e.
 

’
a1...ap�1

�p��0�
:� @ap��0�

a1...ap � 1
2Ciwa�0�

a1
bap
��0�

ba2...ap � . . .

� 1
2Ciwa�0�

ap�1
bap
�
�0�
a1...bap

	 Ciwa�0�
ap
apb
�
�0�
a1...ap�1b: (44)

19Actually, this property is guaranteed only if one imposes the
constraint H �Q�0�P�0� � 0.
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These constraints are preserved by the asymptotic time evolution since the �
�0�
a1...ap (which is one of the P�0�’s) and

Ciwa�0�
a
bc [which depends on the N �0� 2 Q�0�’s via (27)] are constants according to the asymptotic evolution equations

(40).

C. Construction of a ‘‘generalized Fuchsian’’ system for the differenced variables

We now rewrite Eqs. (17) in terms of the differences f ��; ��; �Q; �Pg,

 �a � �a
�0� 	

��a; �a � ��0�a 	 ��a; Q � Q�0� 	 �Q; P � P�0� 	 �P: (45)

This gives (when suppressing indices on �� and ��),
 

@� ���
1

2
�� � 0;

@� �� � 2
X
A

wAe�2wA���0���cAe�2wA� ��� � cA�Q�0�; P�0�; @xQ�0��� 	 2
X
A0

cA0wA0e�2wA0 ���0��e�2wA0 �
���

	
X
A0

@x

�
@cA0

@@x�
e�2A0 ���0��e�2wA0 �

���
�
�

X
wA0

@2
x

�
@cA0

@@2
x�
e�2wA0 ���0��e�2wA0 �

���
�
;

@� �Q �
X
A

@cA
@P

e�2wA���0��e�2wA� ��� 	
X
A0

@cA0

@P
e�2wA0 ���0��e�2wA0 �

���;

@� �P �
X
A

�
�
@cA
@Q

e�2wA 	 @x

�
@cA
@@xQ

e�2wA���0��e�2wA� ���
��

	
X
A0

�
�
@cA0

@Q
e�2wA0 	 @x

�
@cA0

@@xQ
e�2wA0 ���0��e�2wA0 �

���
��
�
X
A0

@2
x

�
@cA0

@@2
xQ

e�2wA0 ���0��e�2wA0 �
���
�
;

(46)

where we recall that A labels the dominant exponential
walls (with coefficient cA which depend only on
fP;Q; @aQg) while A0 labels the subdominant exponential
walls (with coefficient cA0 which depend on
fP;Q; @aQ; @2

aQ; @a�; @2
a�g). In addition, in all the coeffi-

cients cA and cA0 on the right-hand side of the system (46)
one must do the replacements (45), so that for us cA �
cA�Q�0� 	 �Q;P�0� 	 �P; @�Q�0� 	 �Q�� and cA0 �
cA0 �Q�0�	 �Q;P�0� 	 �P;@x���0� 	 ���;@2

x���0�	 ���;@�Q�0�	
�Q�;@2�Q�0� 	 �Q��.

This system of equations is not a Fuchsian system as
defined above. However, it is similar to such a system.
Indeed, it contains a space- and time-independent matrix
A which is again given by (35). However, the crucial
difference between (46) and a Fuchsian system concerns
the source term on the right-hand side. Instead of contain-
ing (modulo a bounded term) a space-independent factor
which is exponentially decreasing with �, e���, it contains
exponential wall terms e�2wA���0�� and e�2wA0 ���0�� where
��0���; x� is a solution of the asymptotic evolution system
(40).

Let us qualitatively analyze the behavior of this source
term as �! 	1. For that, let us start by recalling the
sketchy time dependence of the solution ��0� that would be
given by the billiard picture: namely, a succession of
Kasner epochs. During each Kasner epoch the source
term is exponential decreasing (in the time coordinate �),
indeed, during the ‘‘Kasner free motion’’��0� � p��	 ��

so that each exponential wall factor term e�2wA���0�� (A �
A, A0) behaves has e���x�� with ��x� � 2wA�p��x��.
However, this exponential decrease is interrupted around
the instants of collision on the dominant walls, during
which wA���0�� in fact vanishes so that e�2wA���0�� would
seem to become unity. By contrast the subdominant terms
e�2wA0 ���0�� are always exponentially decreasing because
the � particle generically never hits them, being deflected
by a collision on dominant walls before reaching them.
(We are here neglecting the measure-zero set of trajectories
which exactly hit a ‘‘corner’’ of the billiard, where a
subdominant wall intersects dominant ones.)

The sharp billiard picture just recalled is only an ap-
proximation to the asymptotic dynamics (40). When taking
into account the existence of exponential walls in the
Eqs. (40) one can describe more precisely the behavior
of ���0�; ��0�� and thereby of the crucial ‘‘source terms’’
/ e�2wA���0�� appearing on the right-hand side of (46).
Indeed, following the method used in [12] one can con-
veniently analyze the dynamics of ���0�; ��0�� following
from the asymptotic Hamiltonian H �0� (41), and submitted
to the zero-energy constraint (42). When decomposing �a

as �a � �a with �2 � �Gab�
a�b and Gab

ab � �1,
which correspondingly implies �a � ��1�a � ��a
where �a (submitted to the constraint a�a � 0) is con-
jugate to the ‘‘position’’ a on the unit hyperboloid
(Gabab � �1), and where �� is the conjugate to the
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variable �, one finds that the Hamiltonian reads

 H �0� �
1

4

�
��2

� 	
�2


�2

�
	V �0�; (47)

where

 V �0���; � :�
X
cAe

�2�wA��: (48)

The zero-energy constraint can then be written as

 

1
4 ���

2
� 	 �

2
� 	 �2V �0� � 0; (49)

where �� :� ��� is now conjugate to � :� ln�. From this
constraint one infers (see [12]) that, as �! 	1 and there-
fore �! 	1, �� tends to a finite limit say p�, and
therefore j�j oscillates between p� (far from the walls)
and 0 (during a ‘‘collision’’). From this result one also
infers that the maximum value of H �0�, reached during a
collision (i.e. when j�j � 0), is such that �2V �0� �
1
4�

2
� !

1
4p

2
� as �! 	1. Finally, one concludes that as

�! 	1, and therefore �! 	1 (roughly proportional to
�) even the maximum values of the dominant exponential
potential (reached during the collision) decay like V �0� /

��2. [One can also conclude from �a � ��1��a � ��a�
that the components of the�-conjugate momenta�a decay
proportionally to ��1.]

Summarizing, we conclude that each dominant potential
term e�2wA���0�� entering the right-hand side of (46) has the
qualitative behavior depicted in Fig. 3, namely, an overall
exponential decay, interrupted by ‘‘peaks’’ (of decreasing
magnitude / ��2) corresponding to collisions. In addition,
(see Appendix A of [12]) the �-time spacing between
successive peaks increases (roughly like ln�� ln�) as �!
	1. As for the behavior of the subdominant exponential
potential terms e�2wA0 ���0�� entering the right-hand side of
(46) it is expected to be somewhat similar to the one
depicted in Fig. 3, except for the facts that the overall
exponential decay should be faster, and that the peaks
should be much rarer (corresponding to a collision happen-
ing nearly in a corner). [We expect that the faster decay and
the rarer occurrence of peaks also compensates the fact that
the presence of �@x��2 and @2

x� in the coefficient cA0

generates a growing behavior / �2 of the cA0 .]

The system (46) for f ��; ��; �Q; �Pg [in which the right-
hand side depends on a solution f��0�; ��0�; Q�0�; P�0�g of the
asymptotic system (40)], can be viewed as a generalized
Fuchs system. Note that the structure of this ‘‘generalized
Fuchs system’’ is of the form

 

@�u�Au �
X
A

e�2wA���0��

� fA���0�; @x��0�; @2
x��0�; x; u; @xu; @2

xu�;

(50)

where u is a vector-valued unknown function u��; x� �
�u1��; x�; . . . ; uk��; x��, the linear formswA��� are the same
ones that enter in the system (46) and where the source
terms fA can be read off the system (46). In view of the
arguments given in [12] (in particular, we recall that in the
Appendix A of this reference, it has been argued that the
peaks in the source terms pictured in Figure 3 are such that
their integrated effect allows u to have a limit as �! 	1)
and partially recalled above, we expect that (under the
conditions specified below) there exists, as illustrated in
Fig. 4, a unique solution f ��; ��; �Q; �Pg of (46) tending to
zero as �! 	1 [and more generally a unique solution u
of the system (50), given suitable conditions on f, which
tends to zero as �! 	1].

τ

f (τ )

FIG. 3. Schematic drawing of the source term of the system of
Eqs. (46).

FIG. 4. Chaotic behavior.—This picture is a schematic draw-
ing of the asymptotic dynamics of the ‘‘diagonal variables’’ at a
given spatial point x, this dynamics is represented in the �-space.
The dashed curve represents the zeroth order solution ��0�. The
exact solution is sketched as a continuous curve. The idea is that
the approximate solution ��0� becomes better and better as �!
	1; this is formalized via a ‘‘generalized Fuchs theorem,’’ see
the text. Note that here we consider a chaotic system and that the
‘‘fundamental chamber’’ determined by the walls is contained
within the light cone.
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The conditions necessary for this result to hold for (46)
are expected to be the following:

(i) the asymptotic initial dataQ��x�, P��x�must be such
that the coefficients cA�Q��x�; P��x�; @xQ��x�� of
the dominant potential walls remain strictly positive
over the considered domain U;

(ii) the asymptotic initial data ���x� � ���1; x�,
���x� � ���1; x� at some finite time �1 must satisfy
the zero-energy constraint H �0����; ��; Q�; P�� �
0.

D. Constraints

To complete the story, we need to check that the exact
constraints are satisfied (along the exact equations of mo-
tion) once the asymptotic ones are fulfilled (along the
asymptotic equations of motion). The reasoning is the
same as in the nonchaotic case:

(1) First we treat the Gauss constraints. We impose that
the asymptotic Gauss constraints (44) hold. It is
again obvious that these asymptotic constraints are
preserved by the asymptotic equations of motion
(40). On the other hand, the exact Gauss constraints
(12) are preserved by the exact evolution equations.
Moreover, they differ from the asymptotic ones by
exponential walls, and consequently they vanish
when �! 	1. As in the nonchaotic case, we can
conclude that they are equal to zero (because they
are constant and they tend to zero).

(2) We then turn to the Hamiltonian and momentum
constraints. Let us require that the initial data Q�,
P� of the asymptotic evolution system satisfy the
asymptotic momentum constraints H �0�a � 0, (43)
in addition to the asymptotic Hamiltonian constraint
H �0� � 0. The constraints obey the evolution sys-
tem (38),20 i.e.

 

@�H �
X
a

e�2�a���
�
@aH a 	 2�a;aH a

� 2
�X
c

�c
�
;a
H a

�
;

@�H a �raH � 0: (51)

As in the nonchaotic case, the above system is not
Fuchsian due to (i) the term raH [however, as we
have argued previously, this term should not be a
problem], (ii) the source term [i.e. the right-hand
side of the first equation in the system (51)] which is
not an allowed Fuchsian source term (this fact con-
trasts with the nonchaotic case). However, we have
already dealt with this kind of source term in the

system (46). In the present case, the source term is
even ‘‘better’’ than the one of (46) because it con-
tains only ‘‘subdominant walls’’ which decay faster
than the dominant ones and which exhibit rarer
peaks (because the peaks occur when the ‘‘ball’’
hits a corner) (however these peaks contain a factor
/ �2) (see discussion in Sec. IV C). Accordingly, the
system (51) is a ‘‘generalized Fuchsian’’ system in
the sense given in Sec. IV C and we consider it likely
that it possesses a unique solution that vanishes
when �! 	1. On top of that, the system (51) is
homogeneous and this implies that the unique solu-
tion in question is zero.
We can then conclude that the exact Hamiltonian
and momentum constraints are satisfied since
(i) they differ from the asymptotic ones, which are
imposed to hold, by exponential walls (this implies
that they decay as �! 	1), (ii) they obey a ‘‘gen-
eralized Fuchs system,’’ as just argued, and there-
fore there exists a unique solution that vanishes
when �! 	1.

Summary.—Let us summarize our conjectural results
concerning the asymptotic dynamics of the fields in the
vicinity of a spacelike singularity for a chaotic Einstein-
matter systems in the following statement:

Let
(i) �Q�0��x�; P�0��x�� be functions of the spatial coordi-

nates such that the coefficients cA�Q�0��x�; P�0��x�;
@aQ�0��x�� nowhere vanish, and that the ‘‘fundamen-
tal chamber’’ defined by the inequalities wA��� � 0
is contained within the future lightcone Gab�

a�b �
0,
P
a�

a � 0,
(ii) ���0�; ��0�� be a solution a the asymptotic system of

Eqs. (40) with initial conditions ���0��x�; ��0��x��
given at some finite � � �1 which satisfy the asymp-
totic Hamiltonian constraint (42), and

(iii) impose that the asymptotic momentum constraints
(43) are satisfied at � � �1 as well as the asymp-
totic Gauss constraints (44).

Then there exists a unique solution ��;�;Q; P� of the
Iwasawa variable form of the full constrained Einstein-
matter equations such that the differences f ���
����0�; �������0�; �Q�Q�Q�0�; �P� P�P�0�g tend
to zero as �! 	1.

V. PURE GRAVITY IN DIMENSIONS 4 � D � 10

To give a more concrete example of the general formu-
lation of the BKL behavior of Einstein-matter systems
discussed here, let us consider the specific example of
pure gravity. We consider spacetime dimensions D such
that 4 � D � 10, so that the corresponding behavior is
generically chaotic. For this case, our precise formulation
of the BKL conjecture is the following (we denote by d :�
D� 1 the space dimension 3 � d � 9):

20See Appendix A and the discussion in the section about the
constraints in the nonchaotic case.
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(i) Initial data.—Let us give ourselves the following
initial data:
d�d� 1�=2 spatial functions N �0�

a
i�x� for a < i;

d�d� 1�=2 spatial functions P
�0�
i
a�x� for a < i;

d spatial functions �
�0�
a�x�; and

d spatial functions ��0�a�x�.
(ii) Asymptotic Hamiltonian.—Given these data we de-

fine the following asymptotic Hamiltonian:
 

H asymp���0�; ��0�� �
1
4G

ab��0�a��0�b 	V asymp
S

	V asymp
G ; (52)

where Gab��0�a��0�b :�
Pd
a�1 �

2
�0�a �

1
d�1 �

�
Pd
a�1 ��0�a�

2, and where

 V asymp
S �

1

2

Xd�1

a�1

e�2��
�0�
a	1��

�0�
a�
�P i
�0�aN

a	1
�0�i �

2;

(53)

(where i � 1; . . . ; d is summed over) and

 V asymp
G � 1

2e
�2�1d�1d���0���C1

�0�d�1d�
2: (54)

In the last equation, �abc��� (for b � c) denotes the
linear form �abc��� � �a 	

P
e�b;c�

e (evaluated
for a � 1, b � d� 1, and c � d), and C

�0�
a
bc

[with b � c and C�0�
a
bc � �C�0�

a
cb] denote the

structure functions [d�
�0�
a � � 1

2C�0�
a
bc ^

�
�0�
b�
�0�
c] of the ‘‘asymptotic Iwasawa frame’’

��0�
a�x� �N �0�i

a�x�!i. Note that all the coeffi-
cients entering the exponential potential terms (53)
and (54) depend only on the spatial point [through
P �0��x�, N �0��x�, and @xN �0��x� which enters C�0�],
so that the asymptotic evolution system for � and �
constitutes, at each point of space, a well-defined
system of ODE’s.

(iii) Asymptotic evolution equations.—The equations of
motion deduced from the Hamiltonian (52) are
called the asymptotic evolution equations, they
are the ‘‘chaotic analog’’ of the AVTD evolution
system considered in the nonchaotic, monotonic
power-law case. They are of the form:
 

@��a�0� �
1

2
Gab��0�b;

@���0�a � �
@

@�
�0�
a �V

asymp
S ���0�;P �0�;N �0��

	V asymp
G ���0�;P �0�;N �0�; @xN �0���:

(55)

(iv) Asymptotic constraints.—We impose that the initial
data satisfy the following asymptotic constraints:

 

H asymp���0�; ��0�;N �0�; @xN �0�;P �0�� � 0;

H asymp
a �N �0�; @xN �0�;P �0�� � 0;

(56)

where H asymp is the (conserved) quantity defined
in Eq. (52), and where the definition of H asymp

a is
Eq. (43) above.

Finally, this leads to the following precise formulation of
the BKL conjecture in Iwasawa variables. Let, for x 2 U,
the spatial functions P �0�, N �0�, and C�0� be such that the d
x-dependent coefficients P

�0�
i
aN �0�

a	1
i and C

�0�
1
d�1d

[whose squares define the coefficients of the d exponential
potential terms (53) and (54)] do not vanish in U. Let
���0���; x�; ��0���; x�, be the unique solution of the asymp-
totic evolution system (55) with initial conditions
��0���1; x� � ��0��x� and ��0���1; x� � ��0��x� at some fi-
nite time � � �1 and satisfying the asymptotic constraints
(56). Then there exists a unique solution ����; x�; ���; x�;
N ��; x�;P ��; x�� of the vacuum Einstein equations (in-
cluding the constraints) such that the differences ����; x� 
���; x� � ��0���; x�, ����; x�  ���; x� � ��0���; x�,
�N ��; x� N ��; x� �N �0��x�, �P ��; x�  P ��; x� �
P �0��x� tend to zero as x 2 U is fixed and �! 	1.

VI. ASYMPTOTIC GEOMETRICAL STRUCTURE
ON COSMOLOGICAL SINGULARITIES

In the previous sections, we studied in detail the asymp-
totic dynamics of the gravitational field in the vicinity of a
spacelike singularity in Iwasawa variables. In particular,
we have seen that some of the variables have limits when
�! 	1, i.e. theQ’s and P’s while the �’s have no limits.
Moreover, we have argued that in the ‘‘chaotic’’ case the
�a’s tend chaotically to zero. Of course these Iwasawa
variables are dependent on the choice of coframe !i :�

!i
j�x�dx

j used in Eq. (3) (where !i could be simply a
coordinate coframe). This raises the question to know
whether the Iwasawa variables, despite their ‘‘gauge de-
pendence’’ capture some well-defined geometrical struc-
ture at the BKL limit and what is this structure. In the
nonchaotic case, this question has a clear answer. Indeed,
the frames that diagonalize the second fundamental form
with respect to the metric have a well-defined limit at the
singularity. They therefore provide a field of ‘‘directional
frames’’ at the singularity, i.e. a field of frames considered
modulo rescalings of each frame vector. In this section, we
will investigate the chaotic case.

Our starting point is the existence of many variables
having finite limits at the singularity, namely, the N a

i’s
and P i

a’s, [say N a
i��; x� !N �0�

a
i; �x�P

i
a��; x� !

P
�0�
i
a�x� as �! 	1]. The problem is, however, that the

quantities N
�0�
a
i and P

�0�
i
a do not have, a priori, a clear

geometrical meaning because they depend on the coframe
!i used on Md. One way of addressing this issue is to act
on the coframe !i with an arbitrary local transformation

THIBAULT DAMOUR AND SOPHIE DE BUYL PHYSICAL REVIEW D 77, 043520 (2008)

043520-16



� 2 GL�d;R� to investigate what information is left in-
variant in N �0�

a
i�x� and P �0�

i
a�x� when ‘‘rotating’’ the

coframe by an arbitrary �. We will try to assign canonical
values to the Iwasawa variables N

�0�
a
i�x� and P

�0�
i
a�x�

at the singularity21 by means of a suitable � [e.g. in
the nonchaotic case we can find �’s such that:
N
�0�
a
i�x�!

�	ai and P
�0�
i
a�x�!

�0]. If we are able to
assign canonical values to all asymptotic values of the
N �0�’s and P �0�’s, this would mean that we would have
again privileged directions at the singularity like in the
nonchaotic case. We will see that the situation is actually
more subtle than this.

A general matrix � 2 GL�d;R� can be decomposed
into three parts (i) a diagonal part, (ii) an upper triangular
matrix (with ones on the diagonal) matrix, and (iii) a lower
diagonal matrix (with ones on the diagonal).

(i) The action of the diagonal part of � consists in
shifting the values of �’s. However, as the �’s have no
limit as �! 	1 it is not clear how to extract some
geometrical meaning from such shifts of the �’s.

(ii) Concerning the action of the upper triangular part, let
us show that it can be used to fix the asymptotic values of
the N

�0�
a
i’s to be 	ai. The crucial point is that if we act on

the coframe by an upper triangular matrix, i.e.!0i �
�i

j!
j, since

 ds2 �
X
a

e�2�aN a
iN

a
j!

i!j;

must be equal to ds02 �
P
ae
�2�0aN 0a

iN
0a
j!
0i!0j and

since the transformation is defined by demanding that N
and N 0 be both upper triangular, we easily see that

 N a
i �N 0a

j�
j
i �for upper trianglular � only�:

This result is actually valid for any �, and yields, in the
limit �! 	1, N �0� �N 0

�0��. Now it suffices to per-
form the transformation with �i

j chosen to be the upper
triangular matrix �i

j �N
�0�
i
j to fix the canonical values

of the N 0
�0�’s to be the unit matrix. Note that after this

fixing of the frame [such that N 0
�0� � 	]) the frame !0i

becomes identical at the singularity with the limiting
Iwasawa frame �a �N 0a

i!
0i �N a

i!
i.

(iii) Let us now consider the effect of the remaining
freedom in a general � 2 GL�d;R�, i.e. a lower triangular
matrix, namely,

 � �

1 0 0 0 0
�2

1 1 0 0 0
�3

1 �3
2 � � � 0 0

..

. ..
. . .

.
1 0

�d
1 �d

2 � � � �d
d�1 1

0
BBBBBBB@

1
CCCCCCCA:

The action of any � (upper or lower triangular) on the
frame components of the metric ds2 � gij!

i!j �

g0ij!
0i!0j is always given by the following linear action:

 g0ij��� � ��1k
igkl����

�1l
j: (57)

However, the induced action of such a � on the Iwasawa
variables���� and N ��� parametrizing gij��� is somewhat
complicated when � is lower diagonal because it is non-
linear (contrarily to the simpler case just discussed, of an
upper triangular matrix whose action was nicely compat-
ible with the upper triangular nature of N and was thereby
linear). Let us then consider the case where the remaining
lower triangular matrix � is close to the identity, say

 � � 1	 �;

with infinitesimal (strictly lower triangular) �. In addition,
as we always assume that we have already used an upper
triangular matrix �	 to fix N �0� (after dropping the
primes) to the identity, we can write that N ��� is of the
form,

 N ��� � 1	 n���;

with n��� ! 0 as �! 	1. As both matrices � and N ���
can be treated as infinitesimal elements, we will neglect
terms of order O�n2� and O��2�. Note also that, as we
are near a situation where N a

i � 	
a
i , the distinction be-

tween the ‘‘a’’ type indices and ‘‘i’’ type indices disappear.
When replacing the Iwasawa decomposition gij �P
ae
�2�aN a

iN
a
j in Eq. (57), we find at the linear ap-

proximation,

 

n0ij � nij 	 �n; ��
i
j 	O�e

�2��j��i��;

e�2�0i � e�2�i�1	 2�n; ��ii� no sum over i:
(58)

As the P ’s are the canonically conjugate to the N � 1	
n, the law of transformation of the P ’s is obtained by using
the ‘‘conservation’’ of the canonical form PdN 	
�d� � P 0dN 0 	 �0d�0. We then easily find

 P i
j � P 0ij 	 ��;P

0�ij � �
i
j��

0j � �0i� 	O�e�2��j��i��:

In addition we see from Eq. (58) above that the limit
n��� ! 0 is invariant under such a lower triangular trans-
formation �, so that the canonical value N �0� � 	ia is left
fixed by such a �. Since at the BKL limit, the exponential

21Note that, in the nonchaotic case, we have access to more
information, namely, the nonzero limits of the �’s.
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‘‘symmetry walls’’ e�2��j��i� (j > i) vanish and that, in the
chaotic case, the momentum conjugate to the �’s is going
to zero (after each collision, they are ‘‘redshifted’’ [12]),
we obtain the following action of the lower triangle � �
1	 � on the limiting values of the P ’s, i.e. P �0�’s:

 P
�0�
0i
j � P

�0�
i
j 	 ��;P �0��

i
j: (59)

In view of the strictly lower triangular nature of both � and
P it is easily seen that the transformation law (59) implies
that the elements of P �0� on the first lower diagonal are left
invariant:

 P 0
�0�
i	1
i � P

�0�
i	1

i:

Consistently with our general requirement of having non-
vanishing dominant symmetry wall coefficients, we as-
sume that all the constants P

�0�
i	1

i are nonvanishing.22

Then it is easily seen that by choosing a suitable � one
can change at will the values of the P �0�’s on the lower
diagonals, P �0�

i	n
i (n � 2). This proves that there exists a

� such that we can fix P �0� to the following canonical
form,

 P � �

0 0 0 0 0
P 2

1 0 0 0 0
0 P 3

2 � � � 0 0

0 0 . .
.

0 0
0 0 � � � P d

d�1 0

0BBBBBBB@

1CCCCCCCA: (60)

Let us now study what are the coframe changes that leaves
the canonical of N �0� [N �0� � 	] and P �0� [P �0� � P �]
invariant. We already know that the canonical form
N �0� � 	 fixes the upper part of � to be unity. As for
the lower diagonal part � � 1	 �, the request that P �0� be
fixed to P � implies, from the Eq. (59), the condition

 ��;P ��
i
j � 0: (61)

To analyze the consequences of this constraint, we decom-
pose � into a sum of matrices with nonvanishing elements
only on one of its ‘‘lower’’ diagonals, i.e. � � �1 	 �2 	
. . .	 �d�1 where the only nonzero elements of �n are
��n�

i	n
i. It is then easily seen that �1 must be proportional

to P �. Then one similarly finds that �2 / P 2
�, etc. Finally

the most general � � 1	 � fixing P �0� to its canonical
value P � is found to be of the form,

 � � �1P � 	 �2P
2
� 	 �3P

3
� 	 . . .	 �d�1P

d�1
� ; (62)

for some constants �n.

Let us discuss the geometrical meaning of our findings.
We consider again a general � 2 GL�d;R�, containing
both upper and lower triangular parts (for the reasons
explained above we do not consider the diagonal part). If
we had been able to define a canonical form whose ‘‘sta-
bilizer’’ in GL�d;R� had been only the unit matrix, this
would have meant the existence of a preferred directional
frame (frame modulo rescalings) at each spatial point x
‘‘on the singularity’’. On the other hand, if the stabilizer
had been the full group GL�d;R�, this would have meant
that no preferred frame at all remained on the singularity.
Actually we have a intermediate situation, our stabilizer S
is a proper subgroup of GL�d;R�, f 1g 
 S 
 GL�d;R�. It
defines an equivalence class of directional frames that we
can call a partially framed flag.23 The elements of our
stabilizer S are given at the infinitesimal level by the
formula (62). Therefore, an element s of S can be written as

 s � e�1P �	�2P
2
�	�3P

3
�	...	�d�1P

d�1
� ; (63)

where �1; �2; �3; . . . ; �d�1 are constants. The element s of
S acts on the coframe !i as

 !0i � sij!
j: (64)

It is then easily checked that S is a commutative group of
dimension d� 1. More precisely, in view of the fact that
the various powers of the matrix P � commute among
themselves, one finds that the group composition of two
elements of S is simply given by

 s��1; �2; . . . ; �d�1� � s��
0
1; �

0
2; . . . ; �0d�1�

� s��1 	 �
0
1; �2 	 �

0
2; . . . ; �d�1 	 �

0
d�1�: (65)

[In mathematical terminology, S is a unipotent Abelian
subgroup of the Borel subgroup of GL�d;R�.] Explicitly,
the matrix elements of s (63) read as follows:

 sni �
X

j2�1;...;d�1�j 9 m2fN?jmj�n�ig

�mj
m!

P
�0�
n
n�1 . . .P

�0�
i	1

i:

(66)

22Such a nilpotent element P �0� is called ‘‘regular’’ in the
mathematical literature.

23Let us recall that a (complete) flag can be seen as the
equivalence class of ‘‘directional frames’’ with the following
equivalence relations. A ‘‘directional frame’’ given by the direc-
tions fv1; . . . ; vdg is equivalent to the ‘‘directional frames’’
fv01; . . . ; v0dg constructed by picking a first direction along the
vector v1 (v01 / v1), then a second direction v02 belonging to 2-
plane spanned by v1 and v2 (v02 / v2 	 �v1), a third direction
belonging to the 3-plane spanned by v1, v2, and v3 (v03 / v3 	
�v2 	 v1), and so on up to a last direction along a vector v0n
which is an arbitrary vector in Rd. In other words, the stabilizer
of a flag is the full subgroup of lower triangular matrices of
GL�d;R�.
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For instance in d � 3, the matrix s reads,

 s �

1 0 0
�1P �0�

2
1 1 0

�12�
2
1 	 �2�P �0

3
�2P �0�

2
1 �1P �0�

3
2 1

0B@
1CA: (67)

Therefore, in d � 3, the class [defined by the relation (64)]
of coframes equivalent to some given coframe !0i is ex-
plicitly given by

 !01 � !1; !02 � !2 	 �1P �0�
2

1!
1;

!03 � !3 	 �1P �0�
3

2!
2 	

�
1

2
�2

1 	 �2

�
P
�0�

3
2P �0�

2
1!

1:

(68)

By duality between frames and coframes (h!i; eji � 	ij),
one can then easily deduce the corresponding equivalence
classes of frames. The equivalence class of a frame ei is
given by

 �ei� � fe
0
i � ejs

�1j
ijs 2 Sg: (69)

For d � 3, we have explicitly,

 

e01 � e1 � �1P �0�
2

1e2 	 �
1
2�

2
1 � �2�P �0�

3
2P �0�

2
1e3;

e02 � e2 � �1P �0�
3

2e3;

e03 � e3:

(70)

Summary.—The equivalence class of frames and co-
frames with respect to which the limiting values of N �0�

and P �0� take the canonical values N �0� � 	 and P �0� �
P � (60) is described by the relations (64) and (69) which
contain d� 1 arbitrary parameters. This equivalence class
defines a privileged geometrical structure at the singularity,
which we call a partially framed flag. For instance, in d �
3 this partially framed flag comprises: (i) one privileged
direction e3, which is independent of the basic frame !i,
(ii) then the equivalence class of the vector e2 must lie in a
privileged 2-plane containing e3, (iii) finally, after having
chosen a representative e2 in the class �e2� (i.e. �1 is fixed),
the third vector e1 must lie in a privileged 2-plane defined
by e1 � �1P �0�

2
1e2 	

1
2�

2
1P �0�

3
2P �0�

2
1e3 and e3. (This is

different from a flag where e1 would have been an arbitrary
direction in the full R3.)

It is remarkable that at the chaotic BKL limit, we have a
such geometrical structure left. At the singularity, we could
have guessed that nothing is left from the metric structure
because of the chaotic character of the asymptotic dynam-
ics. Let us note that our results have been partially antici-

pated in [2] where a law of ‘‘rotation of Kasner axes’’ was
derived. This law is somewhat similar to our results (68)
but, actually, it has a different physical meaning. Indeed,
the first Kasner axis l which is preserved in the law
approximatively derived in [2] is supposed to belong to
the ‘‘growing’’ eigen axis pl � p1 < 0, so that it would be
a different axis that would be preserved during further
collisions. One would then have no privileged direction
at the singularity. As we have shown here, there exists a
well-defined geometrical structure at the singularity: a
partially framed flag which is rather rigid in the sense
that it depends only on d� 1 arbitrary parameters [while
a generic flag would involve d�d� 1�=2 arbitrary
parameters].

VII. CONCLUSION

In this paper, we started by reconsidering the asymptotic
dynamics, in the vicinity of a spacelike singularity, of the
fields for ‘‘nonchaotic’’ Einstein-matter systems. We have
outlined a new proof that gives this asymptotic dynamics
(which is essentially given, at each spatial point, by a
monotone power-law solution in terms of the proper
time). Our method is based on the Iwasawa decomposition
of the spatial metric and on the Hamiltonian formulation of
Einstein-matter systems. As in Refs. [13,14], we have used
the Fuchs theorem to conclude. More precisely, we have
defined an asymptotic system of equations which is a
system of ODEs and we have also defined asymptotic
constraints. Next, we have shown that the differenced
variables (i.e. the differences between the solution of the
exact Einstein-matter constrained equations and the solu-
tion of the asymptotic Einstein-matter constrained equa-
tions) obey a Fuchsian system. A solution of the
constrained asymptotic system, together with initial data,
can thus be used to parametrize an exact constrained
solution. The advantages of our formulation is that it is
shorter, more transparent (the neglected terms are walls/
subdominant walls), and that we avoid the problem of the
symmetry of the metric encountered in [13,14]. In
Appendix C, we discuss the spatial domain on which a
Fuchsian analysis can be applied in this context and point
out that our method cannot be used in some zero-measure
codimension 2 submanifolds (in Refs. [13,14], there is a
quite involved construction to deal with these submani-
folds). We also showed that this problem originates in the
‘‘spinorial’’ nature of the eigenvectors of the second fun-
damental form around the submanifold where 2 (or more)
eigenvalues coincide.

We next turned to the chaotic Einstein-matter systems
and formulated a precise statement for the chaotic BKL
behavior. This is achieved along the same lines as our
formulation of the nonchaotic case. We parametrize, at
each spatial point, the generic solution of the asymptotic
behavior of the fields close to a spacelike singularity in
terms of a constrained system of ODEs (and some initial
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data). Then we argue that the difference between the
solution of the exact chaotic constrained Einstein-matter
system and the asymptotic system just defined satisfies a
’’generalized Fuchs system.’’ We leave to others the task of
proving that such ‘‘generalized Fuchsian systems’’ admit a
unique, asymptotical vanishing, solution. Our purpose here
was mainly to formulate, in precise mathematical and
physical terms, this asymptotic characterization of chaotic
solutions of Einstein-matter systems.

Finally, we addressed the question of the existence of
some asymptotic geometrical structure defined at the sin-
gularity for a chaotic system. We knew that some of the
metric variables had finite limits at the singularity and it
was therefore natural to wonder whether we could extract
some geometrical structure from these limiting values. A
first slight, we could expect that the chaotic nature of the
asymptotic dynamics would destroy any structure at the
singularity. We showed that it is not the case: partially
framed flags can be defined at the singularity. These par-
tially framed flags are, as their names indicate, more rigid
than flags and less rigid than frames.
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APPENDIX A: EVOLUTION EQUATIONS OF THE
HAMILTONIAN AND MOMENTUM

CONSTRAINTS

The purpose of this appendix is to obtain the evolution
equations for the exact Hamiltonian constraint H (10) and
exact momentum constraints (11) in our gauge choices.
Here we do not consider matter for simplicity and we work
in a coordinate basis. These evolution equations can be
derived from the Bianchi identities and the evolution equa-
tions for the spatial metric. In this perspective, we have to
know what are the evolution equations in the gauge we are
interested in.

The first order action of pure gravity in D � d	 1
spacetime dimensions S�gij; �ij; ~N;Ni� reads,

 S�gij; �ij; ~N;Ni� �
Z
dx0ddx� _gij�ij � ~NH � NiH i�:

(A1)

Its variation with respect to �ij can be understood as the
definition of the �ij in terms of _gij, the variations with
respect to gij, ~N, Ni giving, respectively, the equations of
motion, the Hamiltonian constraint and the momentum
constraints.24 Note that the dot means a derivation with
respect to x0. Let us now use the Einstein-Hilbert action,R
dDx

�������������
��D�g

q
�D�R in the so-called Palatini formalism (i.e.

the Christoffel symbols ���� are considered to be indepen-
dent of the metric elements g��) to determine the link
between the Hamiltonian equations of motion 	S=	gij �
0 and the usual Einstein equations �D�G�� � 0. The varia-
tion of the Einstein-Hilbert-Palatini action gives
 

	SEHP �
Z
dDx

�������������
��D�g

q
���D�G��	g��

	 g���	����;� � 	����;��;

�
Z
dDx��

�������������
��D�g

q
�D�G��	g��

� ��
�������
�g
p

g���;� � 	
�
��g

�� �������
�g
p

�;��	�����; (A2)

where �D�g denotes the determinant of the spactime metric,
�D�G�� is the Einstein tensor and the second equality is
obtained by integration by parts (we neglect the boundary
terms). For simplicity, let us assume that Ni � 0 on shell
(but keeping 	Ni � 0), and that most of the usual relations
between ���� and the derivatives of g�� are constrained to
hold, namely,
 

�0
00 �

1

2

g;0
g
	

~N;0

~N
;

�0
0i � �0

i0 �
1

2

g;i
g
	

~N;i

~N
;

�i00 �
1

2
~N2gijg;j 	 g

ij ~N ~N;jg;

�ijk �
1

2
gil�glj;k 	 glk;j � gjk;l�:

(A3)

Moreover we require that �0
jk is related to the �jk0 � �j0k

via �j0k � ggji�0
ik. We can then verify that the terms in

	� can be ignored to compute the functional derivative of
S with respect to gij, ~N, and Ni [the coefficient in front of
these variation in (A2) vanish]. It is then straightforward to
derive the following relations:

24We recall the following relationships,

 

�D�g�� �
NkN

k � ~N2g Nj
Ni gij

� �
;

�D�g�� �
� 1

~N2g
Nj
~N2g

Ni

~N2g
gij � NiNj

~N2g

0@ 1A;
where � � �0; i� and � � �0; j�.
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	SEHP

	gij
� ~Ng���D�Gij 	 ~N2g�D�G00gij� 	O�Nk�; (A4)

 

	SEHP

	 ~N
� 2�D�G00 ~N2g2 	O�Nk�; (A5)

 

	SEHP

	Ni
� �2 ~Ng�D�Gi0 	O�Nk�: (A6)

Note that we did not write explicitly the terms proportional
to Ni because we will work in the gauge Ni � 0. On the
other hand, we have

 

	S
	gij

� � _�ij � ~N
	H
	gij

	O�Nk�; (A7)

 

	S

	 ~N
� �H ; (A8)

 

	S
	Ni

� �H i: (A9)

When identifying 	SEHP with 	S, one obtains

 H � �2g2 ~N2�D�G00 	O�Nk� � �
2
~N2
G00 	O�N

k�;

(A10)

 H i � 2g ~N�D�Gi0 	O�Nk� � �
2
~N
gijG0j 	O�Nk�:

(A11)

On the other hand, the equations of motion 	S=	gij � 0
are found to be equivalent to the equations

 

�D�Gij �
1

2g
Hgij 	O�Nk�: (A12)

Note that our result (A12) is linked to our choice of
‘‘rescaled lapse’’ ~N as basic lapse variable. The result
would be different if we were using the usual lapse N.

Let us now use the Bianchi identities B� :�

r�
�D�G�

�  0 to derive the evolution equations for the
constraints. We use the equality,

 B� �
@��

�������������
��D�g

q
�D�G�

���������������
��D�g

q �
1

2
@�g��

�D�G��: (A13)

When inserting in the expression of B0 the relationship
between H , H i and the components of the Einstein
tensor (A10) and (A11) as well as the equations of motion
(A12), we obtain the evolution equation for H ,

 

1

2g
@�H �

~N
2
riH i � �ri ~N�H i 	O�Nk� � 0: (A14)

Note that H i � gijH
j and that it is a tensorial density of

weight 1 while ~N is a scalar density of weight �1. The
covariant derivatives riH i and ri ~N must take into ac-
count these weights: for instance riH i � riH

i �

@i�g
ijH j� (in a coordinate frame) and ri ~N �

@i� ~N
���
g
p
�=

���
g
p

. From Bi � 0, we get

 

1

2g

�
@�H i

~N
�riH

�
	O�Nk� � 0: (A15)

Note that H is a scalar density of weight 2 so thatriH �
g@i�H =g�. In our gauge choices, i.e. ~N � 1 and Ni � 0,
the Eqs. (A14) and (A15) read,

 @�H � griH i 	 g;iH
i; (A16)

 @�H i �riH � 0: (A17)

APPENDIX B: FUCHSIAN SYSTEMS

1. Fuchs theorem

The general form of a Fuchsian system ([19,20,41] and
references therein) for a vector-valued unknown function
u�t; x� � �u1�t; x�; . . . ; uk�t; x��, defined on an open subset
of R� Rn with values in Rk, is

 t@tu	A�x�u � t�f�t; x; u; @xu�; (B1)

where @xu denotes a finite number of derivatives of u with
respect to the variables x (they are not restricted to be of
first order); the function f is defined on �0; T0� �U1 �U2

(whereU1 is an open subset of Rn andU2 is an open subset
of Rk	nk) and takes values in Rk; and �> 0. A is an
analytic k� k matrix-valued function defined on U1. The
system (B1) is said to be Fuchsian if the matrix A�x� and
the function f fulfill the following conditions:

(i) condition on A.— the matrix A�x� is required to
satisfy some lower boundedness condition. One suf-
ficient condition, that has been used in several works
[13,14], is that there is a constant 
 such that
Real���> 
> 0, for each eigenvalue � of A at
any point. Recently, this condition has been relaxed
to requiring that there exists an 0 � � � � such that
j�jA�� be bounded for � varying in the interval
0 � � � 1 [20]. Essentially, this condition means
that the real part of the eigenvalues of A are every-
where strictly larger than ��. This is of particular
interest for us, since the matrix A relevant in our
case is nilpotent so that j�jA grows like a power of
log� as �! 0 (so that we can simply use any � in
the interval 0<�<�).

(ii) condition on f.— the ‘‘source term’’ f (after having
factored t�) is required to be regular, i.e. f must
possess an analytic continuation in x, u, and @xu
and, as a function of t, must be continuous on �0; t��
for some finite time t�.
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For more precise conditions on A and f, we refer to [14]
and references therein.

Fuchs theorem.—If the system (B1) satisfies the above
conditions to be Fuchsian, then it possesses a unique
solution u that vanishes as t! 	0 (see e.g. [14,20]).

Note.—After the change of variable t � e�� (such that
the singularity is now located at �! 	1), a Fuchsian
system reads,

 @�u�A�x�u � e��� �f��; x; u; @xu�; (B2)

where, essentially, �f must be analytic in x, u, @xu and
bounded in � as �! 	1. This is the form we shall use in
the text.

2. Shift of the eigenvalues of A

One may wonder if it is possible to have a more precise
description of how fast the solution u of the Fuchsian
system (B1) goes to zero when t goes to zero. To answer
this question, let us rewrite the system (B1) in terms of the
variable �u defined as follows:

 �u � t��u; 0< �<�: (B3)

Inserting (B3) in the system (B1), it is straightforward to
obtain

 t@t �u	 �A�x�u � t �� �f�t; x; �u; @x �u�; (B4)

where

 

�A �A	 �1; �� � �� �

�f � f�t; x; t�u; t�@xu�:

If f is regular, then �f is regular. Note that the eigenvalues
of �A have been shifted by � > 0 compared to those of A,
so that if A satisfies the lower boundedness conditions
eigenvalues�A�>��, so does �A (with the correspond-
ing �� � �� �). Therefore the ‘‘shifted’’ system (B4) is
again Fuchsian and we know that it admits a unique
solution �u that vanishes when t! 	0. This tells us that
the unique solution of the Fuchsian system (B1) that van-
ishes as t! 	0 actually vanishes as u � t� �u with �u �
o�1�, i.e. as o�t�� for any � < �.

Summary.—The ‘‘shift’’ of u allows us to gain more
precise information about how the unique (asymptotically
vanishing) solution u of the system (B1) decays as t! 	0.
If the right-hand side of the Fuchsian system (B1) decays
as t�f then u is an O�t��
� for any 
 > 0. When using the
� variable, this essentially means that a source term decay-
ing as e��� corresponds to a unique, asymptotically van-
ishing, solution decaying as e���� for any 0<�� <�

Note.—For completeness, let us define the notations O
and o. A function F�t; x; p� defined on �0; T0� �U1 �U2,
where U1, U2 are open subsets of Rn and RN, respectively,
is said to be O�G�t�� if there is a constant C such that

 jF�t; x; p�j � CjG�t�j for t 2 �0; t0�; �x; p� 2 K:

The notation F � o�G�t�� is used to indicate that F=G
tends to zero uniformly on compact subsets of U1 �U2

as t! 0.

APPENDIX C: SUBTLETIES OCCURRING WHEN
SOME OF THE EIGENVALUES OF THE SECOND

FUNDAMENTAL FORM COINCIDE IN THE
NONCHAOTIC CASE

The usual AVTD approach uses a rather complicated
construction to deal with the neighborhoods of points
where some eigenvalues of the second fundamental form
kij coincide [13,14]. Such a complication is needed be-
cause the frame vectors that diagonalize kij with respect to
gij are not analytic in x near such points. Here we consider
the behavior of Iwasawa variables in these regions. For a
full comparison one should carefully analyze the different
slicing hypersurfaces in the two approaches: Gaussian
slicing N � 1 in AVTD vs pseudo-Gaussian slicing ~N �
1 in our case.

As a simple example, let us consider gravity in D � 4
coupled to a dilaton. Let us consider for simplicity the
(generic) case where two of the eigenvalues coincide on
some submanifold. We choose as one of the frame vectors,
the (analytic) eigenvector e3 corresponding to the third
eigenvalue (which is supposed to stay away from the other
two). The two other analytic frame vectors are chosen to be
orthogonal to e3 and to each other (they are linear combi-
nations of the eigenvectors corresponding to the nearly
degenerate eigenvalue). In this orthonormal basis (or drei-
bein), the coefficients of the metric are gab � 	ab, while
the coefficient of the second fundamental form are given
by a matrix K which is of the following form:

 K �
a	 c b 0
b �a	 c 0
0 0 d

0@ 1A;
where a, b, c, and d depend analytically on the spatial

coordinates. The eigenvalues of K are c�x� �����������������������������
a�x�2 	 b�x�2

p
and d�x�. Therefore, two eigenvalues will

coincide when a�x�2 	 b�x�2 vanishes, which means that
both a�x� and b�x� must vanish. This happens generically
on a line in the three-dimensional space since it gives us
two conditions a�xi� � 0 and b�xi� � 0. If we were in d
spatial dimensions, the submanifold L where two eigen-
values coincide would again be defined by the vanishing of
some a�x�2 	 b�x�2 and therefore be a codimension 2 sub-
manifold. For convenience, let us replace the quantities
a�xi� and b�xi� by ��xi� and ��xi� such that a�xi� � ��xi��
cos��xi� and b�xi� � ��xi� sin��xi�. Since a and b have
generically their values between �1 and 	1, we have
� 2 �0;1� and � 2 �0; 2��. Let us consider the Kasner
metric, expressed in the time � � � lnt, g�0���; xi� � e�K�
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(see [13,14]). We have

 g�0� �
ec��cosh��	 cos� sinh��� ec� sin� sinh�� 0

ec� sin� sinh�� ec��cosh��� cos� sinh��� 0
0 0 ed�

0@ 1A: (C1)

To compute the Iwasawa variables corresponding to the
metric (C1), we use the following explicit formulas (6):
 

�1 � �
1

2
c��

1

2
ln
�
1	 cos�

2
e�� 	

1� cos�
2

e���
�
;

�2 � �
1

2
c�	

1

2
ln
�
1	 cos�

2
e�� 	

1� cos�
2

e���
�
;

�3 � d�;

N 1
2 �

sin��e�� � e����
�1	 cos��e�� 	 �1� cos��e���

;

N 1
3 � 0;

N 2
3 � 0:

(C2)

The crucial point is that the codimension 1 submanifold �
defined by the equation 1	 cos� � 0 plays a singular role
in the formulas (C2). Indeed, the exponential growing term
e�� always appears in the combination �1	 cos��e��.
Therefore, in the open domain 1	 cos� � 0 and � �
	

�����������������
a2 	 b2
p

> 0, we have the generic Iwasawa behavior
that the N ’s have a finite limit as �! 	1, namely,

 N 1
2�0� � lim

�!	1
N 1

2��� �
sin�

1	 cos�

while the �’s have the following asymptotic behavior:

 �1 ��
1

2
�c	 ����

1

2
ln
�
1	 cos�

2

�
;

�2 ��
1

2
�c� ���	

1

2
ln
�
1	 cos�

2

�
; �3 � d�:

(C3)

Note also that, because � > 0, we have the usual asymp-
totic ordering �1 � �2. However, we see that the asymp-
totic limit N 1

2�0�, which depends only on spatial variables,
becomes singular on � [codimension 1 submanifold (with
boundary) where cos� � �1] which is, in our d � 3 case,
a half-membrane ending on the line a � b � 0, where the
eigenvalues of K coincide. More precisely, N 1

2�0� tends to
	1 as �! �	 and tends to �1 as �! ��.
Correlatively the behavior of the �’s become singular on
�. We have the asymptotic behavior�a��; xi� � pa��xi��	
�a��xi� where, e.g. �1

��xi� � �
1
2 ln�1	cos�

2 � and �2
��xi� �

1
2 ln�1	cos�

2 � both become singular on �, while p1
� � �

1
2 �

�c	 ��, p2
� � �

1
2 �c� �� [we recall that ��xi� �

	
�������������������������������
a2�xi� 	 b2�xi�

p
]. Note also that, if one sits on �, one

has the asymptotic behavior N 1
2��; x

i� � 0 and
�1��; xi� � � 1

2 �c� ���, �2��; xi� � � 1
2 �c	 ��� where

the signs of the � terms in �1 and �2 are exchanged

compared to the asymptotic behavior outside of �. In
particular, on � we have, asymptotically, �1��; xi�>
�2��; xi�, which contrasts with the generic result that
asymptotically �1 � �2. This unusual behavior is the
sign that the coefficient of the e�2��2��1� symmetry wall
vanishes on �. As said above, in our treatment we ne-
glected this possibility on the account that it is nongeneric
(as the coefficient in question is a square). We see now that
this nongeneric behavior necessarily occurs on some codi-
mension 1 submanifolds ending on the codimension 2
submanifolds where 2 eigenvalues of K coincide.

However, let us emphasize that the location of the
singular codimension 1 submanifold � is not geometrically
fixed, but is somewhat arbitrary apart from the fact that it
necessarily ends on the codimension 2 submanifold L
where 2 eigenvalues coincide. Indeed, let us show that,
by using a suitable, x-dependent local SO�2;R� transfor-
mation, one can move � around L, in a manner similar to
an ordinary-life flag moving around its pole. More pre-
cisely, let us perform the following (spatially dependent)
rotation of the first two vectors e1 and e2 of our orthonor-
mal frame,

 

e01
e02
e03

0@ 1A � cos� sin� 0
� sin� cos� 0

0 0 1

0@ 1A e1

e2

e3

0@ 1A: (C4)

One now finds

 N 01
2�0��x

i� �
cos� sin�2�� � sin� cos�2��

1	 sin�2�� sin�	 cos�2�� cos�
;

�
sin�2�� ��

1	 cos�2�� ��
; (C5)

which shows that the new singular surface �0 correspond-
ing to the rotated basis is now located at ��xi� � 2��xi� �
	�. This shows that � is similar to a ‘‘Dirac string’’
singularity: it is a gauge-dependent singular submanifold,
whose location can be shuffled around by using a gauge
transformation. The nonanalytic (actually singular) N !
1; . . . behavior of the Iwasawa variables on � is evidently
problematic within a Fuchsian system approach, because it
obliges us to work in an open region U of R3 which does
not contain �. The fact we just showed that the location of
� can be moved around means that we can essentially
bypass this technical problem by using simultaneously
two separate Fuchsian systems, corresponding to different
choices of underlying frames �!i; ei� in the analytic spatial
manifold Md, yielding finite values Iwasawa variables in
two complementary open regions U and U0. Such a con-
struction bypasses the analyticity problems near � and �0.
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However, the codimension 2 submanifold L (where two
eigenvalues coincide) remains excluded from these two
complementary Fuch analyses. In other words, the present
Iwasawa-variables-based approach discussed here cannot
cover in an analytic manner the measure-zero submani-
folds ofMd where 2 (or more generally n � 2) eigenvalues
coincide. We leave this technical problem to further
analyses.

In this respect let us remark that the root of the problems
linked, either in the AVTD or the Iwasawa approaches, to

coinciding eigenvalues of kij admits a simple geometrical
interpretation. The crucial point is that the eigenvectors of
K, considered as functions of the auxiliary angle � intro-
duced above (a � � cos�, b � � sin�) depend on � in the
same manner as a spinor would transform under a SO�3�
rotation of angle �. Indeed, the diagonalization of the
matrix K is easily checked to yield the following eigen-
vectors (with respect to the orthonormal basis e1, e2, e3 in
which K is expressed),

 

v1 � cos
�
2
e1 	 sin

�
2
e2 with eigenvalue c	 � � c	

�����������������
a2 	 b2

p
;

v2 � sin
�
2
e1 � cos

�
2
e2 with eigenvalue c� � � c�

�����������������
a2 	 b2

p
;

v3 � e3 with eigenvalue d:

(C6)

Note the appearance of the half angle �=2 in v1 and v2.
This appearance means that if we follow the evolution of a
diagonalizing frame v1, v2, v3 along a closed loop in space
around L [assuming the Jacobian of a�x� and b�x� never
vanishes], the eigenvectors v1�xi� and v2�xi� will, upon
their return to the same spatial point x [which corresponds
to the same values of a�xi� and b�xi�, but to an angle � �
2� instead of � � 0], take final values opposite their initial
ones:

 v1�� � 2�� � �v1�� � 0�;

v2�� � 2�� � �v2�� � 0�;

v3�� � 2�� � v3�� � 0�:

(C7)

This phenomenon explains why, in the Iwasawa approach,
the presence of a ‘‘line’’ L makes itself felt far away from
L (i.e. on the ‘‘singular’’ half-membrane �): indeed there
is a nontrivial holonomy of Kasner frames around L.25

APPENDIX D: AN ILLUSTRATIVE FUCHSIAN TOY
MODEL

The aim of this appendix is to see, on a concrete ex-
ample, the relationship between the structure of the source
term and that of a solution of a Fuchsian system. The aim is
not to sketch mathematical proofs (for which we refer to
[13,14,20]) but to build some physical intuition. In this
perspective, we study a toy model which is the most drastic
simplification of the system (33) one could consider. We
want to show that the unique solution of the system that
goes to zero goes to zero like the source and not less fast
than the source. To handle this, we use an iterative method.

Finally, we also investigate a slightly more involved toy
model that is supposed to mimic the effect of the spatial
gradients appearing in the system (33).

1. A first toy model

The first toy model we consider is the following:

 

_�� � � 0; _� � e�2w�: (D1)

If we consider the asymptotic system to be

 

_� �0� � ��0� � 0; _��0� � 0: (D2)

The order zero solution is ��0� � v and ��0� � v�	 ��.
Rewriting Eqs. (D1) in terms of �� � �� ��0� and � �
��� ��0� gives

 

_��� �� � 0; _�� � e�2w�v�	���e�2w� ���: (D3)

The idea is that �� and �� go to zero as �! 	1. We can try
to solve the system by iteration assuming that �� is small.
The first iteration is obtained by replacing ��, in the source
term of Eqs. (D3), by its first order estimate which is zero,
i.e. replacing e�2w� ��� by 1:

 

_�� �1� � ���1� � 0; _���1� � e�2w�v�	���: (D4)

The solution of this system is ���1� �
1

�2wv e
�2w�v�	��� and

���1� �
1

�2wv�2 e
�2w�v�	��� (note that we did not add integra-

tion constants since we search solutions that go to zero
when �! 	1). The next step consists in replacing �� in
the source term by its first order estimate,

 

_�� �2� � ���2� � 0;

_���2� � e�2w�v�	���e�2w���1�� � e�2w�v�	����1� 2w� ���1���:

(D5)

25Evidently, one could discuss the richer case where there are
several independent codimension 2 manifolds of the type of L,
together with more exceptional submanifolds where more ei-
genvalues coincide.
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The solution of this system is given by ���2� �
1

�2wv e
�2w�v�	��� � 2w

2w�v�2��4w�v�� e
�4w���0��, ���2� �

1
�2wv�2

e�2w�v�	��� � 2w
2w�v�2�4w�v��2

e�4w���0��, etc.

Therefore, the solution that vanishes goes to zero like the
source. We do not lose an e�
�, and we conclude that the
Fuchs theorem is too strong in this situation. For this very
simple toy model, the exact solution of the system (D1) can
be written as follows:

 � �
Z d������������������������������

2E� 1
w e
�2w�

q ; (D6)

where E is a constant of integration and this integral gives
explicitly,

 � �
�������
2E
p 	

1

w
������
2E
p ln

�
1	

����������������������
1�

e�2w�

2Ew

s �
	 C; (D7)

where C is a constant of integration.

2. The effect of spatial gradients

Let us now consider a less primitive toy model, mimick-
ing walls with coefficients depending explicitly on the
spatial derivatives of �,

 

_� � �; _� � @x�e�2w��: (D8)

As an asymptotic system, we take the same as in the
previous example (D2). The order zero solution is ��0� �
v�x� and ��0� � v�x��	 ���x�. Rewriting Eqs. (D8) in
terms of �� � �� ��0� and � � ��� ��0� gives

 

_�� � ��;

_�� � �2w�@xv�	 @x�� 	 @x ���e�2w�v�	���e�2w� ���:

The first iteration is again obtained by putting �� is the left-
hand side to zero,

 �� �1� � e�2w���0��
�
@x��
w�v�

	
2@xv

2w2

�
	
@xv
w�v�

�e�2w���0��:

(D9)

��1� is also of the form e�2w���0���a	 b��. Higher order
iterations will give higher powers of �which are multiplied
by increasing powers of the walls e�2��0� ; see [42] for the
structure of an all-order iterative example of such a
Fuchsian system. Therefore, we can suspect that in this
case, the solution decreases less quickly than the source by
a polynomial in �.
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