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Mass bounds on dark matter (DM) candidates are obtained for particles that decouple in or out of
equilibrium while ultrarelativistic with arbitrary isotropic and homogeneous distribution functions. A
coarse grained Liouville invariant primordial phase-space density D is introduced which depends solely
on the distribution function at decoupling. The density D is explicitly computed and combined with
recent photometric and kinematic data on dwarf spheroidal satellite galaxies in the Milky Way (dShps)
and the observed DM density today yielding upper and lower bounds on the mass, primordial phase-space
densities, and velocity dispersion of the DM candidates. Combining these constraints with recent results
from N-body simulations yields estimates for the mass of the DM particles in the range of a few keV. We
establish in this way a direct connection between the microphysics of decoupling in or out of equilibrium
and the constraints that the particles must fulfill to be suitable DM candidates. If chemical freeze-out
occurs before thermal decoupling, light bosonic particles can Bose condense. We study such Bose-
Einstein condensate (BEC) as a dark matter candidate. It is shown that, depending on the relation between
the critical (Tc) and decoupling (Td) temperatures, a BEC light relic could act as cold DM but the
decoupling scale must be higher than the electroweak scale. The condensate hastens the onset of the
nonrelativistic regime and tightens the upper bound on the particle’s mass. A nonequilibrium scenario
which describes particle production and partial thermalization, sterile neutrinos produced out of equilib-
rium, and other DM models is analyzed in detail and the respective bounds on mass, primordial phase-
space density, and velocity dispersion are obtained. Thermal relics with m� few keV that decouple when
ultrarelativistic and sterile neutrinos produced resonantly or nonresonantly lead to a primordial phase-
space density compatible with cored dShps and disfavor cusped satellites. Light Bose-condensed DM
candidates yield phase-space densities consistent with cores and if Tc � Td also with cusps. Phase-space
density bounds on particles that decoupled nonrelativistically combined with recent results from N-body
simulations suggest a potential tension for WIMPs with m� 100 GeV, Td � 10 MeV.
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I. INTRODUCTION

Although the existence of dark matter (DM) was in-
ferred several decades ago [1], its nature still remains
elusive. Candidate dark matter particles are broadly char-
acterized as cold, hot, or warm depending on their velocity
dispersions. The clustering properties of collisionless DM
candidates in the linear regime depend on the free-
streaming length, which roughly corresponds to the Jeans
length with the particle’s velocity dispersion replacing the
speed of sound in the gas. Cold DM (CDM) candidates
feature a small free-streaming length favoring a bottom-up
hierarchical approach to structure formation, smaller struc-
tures form first, and mergers lead to clustering on the larger
scales.

Among the CDM candidates are weakly interacting
massive particles (WIMPs) with m� 10–102 GeV. Hot
DM (HDM) candidates feature large free-streaming
lengths and favor top down structure formation, where

larger structures form first and fragment. HDM particle
candidates are deemed to have masses in the few eV range,
and warm DM (WDM) candidates are intermediate with a
typical mass range m� 1–10 keV.

The concordance �CDM standard cosmological model
emerging from cosmic microwave background (CMB),
large scale structure observations, and simulations favors
the hypothesis that DM is composed of primordial particles
which are cold and collisionless [2]. However, recent ob-
servations hint at possible discrepancies with the predic-
tions of the �CDM concordance model: the satellite and
cuspy halo problems.

The satellite problem stems from the fact that CDM
favors the presence of substructure: much of the CDM is
not smoothly distributed but is concentrated in small
lumps, in particular, in dwarf galaxies for which there is
scant observational evidence so far. A low number of
satellites have been observed in Milky Way sized galaxies
[3–6]. This substructure is a consequence of the CDM
power spectrum which favors small scales becoming non-
linear first, collapsing in the bottom-up hierarchical man-
ner, and surviving the mergers as dense clumps [4,6].
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The cuspy halo problem arises from the result of large
scaleN-body simulations of CDM clustering which predict
a monotonic increase of the density towards the center of
the halos [5,7–10], for example, the universal Navarro-
Frenk-White profile ��r� � r�1�r� r0�

�2 [8] which de-
scribes accurately clusters of galaxies, but indicates a
divergent cusp at the center of the halo. Recent observa-
tions seem to indicate central cores in dwarf galaxies [11–
14], leading to the ‘‘cusps vs cores’’ controversy.

A recent compilation of observations of dwarf spheroi-
dal galaxies dSphs [14], which are considered to be prime
candidates for DM subtructure [15], seem to favor a core
with a smoother central density and a low mean mass
density �0:1M�=pc3 rather than a cusp [14]. The data
cannot yet rule out cuspy density profiles which allow a
maximum density & 60M�=pc3 and the interpretation and
analysis of the observations is not yet conclusive [11,16].
These possible discrepancies have rekindled an interest in
WDM particles, which feature a velocity dispersion larger
than CDM particles, and consequently larger free-
streaming lengths which smooth out the inner cores and
would be prime candidates to relieve the cuspy halo and
satellite problems [17].

A possible WDM candidate is a sterile neutrino [18–20]
with a mass in the keV range and produced via their mixing
and oscillation with an active neutrino species either non-
resonantly [18], or through Mikheiev-Smirnov-
Wolfenstein (MSW) resonances in the medium [19].
Sterile neutrinos can decay into a photon and an active
neutrino (more precisely the largest mass eigenstate decays
into the lowest one and a photon) [21] yielding the possi-
bility of direct constraints on the mass and mixing angle
from the diffuse x-ray background [22].

Observations of cosmological structure formation via
the Lyman-� forest provide a complementary probe of
primordial density fluctuations on small scales which yield
an indirect constraint on the masses of WDM candidates.
While constraints from the diffuse x-ray background yield
an upper bound on the mass of a putative sterile neutrino in
the range 3–8 keV [22], the latest Lyman-� analysis [23]
yields lower bounds in the range 10–13 keV in tension with
the x-ray constraints. More recent constraints from
Lyman-� yield a lower limit for the mass of a WDM
candidate mWDM * 1:2 keV�2�� for an early decoupled
thermal relic and mWDM * 5:6 keV�2�� for sterile neutri-
nos [24]. Strong upper limits on the mass and mixing
angles of sterile neutrinos have been recently discussed
[25], however, there are uncertainties as to whether WDM
candidates can explain large cores in dSphs [26]. It has
been recently argued [27] that if sterile neutrinos are
produced nonresonantly [18] the combined x-ray and
Lyman-� data suggest that these cannot be the only
WDM component, with an upper limit for their fractional
relic abundance & 0:7. Recent [28] constraints on a radi-
atively decaying DM particle from the EPIC spectra of

(M31) by XMM-Newton confirms this result and places a
stronger lower mass limit m< 4 keV.

All these results suggest that DM could be a mixture of
several components with sterile neutrinos as viable
candidates.

Motivation and goals.—Although the �CDM paradigm
describes large scale structure formation remarkably well,
the possible small scale discrepancies mentioned above
motivate us to study new constraints that different dark
matter components must fulfill to be suitable candidates.
Cosmological bounds on dark matter components primar-
ily focused on standard model neutrinos [29,30], heavy
relics that decoupled in local thermodynamic equilibrium
(LTE) when nonrelativistic [31–33] or thermal ultrarela-
tivistic relics [34–38]. More recently, cosmological preci-
sion data were used to constrain the (HDM) abundance of
low mass particles [39–42] assuming these to be thermal
relics.

The main results of this article are:
(a) We consider particles that decouple in or out of LTE

during the radiation dominated era with an arbitrary
(but homogeneous and isotropic) distribution func-
tion. Particles which decouple being ultrarelativistic
eventually become nonrelativistic because of red-
shift of physical momentum. We establish a direct
connection between the microphysics of decoupling
in or out of LTE and the constraints that the particles
must fulfill to be suitable DM candidates in terms of
the distribution functions at decoupling.

(b) We introduce a primordial coarse grained phase-
space density

 D �
n�t�

h ~P2
fi

3=2
;

where n�t� is the number of particles per unit physi-
cal volume and h ~P2

fi is the average of the physical
momentum with the distribution function of the
decoupled particle. D is a Liouville invariant after
decoupling and only depends on the distribution
functions at decoupling. In the nonrelativistic re-
gime D is simply related to the phase densities
considered in Refs. [11,30,36,38] and can only de-
crease by collisionless phase mixing or self-gravity
dynamics [43].
In the nonrelativistic regime we obtain

 D 	
1

33=2m4

�DM

�3
DM

; (1.1)

where �DM is the primordial one-dimensional ve-
locity dispersion and �DM the dark matter density.
Combining the result for the primordial phase-space
density D determined by the mass and the distribu-
tion function of the decoupled particles, with the
recent compilation of photometric and kinematic
data on dSphs satellites in the Milky Way [14] yields
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lower bounds on the DM particle mass m whereas
upper bounds on the DM mass are obtained using
the value of the observed dark matter density today.
Therefore the combined analysis of observational
data from (dSphs), N-body simulations and the
present DM density allows us to establish both
upper and lower bounds on the mass of the DM
candidates.
We thus provide a link between the microphysics of
decoupling, the observational aspects of dark matter
halos, and the DM mass value.

(c) Recent N-body simulations [44] indicate that the
phase-space density decreases a factor �102 during
gravitational clustering. This result combined with
Eq. (1.1) and the observed values on dSphs satellites
[14] yields

 mcored �
2

g1=4
keV; mcusp �

8

g1=4
keV

for the masses of thermal relics DM candidates,
where ‘‘cored’’ and ‘‘cusp’’ refer to the type of
profile used in the dShps description and 1 
 g 

4 is the number of internal degrees of freedom of the
DM particle. Wimps with masses�100 GeV decou-
pling in LTE at temperatures Td � 10 MeV lead to
primordial phase-space densities many orders of
magnitude larger than those observed in (dSphs).
The results of N-body simulations, which yield
relaxation by 2–3 orders of magnitude [44], suggest
a potential tension for WIMPs as DM candidates.
However, the N-body simulations in Ref. [44] begin
with initial conditions with values of the phase-
space density much lower than the primordial one.
Hence, it becomes an important question whether
the enormous relaxation required from the primor-
dial values to those of observed in dSphs can be
inferred from numerical studies with suitable (much
larger) initial values of the phase-space density.

(d) We study the possibility that the DM particle is a
light boson that undergoes Bose-Einstein condensa-
tion (BEC) prior to decoupling while still ultrarela-
tivistic. (This possibility was addressed in [35]). We
analyze in detail the constraints on such BEC DM
candidate from velocity dispersion and phase-space
arguments, and contrast the BEC DM properties to
those of the hot or warm thermal relics.

(e) Nonequilibrium scenarios that describe various pos-
sible WDM candidates are studied in detail. These
scenarios describe particle production [45] and in-
complete thermalization [46], resonant [18] and
nonresonant [19] production of sterile neutrinos,
and a model recently proposed [26] to describe cores
in dSphs.

Our analysis of the DM candidates is based on their
masses, statistics, and properties at decoupling (being it in

LTE or not). We combine observations on dSphs [14] and
N-body simulations [44], with theoretical analysis using
the nonincreasing property of the phase-space density
[11,30,38,43].

The results from the combined analysis of the primordial
phase-space densities, the observational data on dSphs
[14], and the N-body simulations in Ref. [44] are the
following:

(i) Conventional thermal relics, and sterile neutrinos
produced resonantly or nonresonantly with mass in
the rangem� few keV that decouple when ultrarela-
tivistic lead to a primordial phase-space density of
the same order of magnitude as in cored dShps and
disfavor cusped satellites for which the data [14]
yields a much larger phase-space density.

(ii) CDM from wimps that decouple when nonrelativis-
tic with m * 100 GeV and kinetic decoupling at
Td � 10 MeV [33] yield phase-space densities at
least 18 to 15 orders of magnitude [see Eqs. (4.30),
(4.31), and (4.37)] larger than the typical average in
dSphs [14]. Results from N-body simulations, albeit
with initial conditions with much smaller values of
the phase-space density, yield a dynamical relaxation
by a factor 102–103 [44]. If these results are con-
firmed by simulations with larger initial values there
may be a potential tension between the primordial
phase-space density for thermal relics in the form of
WIMPs withm� 100 GeV Td � 10 MeV and those
observed in dShps.

(iii) Light bosonic particles decoupled while ultrarelativ-
istic and which form a BEC lead to phase-space
densities consistent with cores and also consistent
with cusps if Tc=Td * 10. However, if these thermal
relics satisfy the observational bounds, they must
decouple when gdg��3=4��Td=Tc�9=8 > 130, namely
above the electroweak scale.

Section II analyzes the generic dynamics of decoupled
particles for any distribution function, with or without LTE
at decoupling, and for different species of particles. In
Sec. III we consider light thermal relics which decoupled
in LTE as DM components: fermions and bosons, includ-
ing the possibility of a Bose-Einstein condensate.
Section IV deals with coarse grained phase-space densities
which are Liouville invariant and the new bounds obtained
with them by using the observational dSphs data and recent
results from N-body simulations, bounds from velocity
dispersion, and the generalized Gunn-Tremaine bound. In
Sec. V we study the case of particles that decoupled out of
equilibrium and the consequences on the dark matter con-
straints. Section VI summarizes our conclusions.

II. PRELIMINARIES: DYNAMICS OF DECOUPLED
PARTICLES

While the study of kinetics in the early Universe is
available in the literature [32,47,48], in this section we
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expand on the dynamics of decoupled particles emphasiz-
ing several aspects relevant to the analysis that follows in
the next sections.

Consider a spatially flat Friedmann-Robertson-Walker
(FRW) cosmology with length element

 ds2 	 dt2 � a2�t�d~x2: (2.1)

The nonvanishing Christoffel symbols are

 �0
ij 	 _aa�ij; �i0j 	 �ij0 	

_a
a
�ij: (2.2)

The (contravariant) four momentum is defined as p� 	
dx�=d� with � an affine parameter, so that g��p�p� 	
m2, where m is the mass of the particle. This leads to the
dispersion relation

 p0�t� 	
���������������������������������
m2 � a2�t� ~p2�t�

q
: (2.3)

The geodesic equations are

 

dp0

d�
	 p0�t� _p0 	 �H�t�a2�t�p2�t� ) _p0

	 �H�t�
a2�t�p2�t�

p0�t�

d ~p
d�
	 �2H�t�p0�t� ~p�t� ) _~p 	 �2H�t� ~p�t�;

(2.4)

whereH�t� � _a
a and we used d=d� 	 p0d=dt. The solution

of Eq. (2.4) is

 ~p 	
~pc
a2�t�

; (2.5)

where pc is the time independent comoving momentum.
The local observables, energy, and momentum as measured
by an observer at rest in the expanding cosmology are
given by

 E�t� 	 g���
�
0 p

�; Pif�t� 	 �g���
�
i p

�; (2.6)

where ��� form a local orthonormal tetrad (vierbein)

 g���
�
���	 	 
�	 	 diag�1;�1;�1;�1�;

and the sign in Eq. (2.6) corresponds to a spacelike com-
ponent. For the FRW metric

 ��� 	
������������
jg��j

q
; (2.7)

and we find

 E 	 p0; ~Pf�t� 	 a�t� ~p�t� 	
~pc
a�t�

: (2.8)

~Pf is clearly the physical momentum, redshifting with the
expansion. Combining the above with Eq. (2.3) yields the
local dispersion relation

 E�t� 	 p0�t� 	
�����������������������
m2 � ~P2

f�t�
q

: (2.9)

A frozen distribution describing a particle that has been
decoupled from the plasma is constant along geodesics,
therefore, taking the distribution to be a function of the
physical momentum ~Pf and time, it obeys the Liouville
equation or collisionless Boltzmann equation

 

d
d�

f�Pf; t� 	 0)
df�Pf; t�

dt
	 0: (2.10)

Taking Pf as an independent variable this equation leads to
the familiar form

 

@f�Pf; t�

@t
�H�t�Pf

@f�Pf; t�

@Pf
	 0: (2.11)

Obviously a solution of this equation is

 f�Pf; t� � fd�a�t�Pf� 	 fd�pc�; (2.12)

where pc is the time independent comoving momentum.
The physical phase-space volume element is invariant,
d3Xfd3Pf 	 d3xcd3pc, where f, c refer to physical and
comoving volumes, respectively.

The scale factor is normalized so that

 a�t� 	
1� zd

1� z�t�
(2.13)

and Pf�td� 	 pc, where td is the cosmic time at decoupling
and z is the redshift.

If a particle of mass m has been in LTE but it decoupled
from the plasma with decoupling temperature Td, its dis-
tribution function is

 fd�pc� 	
1

e�
�����������
m2�p2

c

p
��d�=Td  1

; (2.14)

for fermions (� ) or bosons (� ), respectively, allowing
for a chemical potential �d at decoupling.

In what follows we consider general distributions as in
Eq. (2.12) unless specifically stated.

The kinetic energy momentum tensor associated with
this frozen distribution is given by

 T�� 	 g
Z d3Pf
�2��3

p�p�
p0 fd�pc�; (2.15)

where g is the number of internal degrees of freedom,
typically 1 
 g 
 4. Taking the distribution function to
be isotropic, it follows that

 T0
0 	 g

Z d3Pf
�2��3

p0fd�pc� 	 � (2.16)

 Tij 	 �
g
3
�ij
Z d3Pf
�2��3

a2�t�p2

p0 fd�pc�

	 �
g
3
�ij
Z d3Pf
�2��3

P2
f

p0 fd�pc� 	 ��
i
jP ; (2.17)

where � is the energy density and P is the pressure. In
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summary,

 � 	 g
Z d3Pf
�2��3

������������������
m2 � P2

f

q
fd�a�t�Pf�;

P 	
g
3

Z d3Pf
�2��3

P2
f������������������

m2 � P2
f

q fd�a�t�Pf�:
(2.18)

The pressure can be written in a manner more familiar
from kinetic theory as

 P 	 g
Z d3Pf
�2��3

j ~vfj
2

3

������������������
m2 � P2

f

q
fd�a�t�Pf�; (2.19)

where ~vf 	 ~Pf=E is the physical (group) velocity of the
particles measured by an observer at rest in the expanding
cosmology.

To confirm covariant energy conservation recall that
d3Pf 	 d3pc=a3�t�; Pf 	 pc=a�t�; dfd=dt 	 0.
Furthermore from Eq. (2.4) it follows that _p0 	

�H�t�P2
f=p

0, leading to

 _� 	 �3H�t���H�t�g
Z d3Pf
�2��3

P2
f

p0 fd�pc�; (2.20)

the first term results from the measure and the last term
from _p0; from the expression of the pressure Eq. (2.17) the
covariant conservation equation

 _�� 3H�t���� P � 	 0 (2.21)

follows. The number of particles per unit physical volume
is

 n�t� 	 g
Z d3Pf
�2��3

fd�a�t�Pf�; (2.22)

and obeys

 

dn�t�
dt
� 3H�t�n�t� 	 0; (2.23)

namely, the number of particles per unit comoving volume
n�t�a3�t� is conserved.

These are generic results for the kinetic energy momen-
tum tensor and the particle density for any distribution
function that obeys the collisionless Boltzmann equation
(2.10).

The entropy density for an arbitrary distribution function
for particles that decoupled in or out of LTE is

 sd�t� 	 �g
Z d3Pf
�2��3

�fd lnfd  �1� fd� ln�1� fd��;

(2.24)

where the upper and lower signs refer to fermions and
bosons, respectively. Since dfd=dt 	 0 it follows that

 

dsd�t�
dt

� 3H�t�sd�t� 	 0; (2.25)

therefore the entropy per comoving volume sd�t�a3�t� is
constant. In particular, the ratio

 Y 	
n�t�
sd�t�

(2.26)

is a constant for any distribution function that obeys the
collisionless Liouville equation [32].

In the case of LTE, using the distribution equation (2.14)
in the entropy density equation (2.24) yields the result

 sd�t� 	
�d � Pd
Tda

3�t�
�
�d

Td
n�t�; (2.27)

for either statistics, where �d; Pd are evaluated at the
decoupling time td. The entropy of the gas of decoupled
particles does not affect the relationship between the pho-
ton temperature and the temperature of ultrarelativistic
particles that decouple later which can be seen as follows.

Consider several species of particles, one of which
decouples at an earlier time in or out of equilibrium with
the distribution function fd and entropy given by Eq. (2.24)
while the others remain in LTE with entropy density
�2�2=45�g�T�T3, until some of them decouple later while
ultrarelativistic. Here T is the temperature at time t and
g�T� is the effective number of ultrarelativistic degrees of
freedom. Entropy conservation leads to the relation

 

�
2�2

45
g�T�T3 � sd

�
a3�t� 	 constant; (2.28)

however, because sd�t�a3�t� 	 constant, the usual relation
g�T�T3a3�t� 	 constant, relating the temperature T of a
gas of ultrarelativistic decoupled particles to the photon
temperature follows.

For light particles that decouple in LTE at temperature
Td � m, we can approximate

 

������������������
m2 � p2

c

p
��d

Td
’
pc ��d

Td
	
Pf ��d�t�

Td�t�
; (2.29)

where

 Td�t� 	
Td
a�t�

; �d�t� 	
�d

a�t�
(2.30)

are the decoupling temperature and chemical potential
redshifted by the expansion, therefore for particles that
decouple in LTE with Td � m we can approximate

 fd�Pf; t� 	
1

e�Pf=Td�t�����d�t�=Td�t��  1
	

1

e�pc��d�=Td  1
:

(2.31)

This distribution function is the same as that of a massless
particle in LTE which is also a solution of the Liouville
equation, or collisionless Boltzmann equation.

Since the distribution function is dimensionless, without
loss of generality we can always write for a particle that
decoupled in or out of LTE
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 fd�pc� 	 fd

�
pc
Td

;
m
Td

;�i

�
; (2.32)

where �i are dimensionless constants determined by the
microphysics, for example, dimensionless couplings or
ratios between Td and particle physics scales or in equilib-
rium �d=Td etc. To simplify notation in what follows, we
will not include explicitly the set of dimensionless con-
stants m=Td, �i, etc., in the argument of fd, but these are
implicit in generic distribution functions. If the particle
decouples when it is ultrarelativistic, m=Td ! 0.

It is convenient to introduce the dimensionless ratios

 y 	
pc
Td
	

Pf
Td�t�

; Td�t� 	
Td
a�t�

(2.33)

and

 xd 	
m
Td
; x�t� 	

m
Td�t�

	 a�t�xd: (2.34)

For example, for a particle that decouples in equilibrium
while being nonrelativistic, fd is the Maxwell-Boltzmann
distribution function [32]

 fd�pc� 	
25=2�7=2

45
gdY1e��p

2
c=2mTd�

	
25=2�7=2

45
gdY1e

��y2=2xd�; (2.35)

where gd is the effective number of ultrarelativistic degrees
of freedom at decoupling, Y 	 n=s and Y1 is the solution
of the Boltzmann equation, whose dependence on xd 	
m=Td and the annihilation cross section is given in
Chapter 5.2 in Ref. [32].

Changing the integration variable in Eqs. (2.18), (2.19),
(2.20), (2.21), and (2.22) to Pf 	 yTd�t�, we find
 

� 	 gmT3
d�t�I��x�;

I��x� 	
1

2�2

Z 1
0
y2

��������������
1�

y2

x2

s
fd�y�dy;

P 	 g
T5
d�t�

3m
IP �x�;

IP �x� 	
1

2�2

Z 1
0
dy
y4fd�y��������������

1� y2

x2

q 	 �x3
dI��x�

dx
;

n�t� 	 g
T3
d�t�

2�2

Z 1
0
y2fd�y�dy 	 gT3

d�t�I��x 	 1�;

(2.36)

leading to the equation of state:

 w�x� 	
P

�
	

IP �x�

3x2I��x�
	 �

1

3

d lnI��x�

d lnx
: (2.37)

In the ultrarelativistic and nonrelativistic limits, x! 0 and
x! 1, respectively, we find

 I��x� 	
x!0 1

x

Z 1
0

y3dy

2�2 fd�y�;

IP �x� 	
x!0

x
Z 1

0

y3dy

2�2 fd�y�;

I��x� 	
x!1Z 1

0

y2dy

2�2 fd�y�;

IP �x� 	
x!1Z 1

0

y4dy

2�2 fd�y�:

(2.38)

In the ultrarelativistic limit the energy density and pressure
become

 � 	
x!0

gT4
d�t�

Z 1
0

y3dy

2�2 fd�y�; P 	
x!0�

3
; w�x� 	

x!0 1

3
;

(2.39)

describing radiation behavior. In the nonrelativistic limit

 � 	
x!1

mgT3
d�t�

Z 1
0
y2fd�y�

dy

2�2 	 mn�t�;

P 	
x!1gT5

d�t�
3m

Z 1
0
y4fd�y�

dy

2�2 ! 0

(2.40)

and the equation of state becomes

 w�x� 	
x!1 1

3

�
Td�t�
m

�
2
R
1
0 y

4dyfd�y�R
1
0 y

2dyfd�y�
! 0; (2.41)

corresponding to cold matter behavior. In the nonrelativ-
istic limit, it is convenient to write

 � 	 mn��t�g
�
Td�t�
T��t�

�
3
R
1
0 y

2fd;a�y�dy
4�3�

	 mn��t�
g
R
1
0 y

2fd;a�y�dy
2gd�3�

; (2.42)

where �3� 	 1:202 056 9 . . . , gd is the number of ultra-
relativistic degrees of freedom at decoupling, and n��t� is
the photon number.

The average squared velocity of the particle is given in
the nonrelativistic limit by

 h ~V2i 	

� ~P2
f

m2

�
	

R d3Pf
�2��3

~P2
f

m2 fd�a�t�Pf�R d3Pf
�2��3

fd�a�t�Pf�

	

�
Td�t�
m

�
2
R
1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy
: (2.43)

Therefore, the equation of state in thermal equilibrium is
given by

 P 	 1
3h
~V2i� � �2�; � 	

�����������
1
3h
~V2i

q
; (2.44)

where � is the one-dimensional velocity dispersion given
at redshift z by
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 ��z� 	
Td�t�
m

� R1
0 y

4fd�y�dy

3
R
1
0 y

2fd�y�dy

�
1=2

	 0:051 24
1� z

g1=3
d

�
keV

m

��R1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

�
1=2
�
km

s

�
(2.45)

and we used that

 Td�t� 	 Td�1� z� 	
�

2

gd

�
1=3
T��1� z�; (2.46)

T� 	 0:2348� 10�3 eV is the photon temperature today
[49].

The results above, Eqs. (2.36)–(2.45) are general for any
distribution of decoupled particles whether or not the
particles decoupled in equilibrium.

Using the relation (2.42) for a given species �a� of
particles with ga degrees of freedom, their relic abundance
today is given by

 �ah
2 	

ma

25:67 eV

ga
R
1
0 y

2fd;a�y�dy
2gd;a�3�

; (2.47)

where we used that today h2n�=�c 	 1=25:67 eV [49].
If this decoupled species contributes a fraction �a to

dark matter, with �a 	 �a�DM and using that �DMh
2 	

0:105 [49] for nonbaryonic dark matter, then

 �a 	
ma

2:695 eV

ga
R
1
0 y

2fd;a�y�dy
2gd;a�3�

: (2.48)

Since 0 
 �a 
 1 we find the constraint

 ma 
 2:695 eV
2gd;a�3�

ga
R
1
0 y

2fd;a�y�dy
; (2.49)

where in general fd depends on the mass of the particle as
in Eq. (2.32). For a particle that decouples while nonrela-
tivistic with the distribution function Eq. (2.35) this is
recognized as the generalization of the Lee-Weinberg
lower bound [31,32], whereas if the particle decouples in
or out of LTE when it is ultrarelativistic, in which case
fd;a�y� does not depend on the mass, Eq. (2.49) provides an
upper bound which is a generalization of the Cowsik-
McClelland [32,50] bound.

The constraint equation (2.49) suggests two ways to
allow for more massive particles: by increasing gd, namely,
the particle decouples earlier, at higher temperatures when
the effective number of ultrarelativistic species is larger,
and/or decoupling out of LTE with a distribution function
that favors smaller momenta, thereby making the denomi-
nator in Eq. (2.49) smaller, the smaller number of particles
allows a larger mass to saturate the DM abundance.

For the particle to be a suitable dark matter candidate,
the free-streaming length must be much smaller than the
Hubble radius. Although we postpone to a companion
article [51] a more detailed study of the free-streaming

lengths in terms of the generalized distribution functions,
here we adopt the simple requirement that the velocity
dispersion be small, namely, the particle must be nonrela-
tivistic

 h ~V2i 	

� ~P2
f

m2

�
� 1: (2.50)

From Eq. (2.43) this constraint yields

 

m
Td�t�

�

����������������������������R
1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

vuut ; (2.51)

where Td�t� is given by Eq. (2.33). From Eqs. (2.13), (2.34),
(2.46), and (2.51) we obtain the following condition for the
particle to be nonrelativistic at redshift z:

 m� 2:958
1� z

g1=3
d

� 10�4

����������������������������R
1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

vuut eV: (2.52)

Taking the relevant value of the redshift for large scale
structure to be the redshift at which reionization occurs
zs � 10 [52], we find the following generalized constraint
on the mass of the particle of species �a� which is a dark
matter component

 

2:958

g1=3
d

� 10�4

����������������������������R
1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

vuut eV� m


 2:695
2gd�3�

g
R
1
0 y

2fd�y�dy
eV: (2.53)

The left side of the inequality corresponds to the require-
ment that the particle be nonrelativistic at reionization
(taking zs � 10), namely, a small velocity dispersion
h ~V2=c2i � 1, corresponding to a free-streaming length

�fs �
����������������
h ~V2=c2i

q
dH much smaller than the Hubble radius

(dH), while the right-hand side is the constraint from the
requirement that the decoupled particle is a dark matter
component, namely, Eq. (2.49) is fulfilled.

III. LIGHT THERMAL RELICS AS DARK MATTER
COMPONENTS

In this section we consider particles that decouple in
LTE.

A. Fermi-Dirac and noncondensed Bose-Einstein gases
of light particles as DM components

The functions I��x�, IP �x� in the density and pressure
denoted by I�x�, J�x�, respectively, for fermions (� )
and bosons (� ) and the equation of state w�x� [Eq. (2.37)]
for each case are depicted in Figs. 1 and 2 for vanishing
chemical potential in both cases. We have also numerically
studied these functions for values of the chemical potential
in the range 0 
 j�dj=Td 
 0:5 but the difference with the
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case of vanishing chemical potentials is less than �5%
even for the largest value studied j�dj=Td 	 1:0 which is
about the maximum consistent with constraints on lepton
asymmetries allowed by big bang nucleosynthesis (BBN)
and CMB [53].

These figures make clear that the onset of the nonrela-
tivistic behavior occurs for xnr � 5 in both cases. It is
useful to compare this result, with the generalized con-
straint equation (2.51) for the case of thermal relics.
Replacing the LTE distribution functions (Fermi-Dirac or
Bose-Einstein, without chemical potentials) in Eq. (2.51)
we obtain

 xnr > 3:597 for fermions; xnr > 3:217 for bosons:

(3.1)

The detailed analysis of the corresponding functions yields
the more precise estimate xnr * 5 in both cases for the
transition to the nonrelativistic regime.

Therefore, the decoupled particle of mass m becomes
nonrelativistic at a time t� when m * 5Td�t��. At the time
of BBN when [32] TBBN � 0:1 MeV and gBBN � 10, the
decoupled particle is nonrelativistic if

 m * g��1=3�
d MeV; (3.2)

in which case it does not contribute to the effective number
of ultrarelativistic degrees of freedom during BBN and
would not affect the primordial abundances of light ele-
ments. If the particle remains ultrarelativistic during BBN
the total energy density in radiation is [32]

 �tot�t� 	
�2

30
g��t�T4

��t�
�

1�
cg
g��t�

�
g��t�
gd

�
4=3
�
; (3.3)

where T� is the (LTE) temperature of the fluid, c 	 1�7=8�
for bosons (fermions), g��t� is the effective number of
ultrarelativistic degrees of freedom at time t from particles
that remain in LTE at this time, and gd is the effective
number of degrees of freedom at decoupling. The second
term in Eq. (3.3) is an extra contribution to the effective
number of ultrarelativistic degrees of freedom.

At the time of BBN, g��tBBN� � 10 [32] and early de-
coupling of the light particle, gd � g��tBBN�, leads to a
negligible contribution to the effective number of ultra-
relativistic degrees of freedom well within the current
bounds [54]. Therefore, provided that the decoupled parti-
cle is stable, either for light particles that remain relativis-
tic during (BBN) but that decouple very early on when
gd � 10 or when the particle’s mass m> 1 MeV, there is
no influence on the primordial abundance of light elements
and BBN does not provide any tight constraints on the
particle’s mass.

B. A Bose-condensed light particle as a dark matter
component

Consider the case of a light bosonic particle, for ex-
ample, an axion-like-particle. Typical interactions involve
two types of processes, inelastic reactions are number-
changing processes and contribute to chemical equilibra-
tion, while elastic ones distribute energy and momenta of

FIG. 2 (color online). Bosons without chemical potential. Left panel: I��x� and J��x� vs x. Right panel: 3w�x� vs x:I� 	 I�, J� 	
IP .

FIG. 1 (color online). Fermions without chemical potential. Left panel: I��x� and J��x� vs x. Right panel: 3w�x� vs x:I� 	 I�,
J� 	 IP .
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the intervening particles, these do not change the particle
number but lead to kinetic equilibration. Consider the case
in which chemical freeze-out occurs before kinetic freeze-
out, such is the case for a real scalar field with quartic self-
interactions. In this theory, number-conserving processes
such as 2 ! 2 establish kinetic (thermal) equilibrium, but
conserve particle number, a cross section for such process
is / �2, where � is the quartic coupling. The lowest order
number-changing processes that contribute to chemical
equilibrium are 4 ! 2, with cross sections / �4. Hence,
this is an example of a theory in which chemical freeze-out
occurs well before kinetic freeze-out for small coupling.

Another relevant example is the case of WIMPs studied
in Ref. [33] where it was found that Tcd � 10 GeV, while
Tkd � 10 MeV where Tcd, Tkd are the chemical and kinetic
(thermal) decoupling temperatures, respectively. Although
this study focused on a fermionic particle, it is certainly
possible that a similar situation, namely, chemical freeze-
out much earlier than kinetic freeze-out, may arise for
bosonic DM candidates.

Under this circumstance, the number of particles is
conserved if the particle is stable, but the temperature
continues to redshift by the cosmological expansion, there-
fore the gas of bosonic particles cools at constant comov-
ing particle number. This situation must eventually lead to
Bose-Einstein condensation (BEC) since the thermal dis-
tribution function can no longer accommodate the particles
with nonvanishing momentum within a thermal distribu-
tion. Once thermal freeze-out occurs, the frozen distribu-
tion must feature a homogeneous condensate and the
number of particles for zero momentum becomes macro-
scopically large. Although some aspects of Bose-Einstein
condensates were studied in Refs. [35,36], we study new
aspects such as the impact of the BEC upon the bound for
the mass and the velocity dispersion of DM candidates.

The bosonic distribution function for a fixed number of
particles includes a chemical potential and is given by
Eq. (2.14) where �d 
 m for the distribution function to
be manifestly positive for all p. Separating explicitly the
contribution from the ~p 	 0 mode the number of particles
per comoving volume Vc is

 

n 	
1

Vc

1

e�m��d�=Td � 1
�

1

Vc

X
~pc

1

e�
�����������
m2�p2

c

p
��d�=Td � 1

� n0 �
Z d3pc
�2��3

1

e�
�����������
m2�p2

c

p
��d�=Td � 1

; (3.4)

where

 n0 	
1

Vc

1

e�m��d�=Td � 1
(3.5)

is the comoving condensate density. In the infinite volume
limit the condensate term vanishes unless �d ! m. For
m=Td � 1 we find

 n 	 n0 �
T3
d�3�

�2 Z�e�d=Td�; (3.6)

where

 Z�e�d=Td� 	
1

�3�

X1
l

el�d=Td

l3
: (3.7)

The maximum value that �d can achieve is m, therefore,
neglecting m=Td we replace Z�e�d=Td� by Z�1� 	 1. If the
comoving particle density

 n >
T3
d�3�

�2 (3.8)

then, there must be a zero momentum condensate with
n0 � 0 and �d 	 m in the infinite (comoving) volume
limit. In this limit we find

 1�
n0

n
	

8><>:
�
Td
Tc

�
3

for Td < Tc

0 for Td > Tc;
(3.9)

where the critical temperature is given by

 Tc 	
�
�2n
�3�

�
1=3
: (3.10)

The solution of the Eq. (3.4) that determines the condensate
fraction shows that for Td < Tc

 �d 	 m: (3.11)

In the infinite volume limit the distribution function for
particles that decouple while ultrarelativistic m=Td � 1,
for Td < Tc becomes

 fd�pc� 	 n0�
�3�� ~pc� �

1

epc=Td � 1
: (3.12)

From Eq. (2.22) the total number of particles for m=Td �
1, Tc > Td is given by

 n�t� 	 n0�t� �
�3�

�2 T
3
d�t�; (3.13)

where

 n0�t� 	
n0

a3�t�
: (3.14)

For Td < Tc Eq. (3.9) implies that

 n0�t� 	
�3�

�2

��
Tc
Td

�
3
� 1

�
T3
d�t�; (3.15)

hence for Td < Tc the total density is given by

 n�t� 	
�3�

�2

�
Tc
Td

�
3
T3
d�t�: (3.16)

The enhancement factor �Tc=Td�3 over the thermal result
reflects the population of particles in the condensed, zero
momentum state. The energy density and pressure are
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given by

 ��t� 	 gmfn0�t� � T3
d�t�I

nc
� �x�t��g (3.17)

 P �t� 	 g
T5
d�t�
3m

IncP �x�t��; (3.18)

where

 Inc� �x�t�� 	
1

2�2

Z 1
0

�������������������
1�

y2

x2�t�

s
y2

ey � 1
dy (3.19)

 

IncP �x�t�� 	
1

2�2

Z 1
0

y2����������������
1� y2

x2�t�

q y2

ey � 1
dy;

x�t� 	
m
Td�t�

(3.20)

are the contributions from the particles outside the con-
densate (p � 0).

Two important aspects emerge from these expressions:
(i) the condensate always contributes as a nonrelativistic
component, (ii) the condensate does not contribute to the
pressure.

Replacing Eq. (3.15) into (3.17) and using

 

Z 1
0

y2dy
ey � 1

	 2�3�;

the energy density and equation of state for Td < Tc can be
written compactly as

 ��t� 	 gmT3
d�t�I�x�t��; (3.21)

where
 

I�x�t�� 	
1

2�2

Z 1
0

�24�Tc
Td

�
3
� 1

�
�

�������������������
1�

y2

x2�t�

s 9=;
�

y2

ey � 1
dy: (3.22)

The equation of state

 w�x� 	
IncP �x�

3x2I�x�
(3.23)

is displayed in Fig. 3, from which it is clear that for
Tc=Td > 1 the nonrelativistic limit sets in much earlier
than for the non-Bose-condensed case. This is a conse-
quence of the zero momentum particles in the BEC which
contribute as pressureless cold matter, even when the light
bosonic particle decouples while ultrarelativistic.

For Td < Tc when the particle becomes nonrelativistic,
namely x! 1, the energy density becomes

 ��t� 	 gmn�t�; (3.24)

where n�t� is the total number of particles per physical
volume, including the condensate and noncondensate com-
ponents, from Eq. (3.16) it follows that

 ��t� 	 gm
�3�

�2

�
Tc
Td

�
3
T3
d�t�; (3.25)

from which for Tc � Td it follows analogously to
Eq. (2.47) that

 �BEh2 	
m

25:67 eV

g
gd

�
Tc
Td

�
3
: (3.26)

The dark matter fraction that these particles can contribute
is given by

 �BE 	
m

2:695 eV

g
gd

�
Tc
Td

�
3
; (3.27)

resulting in the upper bound

 m 
 2:695
gd
g

�
Td
Tc

�
3
eV: (3.28)

In the Bose-condensed case Td=Tc < 1 the bosonic particle
is light unless it decouples very early on at high tempera-
ture with a large gd. The presence of a BEC tightens the
constraint on the mass of the light bosonic particle via the
extra factor �Td=Tc�3 in (3.28).

A quantity of importance for clustering is the velocity
dispersion when the particle becomes nonrelativistic, it is
given by

 h ~V2i 	

� ~P2
f

m2

�
	 12

�5�
�3�

�
Td�t�
m

�
2
�
Td
Tc

�
3
; (3.29)

where �5� 	 1:036 927 8 . . . .
The presence of the BEC, accounted for by the factor

�Td=Tc�
3 < 1 in Eq. (3.29), diminishes the velocity disper-

sion. This is a consequence of the fact that the particles in
the condensate all have vanishing momentum, and only the
noncondensate particles contribute to the velocity disper-
sion but the fraction of particles outside of the condensate
is precisely the factor �Td=Tc�3. Therefore the presence of a
BEC leads to a decrease in the velocity dispersion and

FIG. 3 (color online). 3w�x� vs x for the Bose-condensed case
for Tc=Td 	 1–2.
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consequently even for light particles to a decrease in the
free-streaming length.

These results imply that, although the bosonic particle is
bound to be very light by the bound (3.28) (unless they
decoupled very early), if Tc � Td it is not a HDM com-
ponent but can effectively act as either a WDM or CDM
because of a small velocity dispersion. Whether Tc � Td
or not has to be studied within the microscopic particle
physics model that describes this DM component.

IV. COARSE GRAINED PHASE-SPACE DENSITIES
AND NEW DM BOUNDS

In their seminal article Tremaine and Gunn [30] argued
that the coarse grained phase-space density is always
smaller than or equal to the maximum of the (fine grained)
microscopic phase-space density, which is the distribution
function. Such an argument relies on the theorem [43] that
states that collisionless phase mixing or violent relaxation
by gravitational dynamics can only diminish the coarse
grained phase-space density. A similar argument was pre-
sented by Dalcanton and Hogan [11,38], and confirmed by
recent numerical studies [44].

As noticed in Ref. [36], the case of the Bose-Einstein
distribution requires a careful treatment because for mass-
less particles the Bose-Einstein distribution diverges at
small momentum. This divergence is present if there is a
BEC even when the mass of the bosonic particle is in-
cluded. This is so since �d 	 m is required to form a BEC
and the distribution functions diverge at zero momentum,

even the part of the distribution function that describes the
particles outside the condensate diverges at P 	 0. Madsen
recognized this caveat in the bosonic case and in Ref. [36]
introduced an alternative statistical interpretation of the
phase-space density, similar to that introduced in [11,38]
but with the upper limit in the momentum integrals re-
placed by a (physical) momentum cutoff as suggested by
the phase mixing theorem [43]. However, it is straightfor-
ward to show that the resulting coarse grained phase-space
density is not a Liouville invariant. Instead, we define the
coarse grained (dimensionless) primordial phase-space
density

 D �
n�t�

h ~P2
fi

3=2
; (4.1)

which is Liouville invariant and where h ~P2
fi is defined in

Eq. (2.49). Since the distribution function is frozen and is a
solution of the collisionless Boltzmann (Liouville) equa-
tion (2.13), it is clear that D is a constant, namely, a
Liouville invariant in absence of self-gravity,. Including
explicitly a possible BEC, D is given by

 D 	
g

2�2

�2�
2n0

T3
d
�
R
1
0 y

2fd�y�dy�
5=2

�
R
1
0 y

4fd�y�dy�3=2
; (4.2)

where fd�y� is the distribution function for the noncon-
densed particles in the bosonic case and n0 is the comoving
density of the Bose-Einstein condensate

 

2�2n0

T3
d

	

�
2�3�

��
Tc
Td

�
3
� 1

�
for the BEC withTd < Tc

0 for the fermionic or non-Bose condensed case:
(4.3)

When the particle becomes nonrelativistic ��t� 	 mn�t�
and h ~V2i 	 h

~P2
f

m2i, therefore

 D 	
�

m4h ~V2i3=2
	
QDH

m4 ; (4.4)

where QDH is the phase-space density introduced by
Dalcanton and Hogan [11,38]

 QDH 	
�

h ~V2i3=2
; (4.5)

and the one-dimensional velocity dispersion � is defined
by Eq. (2.44).

In the nonrelativistic regime D is related to the coarse
grained phase-space density QTG introduced by Tremaine
and Gunn [30]:

 QTG 	
�

m4�2��2�3=2
	

�
3

2�

�
3=2

D: (4.6)

The observationally accessible quantity is the phase-space
density �=�3, therefore, using � 	 mn for a decoupled

particle that is nonrelativistic today and Eq. (2.44), we
define the primordial phase-space density

 

�DM

�3
DM
	 33=2m4D � 6:611� 108D

�
m

keV

�
4 M�=kpc3

�km=s�3
;

(4.7)

where we used that keV4�km=s�3 	 1:2723� 108 M�
kpc3 .

During collisionless gravitational dynamics, phase mix-
ing increases the density and velocity dispersions in such a
way that the coarse grained phase-space density either
remains constant or diminishes, namely,

 

�

�3 
 6:611� 108D

�
m

keV

�
4 M�=kpc3

�km=s�3
; (4.8)

where D is given by Eq. (4.2) for an arbitrary distribution
function. For a particle that decouples when it is ultrarela-
tivistic D does not depend on the mass, hence Eq. (4.8)
yields a lower bound on the mass of the particle directly
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from the observed phase-space density and the knowledge of the distribution function.
For comparison it is convenient to gather the values D [Eq. (4.2)] for the usual LTE cases that follow from Eqs. (2.31)

and (2.35):

 D 	g�

8>>>><>>>>:
1:963�10�3 fermions; �d	0
3:657�10�3 bosons without BEC

3:657�10�3

�
Tc
Td

�
15=2

bosons with BEC; Tc>Td

8:442�10�2gdY1 nonrelativistic Maxwell-Boltzmann;

(4.9)

where gd is the number of ultrarelativistic degrees of free-
dom at decoupling.

We note that for Tc � Td the presence of a BEC in-
creases dramatically the primordial phase-space density.
This is a consequence of the enhancement of the particle
density over the thermal case due to the presence of the
condensate, and the decrease in the velocity dispersion
because the particles in the condensate all have zero
momentum.

A. New bounds from phase-space density and dShps
data

We derive here new bounds from the latest compilation
presented in Ref. [14] directly on �=�3 for the data set
comprising ten satellite galaxies in the Milky Way dSphs.
It proves convenient to write Eq. (4.8) as

 m4 �
�62:36 eV�4

D
10�4 �

�3

�km=s�3

M�=kpc3 ; (4.10)

the data in Ref. [14] yields the range

 0:9 
 10�4 �

�3

�km=s�3

M�=kpc3 
 20; (4.11)

and we choose a fiducial value for this quantity in the
middle of the range of the data [14] �5–10, leading to
the new bound

 m *
100

D1=4
eV: (4.12)

For thermal relics that decoupled while ultrarelativistic
with vanishing chemical potentials and no BEC, we find
from Eqs. (4.9) and (4.12),

 m *
1

g1=4

�
0:475 keV fermions
0:407 keV bosons without BEC;

(4.13)

and for bosons with BEC (Td < Tc) we find

 m *
1

g1=4
0:407 keV

�
Td
Tc

�
15=8

bosons with BEC: (4.14)

For particles that decouple out of LTE with arbitrary dis-
tribution functions the form of the new bound is given by
Eq. (4.12) with D given by Eq. (4.2). The detailed form of
D is completely determined by the distribution function at
decoupling, which must be obtained from a microscopic
calculation of the kinetics of decoupling. Once the distri-

bution function is obtained, the new bound equation (4.12)
yields the lower bound of the mass consistent with the
observational data.

Combining the upper bound (2.49) with the lower bound
Eq. (4.10) we establish the mass range for the DM candi-
date

 

62:36 eV

D1=4

�
10�4 �

�3

�km=s�3

M�=kpc3

�
1=4
<m


 2:695 eV
2gd�3�

g
R
1
0 y

2fd�y�dy
; (4.15)

where D is given by Eq. (4.2) and the compilation of data
in [14] constrains the bracket �� � ��1=4 � 1–2.

For thermal relics that decoupled in LTE while ultra-
relativistic, and taking the bracket in the middle of the
range, we obtain from Eqs. (4.9) and (4.15)
 

444 eV

g1=4

m


gd
g

4:253 eV fermions with�d	 0;

380 eV

g1=4

m


gd
g

2:695 eV bosons with�d

	 0 and no BEC

380 eV

g1=4

�
Td
Tc

�
15=8

m


gd
g

2:695
�
Td
Tc

�
3
eV BEC: (4.16)

Therefore, if the thermal relic decouples in equilibrium this
mass range indicates that it must decouple when
gdg��3=4� > 110–150, namely, at or above the electroweak
scale [32]. In the BEC case, for Td � Tc the fulfillment of
the bound requires very large gdg�3=4, namely, thermal
decoupling at a scale much larger than the electroweak
scale.

An alternative is that the particle is very weakly coupled
to the plasma and decouples away from equilibrium with a
distribution function that yields a smaller abundance in-
creasing the right-hand side of Eq. (4.16).

B. Generalized Tremaine-Gunn bound

The Tremaine-Gunn bound [30] establishes a relation
between the properties of dark matter in galaxies through
their phase-space densities. It assumes that dark matter
could be reliably described by an isothermal sphere solu-
tion of the Lane-Emden equation with the equation of state
(2.44) [55,56]. In thermal equilibrium the quantity [56]
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Gm2N
LT

	
2G�L2

3�2 (4.17)

is bound to be 
 & 1:6 to prevent the gravitational collapse
of the gas. Here V 	 L3 stands for the volume occupied by
the gas, N for the number of particles, and T 	 3

2m�
2 for

the gas temperature. The length L is similar to the King
radius [55]. However, the King radius follows from the
singular isothermal sphere solution while L is the charac-
teristic size of a stable isothermal sphere solution [56].

Combining Eq. (4.17) with Eq. (4.8) results in a gener-
alized Tremaine-Gunn bound,

 m4 �



2
���
3
p
GL2�D

	 

�85:22 eV�4

D

10 km=s

�

�
kpc

L

�
2
;

(4.18)

therefore the generalized Tremaine-Gunn bound on the
mass becomes

 m �
85:22 eV

D1=4

1=4

�
10 km=s

�

�
1=4
�

kpc

L

�
1=2
: (4.19)

The compilation of recent photometric and kinematic data
from ten Milky Way dSphs satellites [14] yield values for
the one-dimensional velocity dispersion ��� and the radius
(L) in the ranges

 0:5 kpc 
 L 
 1:8 kpc; 6:6 km=s 
 � 
 11:1 km=s:

(4.20)

For particles that decouple in LTE when they are ultrarela-
tivistic (ultrarelativistic thermal relics) with vanishing
chemical potential and no BEC, we find from Eqs. (4.9)
and (4.19)

 m �
�


g

�
1=4
�

10 km=s

�

�
1=4

�

�
kpc

L

�
1=2
�

0:405 keV fermions
0:347 keV bosons:

(4.21)

For the case of ultrarelativistic bosonic thermal relics with
a BEC and Td < Tc we find the bound

 m �
�


g

�
1=4

0:347 keV
�

10 km=s

�

�
1=4
�

kpc

L

�
1=2
�
Td
Tc

�
15=8

:

(4.22)

Therefore, the BEC case allows for smaller masses to
saturate the Tremaine-Gunn bound for Tc � Td, a conse-
quence of the enhanced primordial phase-space density in
the presence of the BEC.

C. DM mass values from velocity dispersion

We can use the independent data provided in Ref. [14]
on the mean density and velocity dispersion to explore
bounds solely from the velocity dispersion. Since the
phase-space density only diminishes or remains constant
during the collisionless gravitational dynamics of cluster-

ing, from which it follows that

 

�DM

�3
DM
�
�s
�3
s
; (4.23)

where �DM and �DM are, respectively, the matter density
and velocity dispersion of the homogeneous dark matter
prior to gravitational collapse. �s and �s are, respectively,
the satellite’s mean volume mass density and velocity
dispersion. Assuming that DM has a single component,
its density today is [49]

 �DM 	 �DMh
21:054� 104 eV=cm3

	 1:107� 103 eV=cm3; (4.24)

�DM is given by Eq. (2.45). Reference [14] quotes the
following values for the favored satellite’s cored dark
matter density and velocity dispersion:

 �s � 5
GeV

cm3 ; �s � 10
km

s
: (4.25)

Equations (4.23), (4.24), and (4.25) lead to

 �DM 
 0:06
km

s
: (4.26)

Combining Eq. (2.45) for z 	 0 and Eq. (4.26) yields

 

m
keV

�
0:847

g1=3
d

�R1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

�
1=2
: (4.27)

For thermal fermions or bosons without chemical potential
(no BEC) and 10< gd & 100, we findm� 0:6–1:5 keV in
agreement with the bounds found above and the conclu-
sions of Ref. [57]. A suppression factor �Td=Tc�3 appears in
the BEC case for the same range of gd.

We emphasize that the bound equation (4.27) is inde-
pendent from the bound equation (4.13) obtained from the
phase-space density above, and relies on the fact that the
observational data [14] yields separate information on �s
and �s.

It proves illuminating to analyze the velocity dispersion
�DM from expression (2.45) at z 	 0 for thermal relics. We
find
 

�DM 	
1

g1=3
d

keV

m
km

s

�

8>>>>><>>>>>:

0:187 fermions �d 	 0

0:167 bosons no BEC

0:167� �TdTc�
3=2 bosons with BEC; Tc > Td

0:09�
�����
xd
p

nonrelativistic:

(4.28)

We see that for Tc � Td light bosonic particles that de-
coupled while ultrarelativistic but undergo BEC can effec-
tively act as CDM with very small velocity dispersion.
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In Ref. [33] it is found that kinetic decoupling for a
WIMP of mass m� 100 GeV occurs at Td � 10 MeV,
leading to the estimate

�����
xd
p

	
������������
m=Td

p
� 100. Thus, for

CDM from weakly interacting massive particles the veloc-
ity dispersion equation (4.28) is

 �wimp � 10�8

�
100 GeV

m

� �����
xd
p

100
g��1=3�
d

�
9

km

s

�
: (4.29)

Thus, �wimp is 8 orders of magnitude smaller than the
typical velocity dispersion in dSphs [14] for wimps ofm�
100 GeV that decoupled in LTE at Td � 10 MeV [33].

It is noteworthy to compare the phase-space densities of
the homogeneous dark matter distribution for the thermal
relics that decoupled ultrarelativistically and nonrelativisti-
cally with that observed in the satellites dShps. If the
distribution of dark matter is cored [14]1

 

�
�s
�3
s

�
cored
� 5� 106 eV=cm3

�km=s�3
: (4.30)

If the distribution of dark matter is cusped, Ref. [14] gives
the value for the density �s � 2 TeV=cm3 yielding

 

�
�s
�3
s

�
cusped

� 2� 109 eV=cm3

�km=s�3
: (4.31)

Assuming that a thermal relic that decoupled when ultra-
relativistic is the only DM component with the density
given by the value today �DM � 1:107� 103 eV=cm3

[49], we find from Eqs. (2.45) at z 	 0,
 

�DM
�3
DM

� 106 eV=cm3

�km=s�3

�
m

keV

�
3

� gd

8>><
>>:

0:177 fermions

0:247 bosons without BEC

0:247�Tc=Td�9=2 bosons with BEC:

(4.32)

Thus, for gd > 10 we see that form� keV the phase-space
density for thermal relics that decoupled being ultrarela-
tivistic is of the same order as the phase-space density in
dShps with cores, Eq. (4.30). Thermal relics with mass in
the �keV range obviously favor cores over cusps because
the primordial phase space is �DM=�

3
DM � �s=�

3
s for cores

while �DM=�
3
DM � �s=�3

s for a cuspy distribution, and
according to the theorem in [30,43], the phase-space den-
sity can only diminish during gravitational clustering.

An enhancement factor �Tc=Td�9=2 appears in Eq. (4.32)
for the case of a BEC. Notice that, for Tc=Td * 10 and
m� keV, a BEC yields a phase-space density consistent
with cusps as a result of the small velocity dispersion and
the CDM behavior.

Recent N-body simulations [44] indicate that the phase-
space density decreases by a factor 10–102 due to gravita-

tional relaxation during structure formation between 0 

z 
 10, with smaller relaxation in WDM than in CDM
[11,44]. Therefore, from these numerical results it follows
that

 

�s
�3
s
� 10�2 �DM

�3
DM

: (4.33)

Combining this result with the observational results equa-
tions (4.30) and (4.31) and the primordial phase-space
density equation (4.32) for a thermal relic that decoupled
while ultrarelativistic, we find

 mcored �
15

g1=3
d

keV; mcusp �
100

g1=3
d

keV: (4.34)

These values and the upper bounds for m in Eqs. (4.16)
yield the following bounds for thermal relics:

 gdg
��3=4� � 500 for cores;

gdg
��3=4� � 2000 for cusps:

(4.35)

Therefore, thermal relics, DM candidates that decouple
when relativistic, must decouple at a temperature well
above the electroweak scale. Equations (4.34) and (4.35)
imply for the mass value:

 mcored �
2

g1=4
keV; mcusp �

8

g1=4
keV: (4.36)

Although mcusp is not too much larger than mcored it is
noteworthy that the thermal relic DM candidate that leads
to cusped profiles must decouple when gd * 2000, namely,
very early at a temperature scale corresponding to a grand
unified theory with a large symmetry group.

For the case of CDM from wimps which decoupled
nonrelativistic, we find from Eqs. (4.24) and (4.28)

 

�wimp

�3
wimp

� 1024 eV=cm3

�km=s�3

�
m

100 GeV

�
3
�

100�����
xd
p

�
3
gd: (4.37)

The phase-space density always decreases by dynamical
relaxation, a result recently confirmed numerically by
N-body simulations [44]. For initial values of the phase-
space density which are much lower than the primordial
ones, these yield a typical decrease by a factor 102–103

[44]. If these results should persist in N-body simulations
with larger values of the initial phase-space density, they
would imply a tension between the phase-space density of
WIMPs equation (4.37) being 18 to 15 orders of magnitude
larger than that in dShps either cored equation (4.30) or
cusped equation (4.31) [14].

Combining Eqs. (4.30), (4.31), (4.33), and (4.37) yield
for wimps as DM,

 

����������
mTd

p
�

10

g1=3
d

keV for cores;

����������
mTd

p
�

100

g1=3
d

keV for cusps:
(4.38)

1�eV=c2�=cm3 	 0:026M�=kpc3.
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From the combined analysis of the primordial phase-
space densities, the observational data on dSphs [14] and
the N-body simulations in Ref. [44], we conclude the
following:

(i) Thermal relics with m� few keV that decouple
when ultrarelativistic lead to a primordial phase-
space density of the same order of magnitude as in
cored dShps and disfavor cusped satellites for which
the data [14] yields a much larger phase-space
density.

(ii) Light bosonic particles decoupled while ultrarelativ-
istic and which form a BEC lead to phase-space
densities consistent with cores and if Tc=Td * 10,
also consistent with cusps. However, for thermal
relics to satisfy the bound equation (4.16), they
must decouple when gdg��3=4��Td=Tc�9=8 > 130,
namely, above the electroweak scale. Recall that
typically g takes a value between one and four.

V. NONEQUILIBRIUM EFFECTS

The main results of our analysis are the new bounds
from DM abundance and phase-space density of dShps
summarized in Eq. (4.15). When the dark matter candidate
decouples out of LTE, these bounds establish a direct
connection with the microphysics via the frozen distribu-
tion functions. These functions must be obtained from a
detailed calculation of the microscopic processes that de-
scribe the production and pathway towards equilibration of
the corresponding dark matter candidate. If kinetic (and
chemical) freeze-out occurs out of LTE, the distribution
functions will keep memory of the initial state and the
detail of the processes that established it.

Nonequilibrium effects have been mainly considered for
massive particles that decoupled when nonrelativistic [58]
or as distortions in the neutrino distribution functions dur-
ing BBN [59,60]. Instead, we focus here on DM constraints
from decoupling out of (LTE) at temperatures larger than
the BBN scale and when particles are ultrarelativistic.
Decoupling out of LTE in this case has been much less
studied. In this section we explore a cosmologically rele-
vant mechanism of production and equilibration which
describes a wide variety of situations out of LTE.

A. Particle production followed by an UV cascade

Early studies of particle production via parametric am-
plification and oscillations of inflatonlike scalar fields re-
vealed that particles are produced via this mechanism
primarily in a low momentum band of wave vectors [45]
leading to a nonthermal spectrum (Figs. 2–3 in Ref. [45]
illustrate these effects).

Subsequent studies [46] showed that the early phase of
parametric amplification and particle production is fol-
lowed by a long stage of mode mixing and scattering that
redistributes the particles: the larger momentum modes are
populated by a cascade whose front moves towards the

ultraviolet akin to a direct cascade in turbulence, leaving in
its wake a state of nearly LTE but with a lower temperature
than that of equilibrium [46].

The dynamics during the cascade process diminishes the
amplitude of the distribution function at lower momenta
and populates the higher momentum modes. The distribu-
tion function develops a front that moves towards the
ultraviolet. Behind the front the distribution function is
nearly that of LTE with a different temperature and ampli-
tude and slowly evolves towards thermal equilibrium [46].
If these particles are very weakly coupled to the plasma, it
is possible that the advance of the cascade and the front of
the distribution towards larger momenta is interrupted
when the rate of scattering or mode mixing becomes
smaller than the expansion rate. In this case, the distribu-
tion function is frozen well before reaching complete LTE
resulting in a population of modes primarily at lower
momenta up to the scale of the front. This study [46]
suggests the following frozen distribution function:

 fd�y� 	 f0feq

�
y
�

�
��y0 � y�; (5.1)

where feq�
pc
�Td
� is the equilibrium distribution function for

an ultrarelativistic particle at an effective temperature �Td.
Namely, � 	 1 at thermal equilibrium and � < 1 before
thermodynamical equilibrium is attained.

This form describes fairly accurately the cascade with a
front that moves towards the ultraviolet, which is inter-
rupted at a fixed value of the momentum, identified here to
be p0

c 	 y0Td; Td is the temperature of the environmental
degrees of freedom that are in LTE at the time of
decoupling.

The amplitude f0 and effective temperature �Td 
 Td
reflect an incomplete thermalization behind the front of the
cascade and determine the average number of particles in
its wake [46]. This interpretation is borne out by the de-
tailed numerical studies in Ref. [46]. For Fermi-Dirac
ultrarelativistic particles (with vanishing chemical poten-
tial) 0 
 f0 
 2, whereas for Bose-Einstein ultrarelativis-
tic particles 0 
 f0 
 1. Neglecting the possibility of a
BEC, for a fermionic or bosonic equilibrium distribution
function feq, we find

 Z 1
0
y2fd�y�dy 	 f0�3F

�
p0
c

�Td

�
;

F�s� 	
Z s

0
y2feq�y�dy;

Z 1
0
y4fd�y�dy 	 f0�5G

�
p0
c

�Td

�
;

G�s� 	
Z s

0
y4feq�y�dy;

(5.2)

and the primordial phase-space density becomes
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p0
c

�Td
;

H�s� �
�
F�s�
F�1�

�
5=2
�
G�1�
G�s�

�
3=2
;

(5.3)

where Deq is the phase-space density equation (4.2) for the
equilibrium distribution feq.

For a fermionic species without chemical potential
[feq�y� 	 1=�ey � 1�], the bound equation (4.15) becomes

 

475 eV

�f0gH�s��1=4

 m 


gd
g

4:253

f0�3F�s�
eV; (5.4)

and the one-dimensional velocity dispersion equation
(2.45) becomes today

 �DM 	
0:05124�

g1=3
d

v�s�
�
keV

m

��
km

s

�
; v�s� �

����������
G�s�
F�s�

s
:

(5.5)

The functions F�s�, H�s�, and v�s� for the case feq�y� 	
1=�ey � 1� are displayed in Fig. 4. For the Bose-Einstein
case without a BEC the behaviors of F�s�, H�s�, and v�s�
are qualitatively similar.

It is clear that the bound equation (5.4) for the range ofm
can easily be satisfied for moderate values gd � 10–50
corresponding to decoupling temperatures 1 MeV & Td &

1 GeV and f0�3F�s� & 0:08.
Remarkably, the nonequilibrium distribution equation

(5.1) turns out to be a generalization of several nonequi-
librium distribution functions of cosmological relevance
proposed in the literature:

(a) sterile neutrinos produced nonresonantly via the
Dodelson-Widrow mechanism [18] for which the
distribution function is obtained from (5.1) by taking
� 	 1; s! 1, f0 � 0:043 keV=m (Ref. [18]). In
this case we find for the mass range, phase-space
density, and velocity dispersion, respectively:
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g1=4

 m 


gd
g

56:5 eV;

�DM

�3
DM

	 5:7g� 104

�
m

keV

�
3 M�=kpc3

�km=s�3
;

�DM 	
0:187

g1=3
d

�
keV

m

��
km

s

�
:

(5.6)

The major uncertainty is the evaluation of gd. In the
Dodelson-Widrow [18] scenario, the sterile neutrino
production peaks at T � 130 MeV, this temperature
is very near the region where the QCD phase tran-
sition occurs at which the effective number of ultra-
relativistic degrees of freedom changes
dramatically. If decoupling occurs at a temperature
higher than the QCD critical temperature, then gd �
30 and the mass bound equation (5.6) may be ful-
filled, but for a lower decoupling temperature when
gd & 25–30 the mass bound may not be fulfilled. If
the mass bound is fulfilled, �DM=�

3
DM is compatible

with cored dSphs [14] [see Eq. (4.30)] but not with
the cusped distributions [see Eq. (4.31)]. Combining
the bound equation (5.6), the observed phase-space
density equation (4.30) [14], and the N-body results
of Ref. [44] which yield phase-space relaxation by a
factor �102, we find that

 m�
4

g1=3
keV: (5.7)

(b) sterile neutrinos produced by a net-lepton number
driven resonant conversion studied by Shi and Fuller
[19] for which the distribution function is obtained
from Eq. (5.1) for � 	 1, s� 0:7, f0 � 1 (see Fig. 1
in the first reference in [19]). We find
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�
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�DM 	
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d

keV

m
km

s
: (5.8)

FIG. 4. The functions F�s� (left panel), H�s� (middle panel), and v�s� (right panel) vs s 	 y0=�, for feq the Fermi-Dirac distribution
function without chemical potential.
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Again, a source of uncertainty is the evaluation of
gd, because in the resonant-mediated sterile neu-
trino production, the maximum production rate is
near the QCD temperature [19]. However, it is clear
that in this case the mass bound is less sensitive to
the uncertainty in gd (a small value gd � 10 fulfills
the bound), although the MSW resonance occurs
also near the QCD critical temperature [19]. The
velocity dispersion is small because the distribution
is skewed towards small momenta. Again,
�DM=�3

DM is consistent with cored dSphs [see
Eq. (4.30)] but not with cusped distributions [see
Eq. (4.31)]. A similar analysis as in the previous
case combining the observational data, the results of
Ref. [44], and the bound Eq. (5.8) yields

 m�
0:8

g1=4
keV: (5.9)

(c) Our distribution function equation (5.1) for � 	 1;
s! 1 and f0 	 	 yields the distribution function
proposed in Ref. [26] to model WDM [Eq. (8) in
Ref. [26]]. We find
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km

s
: (5.10)

The parameter 	 cannot be too small, although a
small 	 increases the mass, it decreases the phase-
space density.

Although recent studies [61] suggest that the description
of the production mechanism of sterile neutrinos must be
reassessed with likely implications on their distribution
functions after decoupling, the above estimates provide a
guidance to the range of mass, primordial phase-space
density, and velocity dispersions for sterile neutrinos as
possible WDM candidates.

VI. CONCLUSIONS

We have obtained new constraints on light DM candi-
dates that decoupled while ultrarelativistic in or out of LTE

in terms of their distribution functions. The only assump-
tion is that these distribution functions are homogeneous
and isotropic. A Liouville invariant coarse grained primor-
dial phase-space density is introduced that allows one to
combine phase-space density arguments with a recent
compilation of photometric and kinematic data on dSphs
galaxies to yield new constraints on the mass, velocity
dispersion, and phase-space density of DM candidates.
The new constraint on the mass range is
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where the primordial phase-space density is given by

 D 	
g

2�2

�
R
1
0 y

2fd�y�dy�5=2

�
R
1
0 y

4fd�y�dy�
3=2
; (6.2)

fd�pc=Td� is the distribution function at decoupling, g the
number of internal degrees of freedom of the particle, and
�=�3 is the phase-space density obtained from observa-
tions. The upper bound arises from requesting that the DM
candidate has a density
 �DM today, and the lower bound
arises from requesting that the phase-space density in halos
�=�3 be smaller than or equal to the primordial phase-
space density of the collisionless nonrelativistic (today)
DM component

 �DM=�
3
DM 	 33=2m4D:

We have studied the consequences of Bose-Einstein con-
densation of light ultrarelativistic particles when chemical
freeze-out occurs well before kinetic decoupling at Td <
Tc with Tc the critical temperature below which a non-
vanishing condensate fraction exists. We find that the
presence of the condensate hastens the onset of the non-
relativistic regime and that Bose-Einstein condensed par-
ticles can effectively act as a CDM component even when
they decoupled being ultrarelativistic. The reason for this
unusual behavior is that the particles in the condensate all
have vanishing velocity dispersion.

For thermal relics we find

 D 	 g�

8>>>><>>>>:
1:963� 10�3 fermions; �d 	 0
3:657� 10�3 bosons no BEC
3:657� 10�3�TcTd

�15=2 bosons with BEC; Tc > Td
8:442� 10�2gdY1 nonrelativistic Maxwell-Boltzmann:

(6.3)

The combination of data in Ref. [14] from dSphs when applied to light thermal relics yields the mass range
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with the implication that, if these particles are suitable DM
candidates, they must decouple at high temperature when
the effective number of ultrarelativistic degrees of freedom
is gd > 100. Namely, in absence of a BEC, thermal decou-
pling must occur above the electroweak scale. In the BEC
case, for Td � Tc, the fulfillment of the bound requires
very large gd. Namely, in the presence of a BEC thermal
decoupling occurs at a scale much larger than the electro-
weak scale for Td � Tc.

Assuming that the DM particle is the only component
with the density �DM today, we obtained an independent
bound from velocity dispersion which for the favored
cored profiles [14] yield the lower mass bound,

 

m
keV

�
0:855

g1=3
d

�R1
0 y

4fd�y�dyR
1
0 y

2fd�y�dy

�
1=2
: (6.5)

For light thermal relics this bound implies that m *

0:6–1:5 keV with a suppression factor Td=Tc in the BEC
case.

For light thermal relics that decoupled while ultrarela-
tivistic, we find the primordial phase-space density
 

�DM

�3
DM

� 106 eV=cm3

�km=s�3

�
m

keV

�
3

� gd

8>><>>:
0:177 fermions

0:247 bosons without BEC

0:247�Tc=Td�
9=2 bosons with BEC:

(6.6)

An enhancement factor �Tc=Td�9=2 appears in the right-
hand side in the presence of a BEC.

For wimps with kinetic decoupling temperature 10 MeV
[33], we find

 

�wimp

�3
wimp

� 1024 eV=cm3

�km=s�3

�
m

100 GeV

�
3
gd: (6.7)

The observational data compiled in Ref. [14] assuming a
favored cored profile suggests

 

�
�s
�3
s

�
cored
� 5� 106 eV=cm3

�km=s�3
: (6.8)

If the distribution of dark matter is cusped, Ref. [14] gives
the value for the density �s � 2 TeV=cm3 yielding

 

�
�s
�3
s

�
cusped

� 2� 109 eV=cm3

�km=s�3
: (6.9)

Therefore, for gd * 10 the primordial phase-space density
for thermal relics with m� keV favors a cored
distribution.

Notice that a bosonic thermal relic that features a BEC
can behave as CDM with small velocity dispersion and a
primordial phase-space density consistent with cusped dis-
tributions if Td � Tc. However, these BEC DM candidates
must decouple at a temperature scale higher than the
electroweak.

Recent results from N-body simulations suggests that
the phase-space density relaxes by a factor �102 during
gravitational clustering for 0 
 z 
 10 [44]. Combining
these numerical results with the observational results on
dSphs [14] and the present DM density, we conclude that
the mass of thermal relics that decoupled when ultrarela-
tivistic is

 mcored �
2

g1=4
keV; mcusp �

8

g1=4
keV: (6.10)

The decoupling temperature for the DM candidate that
would favor cusped profiles must be near a grand unified
scale for a large symmetry group with gd * 2000 which
effectively results in a colder relic today with a far smaller
velocity dispersion.

The enormous discrepancy between the primordial
phase-space density for WIMPs of m� 100 GeV; Td �
10 MeV, Eq. (6.7), and the phase-space densities in dSphs,
either cored [Eq. (6.8)] or cusped [Eq. (6.9)] cannot be
explained by the 2 orders of magnitude of gravitational
relaxation of phase-space densities found with recent
N-body simulations [44], although these initialize the
simulation with much smaller values of the primordial
phase-space density.

We have studied a scenario for decoupling out of equi-
librium motivated by previous studies of particle produc-
tion and thermalization via an UV cascade. The
distribution function obtained from previous studies [46]
remarkably describes the nonequilibrium distribution func-
tions for sterile neutrinos produced either resonantly [19]
or nonresonantly [18] as well as a recently proposed model
for halo structure [26]. Our bounds in terms of arbitrary
distribution functions lead to the following bounds on the
mass, phase-space density, and velocity dispersion of these
light relics that decoupled out of LTE:

(i) For sterile neutrinos produced nonresonantly via the
Dodelson-Widrow mechanism [18], we find
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g1=4
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gd
g

46:5 eV;

�DM

�3
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	 0:57g� 105
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�km=s�3
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�DM 	
0:187
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d

�
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m

��
km

s

�
: (6.11)

The upper and lower bound on the mass can only be
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compatible if the sterile neutrino decouples with
gd * 20–30. For m� keV the primordial phase-
space density is compatible with cored but not with
cusped profiles in the dShps data [14]. Combining
these bounds with the results from N-body simula-
tions on the relaxation of the phase-space density
[44] and with the observational constraint equation
(4.30) [14], we obtain the value

 m�
4

g1=3
keV (6.12)

for the mass of sterile neutrinos produced nonreso-
nantly by the Dodelson-Widrow mechanism.

(ii) For sterile neutrinos produced by a net-lepton num-
ber driven resonant conversion [19], we find

 

289 eV

g1=4
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�km=s�3
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�DM 	
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d

�
keV

m

��
km

s

�
: (6.13)

The small velocity dispersion is a consequence of the
distribution function being skewed towards small
momentum. Again for m� keV, the primordial
phase-space density is compatible with cored but
not cusped profiles in the dShps data [14]. For sterile
neutrinos produced by resonant conversion, a similar
analysis as for the previous case yields

 m�
0:8

g1=4
keV: (6.14)

(iii) For the model proposed in Ref. [26], we find
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km
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: (6.15)

It is noteworthy that the N-body results of Ref. [44],
which yield phase-space relaxation by a factor�102,
bring the values of the primordial phase-space den-
sity of the above cases within the range consistent
with the phase-space densities for cored profiles in
dSphs [14] for m� keV. On the contrary, in the case
of WIMPs with m� 100 GeV, Td � 10 MeV re-
laxation by many orders of magnitude is necessary
for their phase-space densities to be compatible with
the observed values both for cores and for cusps.

Therefore the bounds equations (6.12), (6.13), and (6.14)
confirm that �keV relics that decouple out of equilibrium
while ultrarelativistic via the mechanisms described above
yield values for phase-space densities that are in agreement
with cores in the DM distribution.

The results obtained in this article for the new mass
bounds, primordial phase-space densities and velocity dis-
persion in terms of arbitrary, but homogeneous and iso-
tropic distribution functions establish a link between the
microphysics of decoupling and observable quantities.
They also warrant deeper scrutiny of the nonequilibrium
aspects of sterile neutrinos [61] for a firmer assessment of
their potential as DM candidates.
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