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and Instituto de Fı́sica Teórica CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
(Received 28 November 2007; published 15 February 2008)

The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent
collision of large concentrations of energy density in the form of bubblelike structures moving at
relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background
of gravitational waves, whose time evolution is determined by the successive stages of reheating: First,
tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble
collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of
gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the
fraction of energy density today in these primordial gravitational waves could be significant for grand
unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of
gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still
produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also
computed the analogous gravitational wave background from some chaotic inflation models and obtained
results similar to those found by other groups. The discovery of such a background would open a new
observational window into the very early universe, where the details of the process of reheating, i.e. the
big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for
testing the inflationary paradigm.
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I. INTRODUCTION

Gravitational waves (GW) are ripples in space-time that
travel at the speed of light, and whose emission by relativ-
istic bodies represents a robust prediction of general rela-
tivity. The change in the orbital period of a binary pulsar
known as PSR 1913� 16 was used by Hulse and Taylor
[1] to obtain indirect evidence of their existence. Although
gravitational radiation has not been directly detected yet, it
is expected that the present universe should be permeated
by a diffuse background of GW of either an astrophysical
or cosmological origin [2].

Astrophysical sources, like the gravitational collapse of
supernovae or the neutron star and black hole binaries’
coalescence, produce a stochastic gravitational wave back-
ground (GWB) which can be understood as coming from
unresolved point sources. On the other hand, among the
backgrounds of cosmological origin, we find the approxi-
mately scale-invariant background produced during infla-
tion [3], or the GWB generated at hypothetical early
universe thermal phase transitions, from relativistic mo-
tions of turbulent plasmas or from the decay of cosmic
strings [2].

Fortunately, these backgrounds have very different spec-
tral shapes and amplitudes that might, in the future, allow
gravitational wave observatories like the Laser
Interferometer Gravitational Wave Observatory (LIGO)
[4], the Laser Interferometer Space Antenna (LISA) [5],
the Big Bang Observer (BBO) [6] or the Decihertz Inter-
ferometer Gravitational Wave Observatory (DECIGO) [7]
to disentangle their origin [2]. Unfortunately, due to the
weakness of gravity, this task will be extremely difficult,

requiring a very high accuracy in order to distinguish one
background from another. It is thus important to character-
ize as many different sources of GW as possible.

There are, indeed, a series of constraints on some of
these backgrounds, the most stringent one coming from the
large-scale polarization anisotropies in the cosmic micro-
wave background (CMB), which may soon be measured by
Planck [8], if the scale of inflation is sufficiently high.
There are also constraints coming from big bang nucleo-
synthesis [9], since such a background would contribute as
a relativistic species to the expansion of the Universe and
thus increase the light element abundance. There is also a
constraint coming from millisecond pulsar timing [10].
Furthermore, it has recently been proposed a new con-
straint on a GWB coming from CMB anisotropies [11].
Most of these constraints come at very low frequencies,
typically from 10�18 Hz to 10�8 Hz, while present GW
detectors work at frequencies of order 1–100 Hz, and
planned observatories will range from 10�3 Hz of LISA
to 103 Hz of Advanced-LIGO [2,4]. If early universe phe-
nomena like first order phase transitions [12,13] or cosmic
turbulence [14] occurred around the electroweak (EW)
scale, there is a chance than the GW detectors will measure
the corresponding associated backgrounds. However, if
such early universe processes occurred at the grand unified
theory (GUT) scale, their corresponding backgrounds will
go undetected by the actual detectors, since these cannot
reach the required sensitivity in the high frequency range
of 107–109 Hz, corresponding to the size of the causal
horizon at that time. There are, however, recent proposals
to cover this range [15], which may become competitive in
the near future.
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Moreover, present observations of the CMB anisotropies
and the large scale structure (LSS) distribution of matter
seem to suggest that something like inflation must have
occurred in the very early universe. We ignore what drove
inflation and at what scale it took place. However, approxi-
mately scale-invariant density perturbations, sourced by
quantum fluctuations during inflation, seem to be the
most satisfying explanation for the CMB anisotropies.
Together with such scalar perturbations one also expects
tensor perturbations (GW) to be produced, with an almost
scale-free power spectra [3]. Because of the weakness of
gravity, this primordial inflationary GWB should decouple
from the rest of matter as soon as it is produced, and move
freely through the Universe till today. At present, the
biggest efforts employed in the search for these primordial
GW come from the indirect effect that this background has
on the B-mode polarization anisotropies of the CMB [8],
rather than via direct detection. The detection of such a
background is crucial for early universe cosmology be-
cause it would help to determine the absolute energy scale
of inflation, a quantity that for the moment is still uncer-
tain, and would open the exploration of physics at very
high energies.

In the early universe, after inflation, other backgrounds
of GW could have been produced at shorter wavelengths,
in a more ‘‘classical’’ manner, rather than sourced by
quantum fluctuations. In particular, whenever there are
large and fast moving inhomogeneities in the matter dis-
tribution, one expects the emission of GW. This is much
like the situation in classical electrodynamics, but with
some differences. At large distances from the source, the
amplitude of the electromagnetic field Ai is expressed as
the first derivative of the dipole moment di of the charge
distribution of the source, Ai ’ _di=cr, while the amplitude
of the GW is given by the second derivative of the quad-
rupole moment of the mass distribution, hij ’ G �Qij=c4r. In
both cases, the larger the velocity of the matter/charge
distribution, the larger the amplitude of the radiation pro-
duced. Nevertheless, the main difference between the two
cases is the weakness of the strength of gravity to that of
electromagnetism. Thus, in order to produce a significant
amount of gravitational radiation, it is required that the
motion of huge masses occurs at speeds close to that of
light for the case of astrophysical sources, or a very fast
motion and high density contrasts in the continuous matter
distribution for the case of cosmological sources. In fact,
this is believed to be the situation at the end of inflaton,
during the conversion of the huge energy density driving
inflation into radiation and matter at the so-called reheat-
ing of the Universe [16]. Such an event corresponds to the
actual big bang of the standard cosmological model.

Note that any background of GW coming from the early
universe, if generated below Planck scale, immediately
decoupled upon production. Assuming that gravitons
were in thermal equilibrium with the early universe

plasma, at a temperature T, the gravitons’ cross section
should be of order ��G2T2. Then, given the graviton
number density n� T3 and velocity v � 1, the gravitons’
interaction rate should be � � hn�vi � T5=M4

p. Since the
Hubble rate is H � T2=Mp, then ��H�T=Mp�

3, so grav-
itons could not be kept in equilibrium with the surrounding
plasma for T <Mp. Therefore, GW produced well after
Planck scale will always be decoupled from the plasma,
and whatever their spectral signatures, they will retain their
shape throughout the expansion of the Universe. Thus, the
characteristic frequency and shape of the GWB generated
at a given time should contain information about the very
early state of the Universe in which they were produced.
Actually, it is conceivable that, in the not so far future, the
detection of these GW backgrounds could be the only way
we may have to infer the physical conditions of the
Universe at such high energy scales, which certainly no
particle collider will ever reach. However, the same reason
that makes GW ideal probes of the early universe—the
weakness of gravity—is responsible for the extreme diffi-
culties we have for their detection on Earth. For an exten-
sive discussion see Ref. [17].

In a recent paper [18] we described the stochastic back-
ground predicted to arise from reheating after hybrid in-
flation. In this paper we study in detail the various
processes involved in the production of such a background,
whose detection could open a new window into the very
early universe. In the future, this background could also
serve as a new tool to discriminate among different infla-
tionary models, as each of these would give rise to a
different GWB with very characteristic spectral features.
The first stage of the energy conversion at the end of
inflation, preheating [16], is known to be explosive and
extremely violent, and quite often generates in less than a
Hubble time the huge entropy measured today. The details
of the dynamics of preheating depend very much on the
model and are often very complicated because of the non-
linear, nonperturbative, and out-of-equilibrium character
of the process itself. However, all the cases have in com-
mon that only specific resonance bands of the fields suffer
an exponential instability, which makes their occupation
numbers grow by many orders of magnitude. The shape
and size of the spectral bands depend very much on the
inflationary model. If one translates this picture into
position-space, the highly populated modes correspond to
large time-dependent inhomogeneities in the matter distri-
butions which act, in fact, as the source of GW we are
looking for.

For example, in single field chaotic inflation models, the
coherent oscillations of the inflaton during preheating gen-
erates, via parametric resonance, a population of highly
occupied modes that behave like waves of matter. They
collide among themselves and their scattering leads to
homogenization and local thermal equilibrium. These col-
lisions occur in a highly relativistic and very asymmetric
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way, being responsible for the generation of a stochastic
GWB [19–21] with a typical frequency today of the order
of 107–109 Hz, corresponding to the present size of the
causal horizon at the end of high-scale inflation. There is at
present a couple of experiments searching for such a
background, see Refs. [15], based of laser interferometry,
as well as by resonant superconducting microwave cavities
[22].

However, there are models like hybrid inflation in which
the end of inflation is sudden [23] and the conversion into
radiation occurs almost instantaneously. Indeed, since the
work of Ref. [24] we know that hybrid models preheat in
an even more violent way than chaotic inflation models, via
the spinodal instability of the symmetry breaking field that
triggers the end of inflation, irrespective of the couplings
that this field may have to the rest of matter. Such a process
is known as tachyonic preheating [24,25] and could be
responsible for copious production of dark matter particles
[26], lepto and baryogenesis [27–31], topological defects
[24], primordial magnetic fields [32], etc.

It was speculated in Ref. [20] that in (low-scale) models
of hybrid inflation it might be possible to generate a
stochastic GWB in the frequency range accessible to
present detectors, if the scale of inflation was as low as
Hinf � 1 TeV. However, the amplitude was estimated us-
ing the parametric resonance formalism of chaotic preheat-
ing, which may not be applicable in this case. In Ref. [25]
(from now on referred to as paper I), it was shown that the
process of symmetry breaking proceeds via the nucleation
of dense bubblelike structures moving at the speed of light,
which collide and break up into smaller structures (see
Figs. 7 and 8 of paper I). We conjectured at that time that
such collisions would be a very strong source of GW,
analogous to the GW production associated with strongly
first order phase transitions [12]. As we will show in this
paper, this is indeed the case during the nucleation, colli-
sion, and subsequent rescattering of the initial bubblelike
structures produced after hybrid inflation. During the dif-
ferent stages of reheating in this model, gravity waves are
generated and amplified until the Universe finally thermal-
izes and enters into the initial radiation era of the standard
model of cosmology. From that moment until now, during
the whole thermal history of the expansion of the Universe,
this cosmic GWB will be redshifted as a radiationlike fluid,
totally decoupled from any other energy-matter content of
the Universe, such that today’s ratio of energy stored in
these GW to that in radiation could range from �GWh2 �
10�8, peaked around f� 107 Hz for the high-scale mod-
els, to �GWh2 � 10�11, peaked around f� 1 Hz for the
low-scale models.

Finally, let us mention that since the first paper by
Khlebnikov and Tkachev [19], studing the GWB produced
at reheating after chaotic inflation, it seems appropriate to
reanalyze this topic in a more detailed way. The idea was
extended to hybrid inflation in [20], but within the para-

metric resonance formalism. It was also revisited very
recently in Refs. [21,33] for the ��4 and m2�2 chaotic
scenarios, and reanalyzed again for hybrid inflation in
Ref. [18], this time using the new formalism of tachyonic
preheating [24,25]. Because of the increase in computer
power of the last few years, we are now able to perform
precise simulations of the reheating process in a reasonable
time scale. Moreover, understanding of reheating has im-
proved, while gravitational waves detectors are beginning
to attain the aimed sensitivity [4]. Furthermore, since these
cosmic GWBs could serve as a deep probe into the very
early universe, we should characterize in the most detailed
way the information that we will be able to extract from
them.

The paper is divided as follows. In Sec. II we briefly
review the hybrid model of inflation. Section III is dedi-
cated to our approach for extracting the power spectrum of
GW from reheating. In Sec. IV, we give a detailed account
of the lattice simulations performed with two codes: our
own FORTRAN parallelized computer code (running in
the MareNostrum supercomputer [34] and in our UAM-
IFT cluster [35]), as well as with a modified version of the
publicly available C�� package LATTICEEASY [36].
Section V is dedicated to study the spatial distribution of
the production of gravitational waves. In Sec. VI, we
reproduce as a crosscheck some of the results of
[19,21,37] concerning the GWB produced at reheating
after chaotic inflation models. Finally, in Sec. VII, we
give our conclusions and perspectives for the future.

II. THE HYBRID MODEL

Hybrid inflation models [23] arise in theories of particle
physics with symmetry breaking fields (‘‘Higgses’’)
coupled to flat directions, and are present in many exten-
sions of the standard model, both in string theory and in
supersymmetric theories [38]. The potential in these mod-
els is given by

 V��; �� � �
�
�y��

v2

2

�
2
� g2�2�y��

1

2
�2�2; (1)

where the contraction �y� should be understood as the
trace Tr�y� � 1

2

P
a�

2
a �

1
2 j�j

2, where a labels the Higgs
components. Inflation occurs along the lifted flat direction,
satisfying the slow-roll conditions thanks to a large vacuum
energy �0 � �v4=4. Inflation ends when the inflaton �
falls below a critical value and the symmetry breaking
field � acquires a negative mass squared, which triggers
the breaking of the symmetry and ends in the true vacuum,
j�j � v, within a Hubble time. These models do not
require small couplings in order to generate the observed
CMB anisotropies; e.g. a working model with GUT-scale
symmetry breaking, v � 10�3MP, with a Higgs self-
coupling � and a Higgs-inflaton coupling g given by
g �

������
2�
p

� 0:05, satisfies all CMB constraints [39] and
predicts a tiny tensor contribution to the CMB polarization.
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The main advantage of hybrid models is that, while most
chaotic inflation models can only occur at high scales, with
Planck scale values for the inflaton, and V1=4

inf � 1016 GeV,
one can choose the scale of inflation in hybrid models to
range from GUT scales all the way down to GeV scales,
while the Higgs vacuum expectation value (vev) can range
from Planck scale, v � MP, to the electroweak scale, v �
246 GeV, see Refs. [23,27–31,40].

There are a series of constraints that a hybrid inflation
model should satisfy in order to be in agreement with
observations. First of all, inflation should end in less than
one e-fold, otherwise unacceptable black holes would form
[41]. This can be written as the waterfall condition [23],
�mM2

P � M3, which becomes

 

m
M
�

v2

M2
P

: (2)

Then there is the condition, known as the COBE normal-
ization, that the scalar amplitude should satisfy AS �
H2=2� _� ’ 5� 10�5, which gets translated into

 g � �n� 1�
MP

v

�������
3�
8

s
� 10�4e�n�1�N=2; (3)

as well as the spectral tilt,

 n� 1 �
1

�
m2

M2

M2
P

v2 < 0:05; (4)

and finally the fact that we have not seen so far any tensor
(gravitational wave) contribution in the CMB anisotropies,
r � A2

T=A
2
S < 0:3, imposes the constraint

 �1=4 < 2� 10�3 MP

v
: (5)

Taking all these conditions together, we find that a model
with v � 0:1MP is probably ruled out, while one with v �
0:01MP is perfectly consistent with all observations, and
with reasonable values of the coupling constants, e.g. g �
4� 10�4 and � � 10�3. However, the lower the scale of
inflation, the more difficult it is to accommodate the am-
plitude of the CMB anisotropies with reasonable values of
the parameters. For a scale of inflation as low as 1011 GeV,
one must significantly fine-tune the couplings, although
there are low-scale models based on supersymmetric ex-
tensions of the standard model which can provide a good
match to observations [42].

In the following sections we will show how efficient is
the production of GW at reheating after hybrid inflation,
using both analytical estimates and numerical simulations
to derive the amplitude of the present day GWB. Reheating
in hybrid inflation [23] goes through four well-defined
regimes: first, the exponential growth of long-wave modes
of the Higgs field via spinodal instability, which drives the
explosive production of particles associated with fields that
couple to it, from scalars [24] to gauge fields [27,29,43,44]

and fermions [26]; second, the nucleation and collision of
high density contrast and highly relativistic bubblelike
structures associated with the peaks of a Gaussian random
field like the Higgs, see paper I; third, the turbulent regime
that ensues after all these ‘‘bubbles’’ have collided and the
energy density in all fields cascades towards high-
momentum modes; finally, thermalization of all modes
when local thermal and chemical equilibrium induces
equipartition. The first three stages can be studied in de-
tailed lattice simulations thanks to the semiclassical char-
acter of the process of preheating [45], while the last stage
requires a quantum approach in the lattice [44,46], which is
at the moment beyond our analysis.

III. GRAVITATIONAL WAVE PRODUCTION

Our main purpose in this paper is to study the details of
the stochastic GWB produced during the reheating of the
Universe after hybrid inflation (Secs. III, IV, and V).
However, we also study, albeit very briefly, the analogous
background from reheating in some simple chaotic models
(Sec. VI). Thus, in this section we derive a general formal-
ism for extracting the GW power spectrum in any scenario
of reheating within the (flat) Friedman-Robertson-Walker
(FRW) universe. The formalism will be simplified when
applied to scenarios in which we can neglect the expansion
of the Universe, like in the case of most Hybrid models. A
theory with an inflaton scalar field � interacting with other
Bose fields �a, can be described by

 L �
1

2
@��@���

1

2
@��a@��a �

R
16�G

� V��;��

(6)

with R the Ricci scalar. For hybrid models, we consider a
generic symmetry breaking ‘‘Higgs’’ field with Nc real
components. Thus, we can take �y� � 1

2

P
a�

2
a 	

j�j2=2 in (1), with a running for the number of Higgs
components, e.g. Nc � 1 for a real scalar Higgs, Nc � 2
for a complex scalar Higgs, or Nc � 4 for a SU�2� Higgs,
etc. The effective potential (1) then becomes

 V��;�� �
�
4
�j�j2 � v2�2 � g2�2j�j2 �

1

2
�2�2: (7)

For chaotic scenarios, we consider a massless scalar field
interacting with the inflaton via

 V��;�� � 1
2g

2�2�2 � V���; (8)

with V��� the inflaton’s potential. Concerning the simula-
tions we show in this paper, we concentrate in the Nc � 4
case for the hybrid model and consider a potential V��� �
�
4 �

4 for the chaotic scenario. The classical equations of
motion of the inflaton and the other Bose fields are

 ��� 3H _��
1

a2r
2��

@V
@�
� 0; (9)
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��a � 3H _�a �
1

a2r
2�a �

@V
@�a

� 0; (10)

with H � _a=a. Gravitational waves are represented here
by a transverse-traceless (TT) gauge-invariant metric per-
turbation, hij, on top of the flat FRW space

 ds2 � �dt2 � a2�t���ij � hij�dxidxj; (11)

with a�t� the scale factor and the tensor perturbations
verifying @ihij � hii � 0. In the following, we will raise
or low indices of the metric perturbations with the delta
Kronecker �ij, so hij � hij � hij and so on. The Einstein

field equations can be split into the background G�0��	 �
8�GT�0��	 and the perturbed �G�	 � 8�G�T�	 equations.
The background equations describe the evolution of the flat
FRW universe through

 �
_H

4�G
� _�2 �

1

3a2 �r��
2 � _�2

a �
1

3a2 �r�a�
2; (12)

 

3H2

4�G
� _�2 �

1

a2 �r��
2 � _�2

a �
1

a2 �r�a�
2 � 2V��;��;

(13)

where any term in the right-hand side of (12) and (13)
should be understood as spatially averaged. On the other
hand, the perturbed Einstein equations describe the evolu-
tion of the tensor perturbations [47] as

 

�h ij � 3H _hij �
1

a2r
2hij � 16�G�ij; (14)

with @i�ij � �ii � 0. The source of the GW, �ij, con-
tributed by both the inflaton and the other scalar fields, will
be just the transverse-traceless part of the (spatial-spatial)
components of the total anisotropic stress tensor

 T �	 �
1

a2 
@��@	�� @��a@	�a � g�	�L� hpi��;

(15)

where L��;�a� is the Lagrangian (6) and hpi is the back-
ground homogeneous pressure. As we will explain in the
next subsection, when extracting the TT part of (15), the
term proportional to g�	 in the right-hand side of (15), will
be dropped out from the GW equations of motion. Thus,
the effective source of the GW will be just given by the TT
part of the gradient terms @��@	�� @��a@	�a. In sum-
mary, Eqs. (9) and (10), together with Eqs. (12) and (13),
describe the coupled dynamics of reheating in any infla-
tionary scenario, while Eq. (14) describes the production of
GW in each of those scenarios. In this paper we use lattice
simulations to study the generation of GW during reheating
after inflation. Specific details on this are given in Sec. IV,
but let us just mention here that our approach is to solve the
evolution of the gravitational waves simultaneously with
the dynamics of the scalar fields, in a discretized lattice

with periodic boundary conditions. We assume initial
quantum fluctuations for all fields and only a zero mode
for the inflaton. Moreover, we also included the GW back-
reaction on the scalar fields’ evolution via the gradient
terms, hijri�rj�� hijri�arj�a and confirmed that,
for all practical purposes, these are negligible throughout
GW production.

A. The transverse-traceless gauge

A generic (spatial-spatial) metric perturbation �gij has
six independent degrees of freedom, whose contributions
can be split into scalar, vector, and tensor metric perturba-
tions [47]

 �gij �  �ij � E;ij � F�i;j� � hij; (16)

with @iFi � 0 and @ihij � hii � 0. By choosing a
transverse-traceless stress-tensor source �ij, we can elimi-
nate all the degrees of freedom (d.o.f.) but the pure TT part,
hij, which represent the only physical d.o.f which propa-
gate and carry energy out of the source (GW). If we had
chosen only a traceless but nontransverse stress source, we
could have eliminated the scalar d.o.f.  and absorbed E
into the scalar field perturbation, but we would still be left
with a vector field Fi also sourced by the (traceless but
nontransverse) anisotropic stress tensor, thus giving rise to
a vorticity divergenceless field Vi. However, since the
initial conditions are those of a scalar Gaussian random
field (see Sec. IV), even in that case of a nontransverse but
traceless stress source, the mean vorticity of the subsequent
matter distribution, averaged over a sufficiently large vol-
ume, should be zero (although locally we do have vortices
of the Higgs field, see Refs. [27–29,32,43,44]), since
vortices with opposite chirality cancel each other. This
means that in such a case, although @i�ij � 0, and thus
@i�gij � 0, we could still recover the TT component when
averaging over the whole realization. For practical pur-
poses, we will consider from the beginning the TT part of
the anisotropic stress tensor, ensuring this way that we only
source the physical d.o.f. that represent GW. The equations
of motion of the TT metric perturbations are then given by
Eq. (14). Note that for a nontransverse source the equations
would have been much more complicated, so the advan-
tage of using the TT part from the beginning is clear. The
disadvantage arises because obtaining the TT part of a
tensor in configuration space is very demanding in compu-
tational time. However, as we explain next, we will use a
method by which we can circumvent this issue. Let us
switch to Fourier space. Using the convention

 f�k� �
1

�2��3=2

Z
d3xe�ikxf�x�; (17)

the GW Eqs. (14) in Fourier space read
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�h ij�t;k� � 3H _hij�t;k� �
k2

a2 hij�t;k� � 16�G�ij�t;k�;

(18)

where k � jkj. Assuming no GW at the beginning of
reheating (i.e. the end of inflation te), the initial conditions
are hij�te� � _hij�te� � 0, so the solution to Eq. (18) for t >
te will be just given by a causal convolution with an
appropriate green function G�t; t0�,

 hij�t;k� � 16�G
Z t

te
dt0G�t; t0��ij�t

0;k�: (19)

Therefore, all we need to know for computing the GW is
the TT part of the stress tensor, �ij, and the Green function
G�t0; t�. However, as we will demonstrate shortly, we have
used a numerical method by which we do not even need to
know the actual form of G�t0; t�. To see this, let us extract
the TT part of the total stress tensor. Given the symmetric
anisotropic stress tensor T�	 (15), we can easily obtain the
TT part of its spatial components in momentum space,
�ij�k�. Using the spatial projection operators Pij � �ij �
k̂ik̂j, with k̂i � ki=k, then [48]

 �ij�k� � �ij;lm�k̂�Tlm�k�; (20)

where

 �ij;lm�k̂� 	 �Pil�k̂�Pjm�k̂� � 1
2Pij�k̂�Plm�k̂��: (21)

Thus, one can easily see that, at any time t, ki�ij�k̂; t� �
�i
i�k̂; t� � 0, as required, thanks to the identities Pijk̂j � 0

and PijPjm � Pim. Note that the TT tensor �ij is just a
linear combination of the components of nontraceless non-
transverse tensor Tij (15), while the solution (19) is just
linear in �ij, such that

 hij�t;k� � �ij;lm�k̂�16�G
Z t

te
dt0G�t; t0�Tlm�t0;k�: (22)

Since the projector is out of the integral, we can then write
the TT tensor perturbations (i.e. the gravitational waves) as

 hij�t;k� � �ij;lm�k̂�ulm�t;k�; (23)

identifying ulm�t;k� with

 ulm�t;k� � 16�G
Z t

te
dt0G�t; t0�Tlm�t0;k�: (24)

However, uij�t;k� is nothing but the Fourier transform of
the solution of the following equation:

 �u ij � 3H _uij �
1

a2r
2uij � 16�GTij: (25)

This Eq. (25) is simply Eq. (14), but sourced with the
complete Tij (15), instead of with its TT part, �ij. Of
course, Eq. (25) contains unphysical (gauge) d.o.f.; how-
ever, in order to obtain the real physical TT d.o.f., hij, we

can evolve Eq. (25) in configuration space, Fourier trans-
form its solution, and apply the projector (21) as in (23).
This way we can obtain in momentum space, at any mo-
ment of the evolution, the physical TT d.o.f. that represent
GW, hij. Whenever needed, we can Fourier transform back
to configuration space and obtain the spatial distribution of
the gravitational waves. Moreover, since the second term
of the right-hand side of the total stress tensor Tij is
proportional to gij � �ij � hij, see (15), when applying
the TT projector (21), the part with the �ij just drops out,
simply because it is a pure trace, while the other part
contributes with a term ��L� hpi�hij in the left-hand
side of Eq. (18). However, �L� hpi� is of the same order
as the metric perturbation �O�h�, so this extra term is
second order in the gravitational coupling and it can be
neglected in the GW Eqs. (18). This way, the effective
source in Eq. (25) is just the gradient terms of both the
inflaton and the other scalar fields,

 T ij �
1

a2 �ri�rj��ri�arj�a�: (26)

Therefore, the effective source of the physical GW will be
just the TT part of (26), as we had already mentioned
before. Alternatively, one could evolve the equation of
the TT tensor perturbation in configuration space,
Eq. (14), with the source given by

 �ij�x; t� �
1

�2��3=2

Z
d3ke�ikx�ij;lm�k̂�Tlm�k; t�; (27)

such that @i�ij�x; t� � �ii�x; t� � 0 at any time. So, at
each time step of the evolution of the fields, one would
have first to compute (the gradient part of) Tlm (26) in
configuration space, then Fourier transform it to momen-
tum space, substitute in Eq. (27), and perform the integral.
However, proceeding as we suggested above, there is no
need to perform the integral, nor Fourier transform the
fields at each time step, but rather only at those times at
which we want to measure the GW spectrum. The viability
of our method relies in the following observation. To
compute the GW we could, first of all, project the TT
part of the source (27), and second, solve Eq. (14).
However, we achieve the same result if we commute these
two operations such that, first, we solve Eq. (25), and
second, we apply the TT projector to the solution (23).
We have found this commuting procedure very useful,
since we are able to extract the spectra or the spatial
distribution of the GW at any desired time, saving a great
amount of computing time. Most importantly, with this
procedure we can take into account backreaction simulta-
neously with the fields evolution. In summary, for solving
the dynamics of reheating of a particular inflationary
model, we evolve Eqs. (9) and (10) in the lattice, together
with Eqs. (12) and (13), while for the GWs we solve
Eq. (25). Then, only when required, we Fourier transform
the solution of Eq. (25) and then apply (23) in order to
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recover the physical transverse-traceless d.o.f representing
the GW. From there, one can easily build the GW spectra or
take a snapshot of spatial distribution of the gravitational
waves.

B. The energy density in GW

The energy-momentum tensor of the GW is given by
[48]

 t�	 �
1

32�G
h@�hij@	hijiV; (28)

where hij are the TT tensor perturbations solution of
Eq. (14). The expectation value h. . .iV is taken over a
region of sufficiently large volume V to encompass enough
physical curvature to have a gauge-invariant measure of the
GW energy-momentum tensor. Since we work with a lat-
tice of size L with periodic boundary conditions, we will
compute the average h. . .iV over the lattice volume V �
L3. The GW energy density will be just �GW � t00, so

 �GW �
1

32�G
1

L3

Z
d3x _hij�t;x� _hij�t;x�

�
1

32�G
1

L3

Z
d3k _hij�t;k� _h�ij�t;k�; (29)

where in the last step we Fourier transformed each _hij
and used the integral definition of the Dirac delta
�2��3��3��k� �

R
d3xe�ikx. Note that the factor 1=L3

comes because of the volume average, and not because
of the use of a discrete Fourier transform. We can always
write the scalar product in (29) in terms of the (Fourier
transformed) solution ulm of the Eq. (25), by just using the
spatial projectors (21)

 

_h ij _hij � �ij;lm�ij;rs _ulm _urs � �lm;rs _ulm _urs; (30)

where we have used the fact that �ij;lm�lm;rs � �ij;rs. This
way, we can express the GW energy density as

 �GW �
1

32�GL3

Z
k2dk

Z
d��ij;lm�k̂� _uij�t;k� _u�lm�t;k�:

(31)

From here, we can also compute the power spectrum per
logarithmic frequency interval in GW, normalized to the
critical density �c, as

 �GW �
Z df

f
�GW�f�; (32)

where

 �GW�k� 	
1

�c

d�GW

d logk

�
k3

32�GL3�c

Z
d��ij;lm�k̂� _uij�t;k� _u�lm�t;k�:

(33)

We have checked explicitly in the simulations that the
argument of the angular integral of (33) is independent of
the directions in k-space. Thus, whenever we plot the GW
spectrum of any model, we will be showing the amplitude
of the spectrum (per each mode k) as obtained after aver-
aging over all the directions in momentum space,

 �GW�k� �
k3

8GL3�c
h�ij;lm�k̂� _uij�t;k� _u�lm�t;k�i4�; (34)

where hfi4� 	
1

4�

R
fd�. Finally, we must address the fact

that the frequency range, for a GWB produced in the early
universe, will be redshifted today. We should calculate the
characteristic physical wave number of the present GW
spectrum, which is redshifted from any time t during GW
production. This is a key point, since a relatively long
period of turbulence will develop after preheating, which
could change the amplitude of the GWB and shift the
frequency at which the spectra peaks. So let us distinguish
four characteristic times: the end of inflation, te; the time t�
when GW production stops; the time tr when the Universe
finally reheats and enters into the radiation era; and today,
t0.1 Thus, today’s frequency f0 is related to the physical
wave number kt at any time t of GW production, via f0 �
�at=a0��kt=2��, with a0 and at, the scale factor today and
at the time t, respectively. Thermal equilibrium was estab-
lished at some temperature Tr, at time tr  t. The Hubble
rate at that time was M2

PH
2
r � �8�=3��r, with �r �

gr�
2T4

r =30 the relativistic energy density and gr the effec-
tive number of relativistic degrees of freedom at tempera-
ture Tr. Since then, the scale factor has increased as
ar=a0 � �g0;s=gr;s�1=3�T0=Tr�, with gi;s the effective en-
tropic degrees of freedom at time ti, and T0 today’s CMB
temperature. Putting all together,

 f0 �

�
8�3gr

90

�
1=4
�
g0;s

gr;s

�
1=3 T0�������������

HrMp
p �

ae
ar

�
k

2�
; (35)

where we have used the fact that the physical wave number
kt at any time t during GW production, is related to the
comoving wave number k through kt � �ae=at�k with the
normalization ae 	 1. From now on, we will be concerned
with hybrid inflation, leaving chaotic inflation for Sec. VI.
Within the hybrid scenario, we will analyze the depen-
dence of the shape and amplitude of the produced GWB on
the scale of hybrid inflation, and more specifically on the
vev of the Higgs field triggering the end of inflation. The
initial conditions are carefully treated following the pre-
scription adopted in paper I, as explained in Sec. IV. Given
the natural frequency at hand in hybrid models, m �

����
�
p
v,

whose inversem�1 sets the characteristic time scale during

1Note, however, that after thermalization there is still a small
production of GW from the thermal plasma, but this can be
ignored for all practical purposes.
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the first stages of reheating, it happens that as long as v�
Mp, the Hubble rateH�

����
�
p
�v2=Mp� is much smaller than

such a frequency, H� m. Indeed, all the initial vacuum
energy �0 gets typically converted into radiation in less
than a Hubble time, in just a few m�1 time steps.
Therefore, we should be able to ignore the dilution due
to the expansion of the Universe during the production of
GW, at least during the first stages of reheating. However,
as we will see, the turbulent behavior developed after those
first stages, could last for much longer than an e-fold, in
which case we will have to take into account the expansion
of the Universe. Our approach will be first to ignore the
expansion of the Universe and later see how we can ac-
count for corrections if needed. Thus, we set the scale
factor a � 1 and the Hubble rate H � 0 and _H � 0. As
we will see later, our approach of neglecting the expansion
for the time of GW production will be completely justified
a posteriori. The coupled evolution equations that we have
to solve numerically in a lattice for the hybrid model are

 �u ij �r
2uij � 16�GTij; (36)

 ���r2�� �g2j�j2 ��2�� � 0; (37)

 

��a �r
2�a � �g2�2 � �j�j2 �m2��a � 0; (38)

with Tij given by Eq. (26) with the scale factor a � 1. We
have explicitly checked in our computer simulations that
the backreaction of the gravity waves into the dynamics of
both the inflaton and the Higgs fields is negligible and can
be safely ignored. We thus omit the backreaction terms in
the above equations. We evaluate during the evolution of

the system the mean field values, as well as the different
energy components. As shown in Fig. 1, the Higgs field
grows towards the true vacuum and the inflaton moves
towards the minimum of its potential and oscillates around
it. We have checked that the sum of the averaged gradient,
kinetic, and potential energies (contributed by both the
inflaton and the Higgs) remains constant during reheating.
This is just a numerical check, since the expansion of the
Universe is irrelevant in this model. We have also checked
that the time evolution of the different energy components
is the same for different lattices, i.e. changing the number
of points N of the lattice, of the minimum momentum
pmin � 2�=L or of the lattice spacing a � L=N, with L
the lattice size, as long as the product ma< 0:5; for a
detailed discussion of lattice scales see paper I. Looking
at the time evolution of the Higgs vev in Fig. 1, three stages
can be distinguished. First, an exponential growth of the
vev towards the true vacuum. This is driven by the ta-
chyonic instability of the long-wave modes of the Higgs
field, that makes the spatial distribution of this field to form
lumps and bubblelike structures [24,25]. Second, the Higgs
field oscillates around the true vacuum, as the Higgs bub-
bles collide and scatter off each other. Third, a period of
turbulence is reached, during which the inflaton oscillates
around its minimum and the Higgs sits in the true vacuum.
For a detailed description of the dynamics of these fields
see Ref. [25]. Here we will be only concerned with the
details of the gravitational wave production. The initial
energy density at the end of hybrid inflation is given by
�0 � m2v2=4, with m2 � �v2, so the fractional energy
density in gravitational waves is

 

�GW

�0
�

4t00

v2m2 �
1

8�Gv2m2 h
_hij _hijiV; (39)

where h _hij _hijiV , defined as a volume average like 1
V �R

d3x _hij _hij, is extracted from the simulations as

 h _hij _hijiV �
4�
V

Z
d logkk3h�ij;lm�k̂� _uij�t;k� _u�lm�t;k�i4�

(40)

where uij�t;k� is the Fourier transform of the solution of
Eq. (36). Then, we can compute the corresponding density
parameter today (with �radh

2 ’ 3:5� 10�5)

 

�GWh
2 �

�radh2

2Gv2m2V

�
Z
d logkk3h�ij;lm�k̂� _uij�t;k� _u�lm�t;k�i4�;

(41)

which has assumed that all the vacuum energy �0 gets
converted into radiation, an approximation which is always
valid in generic hybrid inflation models with v� MP, and
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FIG. 1 (color online). Time evolution of the mean field values
of the Higgs and the inflaton, the former normalized to its vev,
the latter normalized to its critical value �0 � m=g. This is just a
specific realization with N � 128, pmin � 0:1m, a � 0:48m�1,
v � 10�3Mp, and g2 � 2� � 0:25.
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thus H� m �
����
�
p
v. We have shown in Fig. 2 the evolu-

tion in time of the fraction of energy density in GW. The
first (tachyonic) stage is clearly visible, with a (logarith-
mic) slope twice that of the anisotropic tensor �ij. Then
there is a small plateau corresponding to the production of
GW from bubble collisions; and finally there is the slow
growth due to turbulence. In the next section we will
describe in detail the most significant features appearing
at each stage. Note that in the case that H� m, the
maximal production of GW occurs in less than a Hubble

time, soon after symmetry breaking, while turbulence lasts
several decades in time units of m�1. Therefore, we can
safely ignore the dilution due to the Hubble expansion, up
to times much greater than those of the tachyonic insta-
bility. Eventually the Universe reheats and the energy in
gravitational waves redshifts like radiation thereafter. To
compute the power spectrum per logarithmic frequency
interval in GW, �GW�f�, we just have to use (33).
Moreover, since gravitational waves below Planck scale
remain decoupled from the plasma immediately after pro-
duction, we can evaluate the power spectrum today from
that obtained at reheating by converting the wave number k
into frequency f. Simply using Eq. (35), with gr;s=g0;s �
100, gr;s � gr, and ae � a�, then

 f � 6� 1010 Hz
k�����������
HMp

p � 5� 1010 Hz
k
m
�1=4: (42)

We show in Fig. 3 the power spectrum of gravitational
waves as a function of (comoving) wave number k=m. We
have used different lattices in order to have lattice artifacts
under control, specially at late times and high wave num-
bers. We made sure by the choice of lattice size and
spacing (i.e. kmin and kmax) that all relevant scales fitted
within the simulation. Note, however, that the lower bumps
are lattice artifacts, due to the physical cutoff imposed at
the initial condition, that rapidly disappear with time. We
have also checked that the power spectrum of the scalar
fields follows turbulent scaling after mt�O�100�, and we
can thus estimate the subsequent evolution of the energy
density distributions beyond our simulations.

IV. LATTICE SIMULATIONS

The problem of determining the time evolution of a
quantum field theory is an outstandingly difficult problem.
In some cases only a few degrees of freedom are relevant or
else perturbative techniques are applicable. However, in
our particular case, our interests are focused on processes
which are necessarily nonlinear and nonperturbative and
involve many degrees of freedom. The presence of gravi-
tational fields just contributes with more degrees of free-
dom, but does not complicate matters significantly. The
lattice formulation allows a first principles approach to
nonperturbative quantum field theory. The existing power-
ful lattice field theory numerical methods rest on the path
integral formulation in Euclidean space and the existence
of a probability measure in field space [49]. However, the
problem we are interested in is a dynamical process far
from equilibium, and the corresponding Minkowski path
integral formulation is not easily amenable for numerical
studies, although real-time stochastic quantization meth-
ods are being developed [50]. There are a series of alter-
native nonperturbative methods which different research
groups have used to obtain physical results in situations
similar to ours. These include Hartree’s approximations
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FIG. 3 (color online). We show here the comparison between
the power spectrum of gravitational waves obtained with in-
creasing lattice resolution, to prove the robustness of our
method. The different realizations are characterized by the
minimum lattice momentum (pmin) and the lattice spacing
(ma). The growth is shown in steps of m�t � 1 up to mt �
30, and then in and m�t � 5 steps up to mt � 60.
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FIG. 2 (color online). The time evolution of the different types
of energy (kinetic, gradient, potential, anisotropic components
and gravitational waves for different lattices), normalized to the
initial vacuum energy, after hybrid inflation, for a model with
v � 10�3MP. One can clearly distinguish here three stages:
tachyonic growth, bubble collisions, and turbulence.

GRAVITATIONAL WAVE BACKGROUND FROM REHEATING . . . PHYSICAL REVIEW D 77, 043517 (2008)

043517-9



[51] to go beyond perturbation theory or large N tech-
niques [52,53] and the 2PI formalism [44,54]. It is clear
that it is desirable to look at this and similar problems with
all available tools. In the present paper we will use an
alternative approximation to deal with the problem: the
classical approximation. It consists of replacing the quan-
tum evolution of the system by its classical evolution, for
which there are valid numerical methods available. The
quantum nature of the problem remains in the stochastic
character of the initial conditions. This approximation has
been used with great success by several groups in the past
[24,45]. The advantage of the method is that it is fully
nonlinear and nonperturbative, allows the use of gauge
fields [27–29,32,43,44], and gives access to the quantities
we are interested in.

The validity of the approximation depends on the loss of
quantum coherence in the evolution of the system. In
previous papers we studied this problem both in the ab-
sence of and with gauge fields [25,27–29,32,43,44]. We
started the evolution of the system at the critical time tc,
corresponding to the end of inflation te, at which the
effective mass of the Higgs vanishes, putting all the modes
in its (free field) ground states. If the couplings are small,
since the quantum fluctuations of the value of the fields are
not too large, the nonlinear terms in the Hamiltonian of the
system can be neglected. Then the quantum evolution is
Gaussian and can be studied exactly. The Hamiltonian has
nonetheless a time dependence coming through the time
dependence of the inflaton homogeneous mode. This time
dependence can always be taken to be linear for a suffi-
ciently short time interval after the critical time. As a
consequence, the dynamics of the eigenmodes during this
initial phase differs significantly from mode to mode. Most
of them have a characteristic harmonic oscillator behavior
with a frequency depending on the mode in question. In the
case of the Higgs field, the long-wave modes become
tachyonic. By looking at expectation values of products
of these fields at different times, one realizes that after a
while these modes behave and evolve like classical modes
of an exponentially growing size. The process is very fast
and therefore the remaining harmonic modes can be con-
sidered to have remained in their initial ground state.

The fast growth in size of the Higgs field expectation
value boosts the importance of nonlinear terms and even-
tually drives the system into a state where the nonlinear
dynamics, including the backreaction to the inflaton field,
are crucial. For the whole approximation to be useful this
must happen at a later time than the one in which the low-
frequency Higgs modes begin evolving as classical fields.
In paper I we showed this to be the case. Actually, there is
a time interval in which classical behavior is already
dominant while nonlinearities are still small. We tested
that our results, in the absence of gauge fields, were
insensitive to the matching time, provided it lies within
this window.

The whole idea can then be summarized as follows: the
tachyonic quantum dynamics of the low momentum Higgs
modes drive them into classical field behavior and large
occupation numbers before the nonlinearities and back-
reaction begin to play a role. It is the subsequent nonlinear
classical behavior of the field that induces the growth of
classical inflaton and gravitational field components also at
low frequencies. It is obvious that the quantum nature of
the problem is still crucial if one studies the behavior of
high-momentum modes which have low occupation
numbers.

In the present paper we apply the same idea in the
presence of (gravitational wave) tensor fields. The initial
quantum evolution of tensor fields is also relatively slow,
since there are no tachyonic modes. Therefore, it is as-
sumed not to affect substantially the initial conditions of
the classical system.

A. Initial conditions

Our approach to the dynamics of the system is to assume
that the leading effects under study can be well described
by the classical evolution of the system. The justification of
this point, as explained in the previous section, rests upon
the fast quantum evolution of the long-wavelength compo-
nents of the Higgs field during the initial stages after the
critical point. All the other degrees of freedom will evolve
slowly from their initial quantum vacuum state. For the
Higgs field, the leading behavior is the exponential growth
of those modes having negative effective mass squared.
The quantum evolution of such modes drives the system
into a quasiclassical regime. It is essential that this regime
is reached before the nonlinearities couple all degrees of
freedom to each other and questions like backreaction start
to affect the results. It is then assumed that it is the
essentially classical dynamics of that field that matters,
and that all the long-wavelength components of the inflaton
and the gauge fields produced by the interaction with the
Higgs field behave also as classical fields. Of course, this
can hardly be the case for shorter wavelengths which stay
in a quantum state with low occupation numbers. However,
as we can see in Fig. 3, for the range of times studied in this
paper, the effect of shorter wavelengths is relatively small,
and the spectrum of modes remains always dominated by
long wavelengths. The full nonlinear evolution of the
system can then be studied using lattice techniques. Our
approach is to discretize the classical equations of motion
of all fields in both space and time. The timelike lattice
spacing at must be smaller than the spatial one as for the
stability of the discretized equations. In addition to the
ultraviolet cutoff one must introduce an infrared cutoff
by putting the system in a box with periodic boundary
conditions. We have studied 643, 1283, and 2563 lattices.
Computer memory and CPU resources limit us from reach-
ing much bigger lattices. Nonetheless, in the spirit of
paper I, there are a number of checks one can perform to
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ensure that our results are physical and are not biased,
within errors, by the approximations introduced, see
Fig. 3. Our problem has several physical scales which
control different time regimes and observables. Thus, it is
not always an easy matter to place these scales in the
window defined by our ultraviolet and infrared cutoffs.
For example, in addition to the Higgs and inflaton mass
there is a scale M associated with the inflaton velocity
which is particularly relevant in determining the bubble
sizes and collisions. Then, when we want to study a stage
of the evolution, in particular, we make the selection of the
volume and cutoff most suitable. Since in this paper we are
more interested in understanding the phenomenon of GW
production, rather than concentrating in a particular model,
our attitude has been to modify the parameters of the model
in order to sit in a region where our results are insensitive to
the cutoffs. This is no doubt a necessary first step to
determine the requirements and viability of the study of
any particular model. In particular, we have thoroughly
studied a model with g2 � 2� � 1=4, but we have checked
that other values of the parameters do not change our
results significantly. The initial conditions of the fields
follow the prescription from paper I. The Higgs modes
�k are solutions of the coupled evolution equations, which
can be rewritten as�00k � �k

2 � 
��k � 0, with 
 � M�t�
tc� and M � �2V�1=3m. The time-dependent Higgs
mass follows from the initial inflaton field homogeneous
component, �0�ti� � �c�1� Vm�ti � tc�� and _�0�ti� �
��cVm. The Higgs modes with k=M >

�����

i
p

are set to
zero, while the rest are determined by a Gaussian random
field of zero mean distributed according to the Rayleigh
distribution

 P�j�kj�dj�kjd�k � exp
�
�
j�kj

2

�2
k

�
dj�kj

2

�2
k

d�k
2�

; (43)

with a uniform random phase �k 2 
0; 2�� and dispersion
given by �2

k 	 jfkj
2 � P�k; 
i�=k3, where P�k; 
i� is the

power spectrum of the initial Higgs quantum fluctuations
in the background of the homogeneous inflaton, computed
in the linear approximation. In the region of low momen-
tum modes it is well approximated by

 2kPapp�k; 
i� � k3�1� A�
i�k2e�B�
i�k
2
�; (44)

where A�
i� andB�
i� are parameters extracted from a fit of
this form to the exact power spectrum given in paper I. In
the classical limit, the conjugate momentum _�k�
� is
uniquely determined through _�k�
� � F�k; 
��k�
�,
where F�k; 
� � Im�ifk�
� _f�k�
��=jfk�
�j

2, see paper I. In
the region of low momenta, F�k; 
i� can be well approxi-
mated by

 F�k; 
i� �
2kC�
i�e�D�
i�k

2


1� A�
i�e
�B�
i�k2

�
; (45)

where A�
i� and B�
i� are the previous coefficients for the

amplitude of the field fluctuations, while C�
i� and D�
i�
are new coefficients obtained fitting the exact expression of
F�k; 
i�. The rest of the fields (the inflaton nonzero modes
and the gravitational waves), are supposed to start from the
vacuum, and therefore they are semiclassically set to zero
initially in the simulations. Their coupling to the Higgs
modes will drive their evolution, giving rise to a rapid
(exponential) growth of the GW and inflaton modes.
Their subsequent nonlinear evolution will be well de-
scribed by the lattice simulations. In the next subsections
we will describe the different evolution stages found in our
simulations.

B. Tachyonic growth

In this subsection we will compare the analytical esti-
mates with our numerical simulations for the initial ta-
chyonic growth of the Higgs modes and the subsequent
growth of gravitational waves. The first check is that the
Higgs modes grow according to paper I. There we found
that

 kj�k�t�j
2 ’ v2A�
�e�B�
�k

2
; (46)

with A�
� and B�
� are given in paper I,

 A�
� �
�2�1=3�2=3

2�2�1=3�
Bi2�
�; B�
� � 2�

���


p
� 1�; (47)

which are valid for 
 > 1, and where Bi�z� is the Airy
function of the second kind. Indeed, we can see in Fig. 4
that the initial growth, from mt � 6 to mt � 10, follows
precisely the analytical expression, once taken into account
that in Eq. (46) the wave number k and time 
 are given in
units of M � �2V�1=3m. The comparison between the ten-
sor modes hij�k; t� and the numerical results is somewhat
more complicated. We should first compute the effective
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FIG. 4 (color online). The tachyonic growth of the Higgs
spectrum, from mt � 5 to mt � 10. We compare simulations
of different sizes (pmin � 0:01–0:03) and N � 256, with the
analytical expressions.
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anisotropic tensor Tij�k; t� (26) from the gradients of the
Higgs field (those of the inflaton are not relevant during the
tachyonic growth) as follows:

 

~� ij�k; t� �
Z d3xe�ikx

�2��3=2

ri�

arj�
a�x; t��; (48)

where

 ri�a�x; t� �
Z d3q

�2��3=2
iqi ~�a�q; t�e�iqx: (49)

After performing the integral in x and using the delta
function to eliminate q0, we make a change of variables
q! q� k=2, and integrate over q, with which the Fourier
transform of the anisotropic stress tensor becomes

 

~� ij�k; t� � kikj
A�
�

B�
�
���
2
p �

�
1

2
; 0;

B�
�k2

4

�
e��1=4�B�
�k2

;

(50)

which gives a very good approximation to the numerical
results, see Fig. 5, with ��1=2; 0; z� ’ ���1 � z��1=2 being
the Kummer function. Finally, with the use of ~�ij�k; t�, we
can compute the tensor fields,

 hij�k; t� � �16�G�
Z t

0
dt0

sink�t� t0�
k

~�ij; (51)

 @0hij�k; t� � �16�G�
Z t

0
dt0 cosk�t� t0� ~�ij: (52)

Using the analytic expression in Eq. (50) one can perform
the integrals and obtain expressions that agree surprisingly
well with the numerical estimates. This allows one to
compute the density in gravitational waves, �GW, at least

during the initial tachyonic stage in terms of analytical
functions, and we reproduce the numerical results, see
Fig. 3. We will now compare our numerical results with
the analytical estimates. The tachyonic growth is domi-
nated by the faster than exponential growth of the Higgs
modes towards the true vacuum. The (traceless) anisotropic
stress tensor �ij grows rapidly to a value of order k2j�j2 �
10�3m2v2, which gives a tensor perturbation

 jhijh
ijj1=2 � 16�Gv2�m�t�210�3; (53)

and an energy density in GW,

 �GW=�0 � 64�Gv2�m�t�210�6 �Gv2; (54)

for m�t� 16. In the case at hand, with v � 10�3MP, we
find �GW=�0 � 10�6 at symmetry breaking, which coin-
cides with the numerical simulations at that time, see
Fig. 2. As shown in Ref. [25], the spinodal instabilities
grow following the statistics of a Gaussian random field,
and therefore one can use the formalism of [55] to estimate
the number of peaks or lumps in the Higgs spatial distri-
bution just before symmetry breaking. As we will discuss
in the next section, these lumps will give rise via nonlinear
growth to lump invagination and the formation of bubble-
like structures with large density gradients, expanding at
the speed of light and colliding among themselves giving
rise to a large GWB. The size of the bubbles upon collision
is essentially determined by the distance between peaks at
the time of symmetry breaking, but this can be computed
directly from the analysis of Gaussian random fields,
as performed in Ref. [25]. This analysis works only for
the initial (linear) stage before symmetry breaking.
Nevertheless, we expect the results to extrapolate to later
times since once a bubble is formed around a peak, it
remains there at a fixed distance from other bubbles. This
will give us an idea of the size of the bubbles at the time of
collision. We estimate the number density of peaks as [55]

 npeak�
� �
2

3
���
3
p
�2
�0�
�

�3�	2 � 1� exp
�	2=2�; (55)

where 	 � �c=��
� corresponds to the ratio of the field
threshold �c over the dispersion

 ��
� �

����
�
p

�
�2V�1=3

�
A�
�
B�
�

�
1=2
; (56)

with A�
� and B�
� given in Eq. (47). The average size of
the Gaussian lumps is �0�
� � 2B1=2�
�m�1, where time is
given in units 
 � �2V�1=3 mt, see Ref. [25] The distance
between peaks can be estimated as twice the radius of the
average bubble, with volume Vpeak � 4�=3R3

peak. Since the
total volume L3 is divided into Npeak bubbles, we find

 dpeak � 2Rpeak �
1

ma

�
6

�npeak

�
1=3
a; (57)

which is typically of order 30 to 40 lattice units, for
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FIG. 5 (color online). The Fourier transform of the anisotropic
stress tensor. We compare the numerical simulations of �11�k; t�
for pmin � 0:01 with the analytical expressions (dashed lines) for
mt � 5–10, i.e. during the tachyonic growth. The small devia-
tions at k � m are simulation artifacts due to the initial UV
cutoff implementation and soon disappear.
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�c ’ 0:5–0:8, V � 0:024, and � � 0:125, with lattices
sizes given by pmin � 0:15m and N � 128. What is inter-
esting is that decreasing either � or V, the distance between
initial lumps increases and thus also the size of the final
bubbles upon collision. As we will show in the next sec-
tion, the amplitude of GW depends on the bubble size
squared, and therefore it is expected that for lower lambda
we should have larger GW amplitude. We have not seen,
however, such an increase in amplitude, but a detailed
analysis is underway and will be presented elsewhere.

C. Bubble collisions

The production of gravitational waves in the next stage
proceeds through bubble collisions. In Ref. [24] we showed
explicitly that symmetry breaking is not at all a homoge-
neous process. During the breaking of the symmetry, the
Higgs field develops lumps whose peaks grow up to a
maximum value j�jmax=v � 4=3 (see paper I), and then
decrease creating approximately spherically symmetric
bubbles, with ridges that remain above j�j � v. Finally,
neighboring bubbles collide producing short wavelength
inhomogeneities, which populate the high-momentum
modes. Since initially only the Higgs field sources the
anisotropic stress tensor �ij, then we expect the formation
of structures (see Sec. IVA) in the tensor metric perturba-
tion, correlated with the Higgs lumps. The dependence of
the hij tensor on the gradient of the Higgs field, see
Eq. (14), is responsible of the formation of those structures
in the energy density spatial distribution of the GWB. In
Sec. V of this paper we will give account of the explicit
form of the structures developed in the spatial distribution
of �GW related with the first collisions among the bubble-
like structures of the Higgs field. We will present simulta-
neously the evolution of both the Higgs spatial distribution
when the first bubbles start colliding and of the correspond-
ing structures in the GW energy density �GW. We leave for
a forthcoming publication the details of an analytical for-
malism describing the formation and subsequent evolution
of such GW structures. In this subsection we will just give
an estimate of the burst in GW produced by the first
collisions of the Higgs bubblelike structures. As for the
collision of vaccum bubbles in first order phase transitions
[12], we can give a simple estimate of the order of magni-
tude of the energy fraction radiated in the form of gravita-
tional waves when two Higgs bubblelike structures collide.
A similar estimate is indeed presented in [37,56]. In gen-
eral, the problem of two colliding bubbles has several time
and length scales: the duration of the collision, �t; the
bubbles’ radius R at the moment of the collision; and the
relative speed of the bubble walls. In Sec. IV B we found
that the typical size of bubbles upon collisions is of the
order of R � 10m�1, while the growth of the bubble’s wall
is relativistic. Then we can assume than the time scale
associated with bubble collisions is also �t� R. Assuming
the bubble walls contain most of the energy density, and

since they travel close to the speed of light, see paper I, it is
expected that the asymmetric collisions will copiously
produce GW. Far from a source that produces gravitational
radiation, the dominant contribution to the amplitude of
GW is given by the acceleration of the quadrupole moment
of the Higgs field distribution. Given the energy density of
the Higgs field, �H, we can compute the (reduced) quad-
rupole moment of the Higgs field spatial distribution,
Qij �

R
d3x�xixj � x

2�ij=3��H�x�, such that the ampli-
tude of the gravitational radiation, in the TT gauge, is
given by hij � �2G=r� �Qij. A significant amount of energy
can be emitted in the form of gravitational radiation when-
ever the quadrupole moment changes significantly fast:
through the bubble collisions in this case. The power
carried by these waves can be obtained via (31) as

 PGW �
G
8�

Z
d�hQ

:::
ijQ
:::iji: (58)

Omitting indices for simplicity, as the power emitted in
gravitational waves in the quadrupole approximation is of
order PGW �G�Q

:::
�2, while the quadrupole moment is of

order Q� R5�H, we can estimate the power emitted in
GW upon the collision of two Higgs bubbles as

 PGW �G
�
R5�

R3

�
2
�G�2

HR
4: (59)

The fraction of energy density carried by these waves,
�GW � PGW�t=R3 � PGW=R

2 �G�2
HR

2, compared to
that of the initial energy stored in the two bubblelike
structures of the Higgs field, will be �GW=�H � G�HR

2.
Since the expansion of the Universe is negligible during the
bubble collision stage, the energy that drives inflaton, �0 �
m2v2, is transferred essentially to the Higgs modes during
preheating, within an order of magnitude, see Fig. 2. Thus,
recalling that R� 10m�1, the total fraction of energy in
GW produced during the bubble collisions to that stored in
the Higgs lumps formed at symmetry breaking, is given by

 

�GW

�0
� 0:1G�0R2 � �v=Mp�

2; (60)

giving an amplitude which is of the same order as is
observed in the numerical simulations, see Fig. 2. Of
course, an exhaustive analytical treatment of the produc-
tion of GW during this stage of bubble collisions remains
to be done, but we leave it for a future publication.

D. Turbulence

The development of a turbulent stage is expected from
the point of view of classical fields, as turbulence usually
appears whenever there exists an active (stationary) source
of energy localized at some scale kin in Fourier space. As
first pointed out by Ref. [57], in reheating scenarios the
coherently oscillating inflaton zero mode plays the role of
the pumping-energy source, acting at a well-defined scale
kin in Fourier space, given by the frequency of the inflaton
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oscillations. Thus, the inflaton zero-mode pumps energy
into the rest of the fields that couple to it as well as into the
nonzero modes of the inflaton field itself. Apart from kin,
there is no other scale in Fourier space where energy is
accumulated, dissipated, and/or infused. So, as turbulence
is characterized by the transport of some conserved quan-
tity, energy in our case, we should expect a flow of energy
from kin towards higher (direct cascade) or smaller (inverse
cascade) momentum modes. In typical turbulent regimes of
classical fluids, there exits a sink in Fourier space, corre-
sponding to that scale at which the (direct) cascade stops
and energy gets dissipated. However, in our problem there
is no such sink so that the transported energy cannot be
dissipated, but instead it is used to populate high-
momentum modes. For the problem at hand, there exists
a natural initial cutoff kout � �1=2v, such that only long-
wave modes within k < kout develop the spinodal instabil-
ity. Eventually, after the tachyonic growth has ended and
the first Higgs bubblelike structures have collided, the
turbulent regime is established. Then the energy flows
from small to greater scales in Fourier space, which trans-
lates into the increase of kout in time. In Ref. [32] we
already accounted for the turbulent stage reached in a
hybrid model with gauge fields. However, we do not con-
sider gauge fields here, so the number of degrees of free-
dom is different from that of Ref. [32] and, therefore, the
turbulent dynamics of the inflaton and the Higgs fields
should be different. In particular, when the turbulence
has been fully established, if the wave (kinetic) turbulence
regime of the fields’ dynamics is valid, the time evolution
of the variance of a turbulent field f�x; t�, should follow a
power-law-like scaling [57]

 Var �f�t�� � hf�t�2i � hf�t�i2 / t�2p; (61)

with p � 1=�2N � 1� and N the number of scattering
fields in a ‘‘pointlike collision.’’ In fact, such time behavior
corresponds only to the case of the so-called free turbu-
lence, when the energy stored in the pumping source is
subdominant to the energy in the turbulent fields. In our
case, this condition is reached very soon after the symme-
try breaking, so we do not expect a significant stage of
driven turbulence, which would make the variance to in-
crease (only the inflaton seems to increase its variance
between mt � 10 and mt � 30, but it is not very pro-
nounced). In Fig. 6 we have plotted the time evolution of
the variances of the Inflaton � and of the Higgs modulus

� �
�������������P
a�

2
a

q
and fitted the data with a power law like (61),

obtaining

 inflaton : p�1
I � 5:1� 0:2; 
35:85�;

 inflaton : p�1
I � 9:03� 0:03; 
350:2000�;

 Higgs : p�1
H � 7:02� 0:01; 
50:2000�;

where the last brackets on the right correspond to the range
in time (in units of m�1) for which we fitted the data. As
can be seen in Fig. 6, the slope of the Higgs field (in
logarithmic scale), 2pH � 2=7, remains approximately
constant in time, corresponding to a 4-field dominant
interaction. However, the slope of the inflaton’s variance
increases in time, i.e. the critical exponent pI of the
inflaton decreases, until it reaches a stationary stage at
mt� 100. Since pI is related to the number N of fields
interacting in a collision, if there was a change from one
dominant multifield interaction to another, this should
produce a time-dependent effective pI, as seen in Fig. 6.
However, we will not try to explain here the origin of such
effective critical exponents as extracted from the simula-
tions. We will just stress that we have checked the robust-
ness of those values under different lattice configurations
(N; pmin) and different statistical realizations, discarding
this way a possible lattice artifact effect. As we will see, the
critical exponents p determines the speed with which the
turbulent particle distribution moves over momentum
space, so this is a crucial parameter. Moreover, although
both the classical modes of the inflaton and the Higgs
contribute to the production of GW, the inflaton’s occupa-
tion numbers decrease faster than those of the Higgs so,
after a given time, only the Higgs modes remain as the
main source of GW. Actually, when turbulence is devel-
oped, it is expected that the distribution function of the
classical turbulent fields, the inflaton and the Higgs here,
follow a self-similar evolution [57]

 n�k; t� � t�pn0�kt�p�; (62)

FIG. 6 (color online). Variance of the inflaton and the Higgs
field as a function of time, the former normalized to its critical
value, the latter normalized to its vev. As expected in a turbulent
regime, these variances follow a power law �t�2p with p a
certain critical exponent, although the slope of the inflaton’s
variances evolves in time. The curves are produced from an
average over 10 different statistical realizations. This number of
realizations has been selected with a compromise between
computational time and statistical errors.
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with p the critical exponent of the fields’ variances and  a
certain factor �O�1�, which depends on the type of turbu-
lence developed. It is precisely this way that the exponent
p determines the speed of the particles’ distribution in
momentum space: given a specific scale kc such that, for
example, the occupation number has a maximum, that
scale evolves in time as kc�t� � kc�t0��t=t0�

p. We have
seen that the evolution of the Higgs occupation number
follows Eq. (62) with p � 1=7, as expected from the Higgs
variance, and  � 2:7. Whereas the evolution of the in-
flaton occupation number follows (62) even more accu-
rately than the Higgs, with an ‘‘effective’’ exponent
p � 1=5, and  � 3:9. Since the slope of the inflaton’s
variance changes in time, the value of the exponents of the
inflaton’s scaling relation will require further investigation.
However, despite this time evolution of the inflaton vari-
ance, Eq. (62) is very well fulfilled by the inflaton with the
given effective exponents. So we can perfectly obtain the
universal n0�k� function for the inflaton as well as for the
Higgs. In Figs. 7 and 8 we have plotted the occupation
numbers of the Higgs and the inflaton, also inverting the
relation of Eq. (62) in order to extract the universal time-
independent n0�k� functions of each field. As shown in
those figures, the distributions follow the expected scaling
behavior. However, for the range of interest of k, there are
small discrepancies of order 0.1%–4% (depending on k)
among the different universal functions n�i�0 �k�, as obtained
inverting Eq. (62) at different times mti. The universal
functions n0�k� plotted in Figs. 7 and 8 have been obtained
from averaging over 10 statistical realizations for each
time. The advantage of the development of a turbulence

behavior is obvious: it allows us to extrapolate the time
evolution of the fields’ distributions till later times beyond
the one we can reach with the simulations. Moreover, the
fact that the turbulence develops so early after the ta-
chyonic instability also allow us to check for a long time
the simulation, the goodness of the description of the
dynamics of the fields, given by the turbulent kinetic theory
developed in Ref. [57]. We have fitted the averaged uni-
versal functions n0�k� with expressions of the form
k4n0�k� � P�k�e�Q�k�, with P�k� and Q�k� polynomials in
k, giving

 inflaton : P�k� � 486:2k3 Q�k� � 6:39k;

Higgs: P�k� � 2:96k3 Q�k� � 2:26k2 � 3:18k:
(63)

There is no fundamental meaning for these expressions,
but it is very useful to have such an analytical control over
n0�k�, since this allows us to track the time evolution of
n�k; t� through Eq. (62). Actually, the classical regime of
the evolution of some bosonic fields ends when the system
can be relaxed to the Bose-Einstein distribution. We are
now going to estimate the moment in which the initial
energy density gets fully transferred to the Higgs classical
modes. Using Eq. (62) and the fit (63), we find that the
initial energy density is totally transferred to the Higgs
when (in units m � 1)

 �0 �
1

4�
�
Z dk

k
k3

2�2 kn�k; t� �
7:565

2�2 t�4��p; (64)

where we have assumed that the Higgs modes have energy
Ek�k; t� � kn�k; t�. In our case, with � � 1=8, the conver-
sion of the initial energy density into Higgs particles and
therefore into radiation is complete by mt� 6� 104.
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FIG. 8 (color online). Different times of the evolution of the
particle occupation numbers spectra of the inflaton multiplied by
k4 and averaged over 10 statistical realizations for each time.
Again, in the upper right corner, we plot the inverse relation of
(62), n0�k� � tpn�ktp; t�, also averaged over 10 realizations for
each time.
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FIG. 7 (color online). Some snapshots of the evolution of the
spectral particle occupation numbers of the Higgs field at differ-
ent times, each averaged over 10 statistical realizations. We
multiply them by k4 so we can see better the scaling behavior.
In the upper right corner, we plot the inverse relation of (62),
n0�kt

�p� � tpn�k; t�, also averaged over 10 realizations for
each time. The scaling behavior predicted by wave kinetic
turbulent theory [57], is clearly verified.
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Therefore, if we consider this value as a lower bound for
the time that classical turbulence requires to end, we see
that turbulence last for a very long time compared to the
time scale of the initial tachyonic and bubbly stages. Thus,
if GW were significantly sourced during turbulence, one
should take into account corrections from the expansion of
the Universe. In Fig. 9, we show the evolution of the GW
spectra up to times mt � 2000, for a lattice of �N; pmin� �
�128; 0:15�. It is clear from that figure that the amplitude of
the GW saturates to a value of order �GW=�0 � 2 � 10�6.
At mt � 50, the maximum amplitude of the spectra has
already reached �GW=�0 � 10�6, while at time mt � 100,
the maximum has only grown a factor of 2 with respect to
mt � 50. From times mt � 150 till the maximum time we
reached in the simulations, mt � 2000, the maximum of
the amplitude of the spectrum does not seem to change
significantly, slowly increasing from � 2 � 10�6 to � 2:5 �
10�6. Despite this saturation, we see in the simulations that

the long momentum tail of the spectrum keeps moving
towards greater values. This displacement is precisely what
one would expect from turbulence, although it is clear that
the amplitude of the new high-momentum modes never
exceed that of lower momentum. In order to discard that
this displacement towards the UV is not a numerical arti-
fact, one should further investigate the role played by the
turbulent scalar fields as a source of GW. Here, we just
want to remark that the turbulent motions of the scalar
fields seem not to increase significantly anymore the total
amplitude of the GW spectrum. Indeed, in a recent paper
[37] where GW production at reheating is also considered,
it is stated that GW production from turbulent motion of
classical scalar fields should be very suppressed. That is
apparently what we observe in our simulations although, as
pointed above, this issue should be investigated in a more
detailed way. Anyway, here we can conclude that the
expansion of the Universe during reheating in these hybrid
models does not play an important role during the time of
GW production, and therefore we can be safely ignore it.

V. SPATIAL SECTIONS AND LOCAL GW
PRODUCTION

In this section, we show a sequence of snapshots (mt �
5–20) of the evolution of the spatial distribution, before the
fields are driven to the turbulent stage. We find that the first
stages of the GW dynamics is strongly correlated with the
dynamics of the Higgs oscillations that give rise to sym-
metry breaking. A qualitative way of understanding this
question is to analyze the spatial structure of the �ij tensor,
built from spatial gradients of the Higgs and inflaton fields.
Since the oscillations of h�i are due to rapid changes of the
Higgs values in its way of symmetry breaking, this induces
great variations in the behavior of the spatial gradients. We
are now going to analyze briefly the different stages show-
ing the most representative images. Shortly, a bigger se-
lection of pictures and movies will be available on our web
page [58]. An interesting conclusion from the set of
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FIG. 9 (color online). Time evolution of the GW spectra from
mt � 6 to mt � 2000. The amplitude of the spectra seems to
saturate after mt� 100, although the high-momentum tail still
moves slowly to higher values of k during the turbulent stage.

FIG. 10 (color online). Model: � � 10�3, g2 � 1. In the left picture we show a spatial section of h�i. We can see how a spherical
lump is growing. In the right picture we can see the structure of the �GW in the same place. A ring is forming around the Higgs lump.
More complex structures are formed in the regions in which the Higgs bubbles are next, and the GW grow in the boundary of these
lumps, where the gradient of the Higgs and therefore the �ij tensor grow in this region.
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FIG. 11 (color online). Here we have the time evolution of the previous ring (Fig. 10) near the symmetry breaking. The bubble is
growing (mt � 10–11) until the symmetry breaking time (mt � 12).

FIG. 12 (color online). The Higgs lump begins to invaginate, and the GW ring expands (mt � 12–13). A similar behavior is
observed in a smaller lump below the biggest Higgs lump, in the same pictures.
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FIG. 13 (color online). After symmetry breaking the expansion of Higgs lump compresses the GW, until the Higgs gradient changes
in the first oscillation (mt � 13–13:5).

FIG. 14 (color online). At this moment, when the Higgs falls, the GW structure is divided in two waves (mt � 14). These wave
fronts propagate in opposite directions (mt � 14:5).

GARCÍA-BELLIDO, FIGUEROA, AND SASTRE PHYSICAL REVIEW D 77, 043517 (2008)

043517-18



Figs. 10–14 is that the Higgs evolution from lump growth,
through invagination to bubble collisions, has a direct
translation into the corresponding growth of gravitational
wave energy density. Not only does the volume-averaged
amplitude �GW follow the Higgs time evolution, but the
individual local features in the GWB seem to correspond
very closely with the Higgs features. In the first stage both
Higgs and GW backgrounds grow very fast. The lumps
which grow in the Higgs background induce structures
around these, through the gradients appearing in the �ij

tensor. The geometry of the gravitational structures comes
from the position of the Higgs lump. A typical structure for
an isolated lump is a ring of gravitational waves, see
Fig. 10. More complex structures can be formed around
the position of the Higgs lumps. Before symmetry breaking
these lumps grow according to the previous analysis, gen-
erating domains with a great density of gravitational en-
ergy. The second stage begins when h�i � v and the
symmetry breaking starts, then the Higgs lumps invaginate
and expand, producing the growth of gravitational waves
around these structures, see Figs. 11 and 12. One can see
that whenever the bubble walls expand, the variation in the
gradient of the Higgs field induces the expansion of the
GW ring. In the case of the rings, if the lump is very
isolated, the expansion induces the ring to dilute and dis-
appear. In practice, however, the lumps are never isolated
and bubbles collide before the gradients (and thus the GW)
die away. In the case when two Higgs bubblelike structures
are close by, the expansion of their walls compresses the
GW structures. This expansion continues until the first
Higgs oscillation, see Fig. 3. If the distance between
Higgs structures is small, then the GW can be diluted,
whereas in the other case, a remnant stringlike GW struc-
ture survives, and when the Higgs background goes to zero
this GW structure becomes divided into two waves that
propagate in opposite directions, as one can see in Figs. 13
and 14, which show four snapshots of this process. A
similar behavior is observed in the second oscillations.
Finally, the wave fronts propagate, colliding among them-
selves, driving the system to the stage of turbulence. We
will leave for a future publication the detailed analysis of
the GW production at the bubble collisions and the sub-
sequent turbulent period after preheating in hybrid models.

VI. GRAVITATIONAL WAVES FROM CHAOTIC
INFLATION

The production of a relic GWB at reheating was first
addressed by Khlebnikov and Tkachev (KT) in Ref. [19],
both for the quadratic and quartic chaotic inflation scenar-
ios. In these models, the long-wavelength part of the
spectrum is dominated by the gravitational bremsstrahlung
associated with the scattering of the extra scalar particles
off the inflaton condensate, ‘‘evaporating’’ this way the
inflaton particles. Using this fact, KT estimated analyti-
cally the amplitude of the power spectra of GW for the low-

frequency end of the spectrum, corresponding to wave-
lengths of order the size of the horizon at rescattering.
Moreover, KT also studied the GW power spectra numeri-
cally, although just for the massless inflaton case. Recently,
chaotic scenarios were revisited in Refs. [21,33], accom-
panied by more precise numerical simulations at different
energy scales, including the case of a massive inflaton.
Finally, also very recently, Ref. [37] studied in a very
detailed way, both analytically and numerically, the evo-
lution of GW produced at preheating in the case of a
massless inflaton with an extra scalar field.

In Refs. [19,21], the procedure to compute the GW from
reheating relied on Weinberg’s formula for the energy
carried by a weak gravitational radiative field in flat
space-time [59]. However, in chaotic models, the expan-
sion of the Universe can not be neglected during reheating,
so Weinberg’s formula can only be used in an approxi-
mated way, if the evolution of the Universe is considered as
an adiabatic sequence of stationary universes. Rescaling
fields by a conformal transformation, their evolution equa-
tions can be solved with a numerical integrator, while the
evolution of the scale factor can be calculated analytically.
Discretizing the time, the physical variables can be recov-
ered from the conformal ones in each time step, thus
allowing to compute the energy of gravitational waves in
terms of the physical fields. In this paper, however, we
adopt another approach2 that takes into account expansion
of the Universe in a self-consistent manner, and lets us
calculate at any time the energy density and power spectra
of the GW produced at reheating. As explained in Sec/ III
and applied to the case of hybrid inflation in Secs. IVand V,
we just solve numerically Eq. (25), together with those
equations of the other Bose fields and the scale factor,
Eqs. (9), (10), (12), and (13). Then, using the projector
(21) into the (Fourier transformed) solution of Eq. (25), we
recover the TT d.o.f corresponding to GW. This way, we
can monitor the total energy density in GW using Eq. (31),
or track the evolution of the power spectrum. Using this
technique, we will show in this section that we reproduce,
for specific chaotic models, similar results to those of other
authors.

We adapted the publicly available LATTICEEASY code
[36], taking advantage of the structure of the code itself,
incorporating the evolution of Eq. (14), together with the
equations of the scalar fields, Eqs. (9) and (10), into the
staggered leapfrog integrator routine. This way, we can
solve at the same time the dynamics of the scalar and tensor
fields, within the framework of an expanding FRW uni-
verse Eqs. (12) and (13). In particular, we will concentrate
only in an scenario with a massless inflaton �, either

2Note that Refs. [33,37] also work in the same theoretical
framework, considering the TT tensor perturbations on top of a
flat FRW space. However, we use a different way to extract
numerically the GW power spectra, relying on the commutating
procedure, as explained in detail in Sec. III B.
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accompanied or not by an extra scalar field �. In the
following, we will describe the numerical results for GW
production at reheating in such scenarios, described by the
potential

 V��;�� �
�
4
�4 �

1

2
g2�2�2: (65)

Rescaling the physical fields and time by a conformal
transformation

 �c�
� �
a�
�
a�0�

��
�
��0�

; �c�
� �
a�
�
a�0�

��
�
��0�

; (66)

 d
 �
a�
�
a�0�

��0�
����
�
p
dt; (67)

then the equations of motion of the inflaton and of the extra
scalar field, Eqs. (9) and (10), can be rewritten in terms of
the conformal variables as

 �00c �r2�c �
a00

a
�c � ��2

c � q�2
c��c � 0; (68)

 �00c �r2�c �
a00

a
�c � q�2

c�c � 0; (69)

where the prime denotes derivative with respect to confor-
mal time. Since the Universe expands as radiationlike in
these scenarios, a�
� � 
, so the terms proportional to
a00=a in Eqs. (68) and (69) are soon zero, as explicitly
checked in the simulations. Thanks to this, the model is
conformal to Minkowski. The parameter q 	 g2=� con-
trols the strength and width of the resonance. For the case
of a massless inflaton without an extra scalar field, we just
set q � 0 in Eq. (68) and ignore Eq. (69). However, in that
case, fluctuations of the inflaton also grow via parametric
resonance. Actually, they grow as if they were fluctuations
of a scalar field coupled to the zero mode of the inflaton
with effective couplig q � g2=� � 3, see Ref. [60].

Following Refs. [19,21], we set � � 10�14 and q � 120.
Since this case is also computed in [37], we can also
compare our results with theirs. Moreover, we also present
results for the pure ��4 model with no extra scalar field, a
case only shown in Ref. [19]. We begin our simulations at
the end of inflation, when the homogeneous inflaton veri-
fies �0 � 0:342Mp and _�0 � 0. We took initial quantum
(conformal) fluctuations 1=

�����
2k
p

for all the modes up to a
certain cutoff, and only added an initial zero mode for the
inflaton, �c�0� � 1, �c�0�0 � 0. In Figs. 15 and 16, we
show the evolution of �GW during reheating, normalized to
the instant density at each time step, for the coupled and the
pure case, respectively. In the case with an extra scalar
field, the amplitude of the GWB saturates at the end of
parametric resonance, when the fields’ variances have been
stabilized. This is the beginning of the turbulent stage in
the scalar fields, which seems not to source anymore the
production of GWs, as already stated in Refs. [21,37]. For

the pure case, we also see the saturation of the amplitude of
the spectra, see Fig. 16, although the long momenta tail
seems to slightly move toward higher values. Of course, in
either case, with and without an extra field �, in order to
predict today’s spectral window of the GW spectrum, we
have, first, to normalize their energy density at the end of
GW production to the total energy density at that moment.
Secondly, we have to redshift the GW spectra from that
moment of reheating, taking into account that the rate of
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FIG. 16 (color online). Spectrum of the gravitational waves’
energy density, for the pure case, with � � 10�14. Again, we
show the spectrum accumulated up to different times during GW
production, normalized to the total instant density at each time.
The plot corresponds to an N � 128 lattice simulation, from 
 �
0 to 
 � 2000.
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FIG. 15 (color online). Spectrum of the gravitational waves’
energy density, for coupled case with � � 10�14 and g2=� �
120. The spectrum is shown accumulated up to different times
during GW production, so one can see its evolution. At each
time, it is normalized to the total instant density. This plot
corresponds to an N � 128 lattice simulation, from 
 � 0 to 
 �
240.
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expansion has changed significantly since the end of in-
flation, see Eq. (35). In particular, the shape and amplitude
of GW spectra for the case with the extra scalar field
coupled to the inflaton with q � 120, see Fig. 17, seems
to coincide with the spectra shown in Ref. [37]. On the
other hand, we also reproduce in Fig. 17 a similar spectra to
the one shown in [19], for the case of the pure quartic
model. Thanks to the tremendous gain in computer power,
we were able to resolve the ‘‘spiky’’ pattern of the spec-
trum with great resolution. For the first time, it is clearly
observed the exponential tail for large frequencies, see
Figs. 16 and 17, not shown in Ref. [19]. The most remark-
able fact is that we also confirm that the peak structure in
the GW power spectrum, see Fig. 16, remains clearly
visible at times much later than the one at which those
peaks have dissappeared in the scalar fields’ power spec-
trum. So, as pointed out in Ref. [19], this characteristic
feature distinguishes this particular model from any other.
Let us emphasize that we have run the simulations till
times much greater than that of the end of the resonance
stage, both for the pure and the coupled case. The role of
the turbulence period after preheating seems, therefore, not
to be very important, despite its long duration. Apparently,
the no-go theorem about the suppresion of GW at turbu-
lence, discussed in [37], is fulfilled. In Refs. [27,61] it was
pointed out that gauge couplings or trilinear interactions
could be responsible for a fast thermalization of the
Universe after inflation (see also Ref. [62]), but as long
as this takes place after the end of the resonance stage, in
principle this should not affect the results shown above.

VII. CONCLUSIONS

To summarize, we have shown that hybrid models are
very efficient generators of gravitational waves at preheat-

ing, in three well-defined stages, first via the tachyonic
growth of Higgs modes, whose gradients act as sources of
gravity waves, then via the collisions of highly relativistic
bubblelike structures with large amounts of energy density,
and finally via the turbulent regime (although this effect
does not seem to be very significant in the presence of
scalar sources), which drives the system towards thermal-
ization. These waves remain decoupled since the moment
of their production, and thus the predicted amplitude and
shape of the gravitational wave spectrum today can be used
as a probe of the reheating period in the very early uni-
verse. The characteristic spectrum can be used to distin-
guish between this stochastic background and others, like
those arising from neutron star and black hole binaries
coalescence, which are decreasing with frequency, or those
arising from inflation, that are flat [63]. We have plotted in
Fig. 18 the sensitivity of planned GW interferometers like
LIGO, LISA, and BBO, together with the present bounds
from CMB anisotropies (GUT inflation), from big bang
nucleosynthesis and from millisecond pulsars (ms pulsar).
Also shown are the expected stochastic backgrounds of
chaotic inflation models like ��4, both coupled and pure,
as well as the predicted background from two different
hybrid inflation models, a high-scale model, with v �
10�2MP and �� g2 � 0:05, and a low-scale model, with
v � 10�5MP and �� g2 � 10�14, corresponding to a rate
of expansion H � 100 GeV. The high-scale hybrid model
produces typically as much gravitational waves from pre-
heating as the chaotic inflation models. The advantage of
low-scale hybrid models of inflation is that the background
produced is within reach of future GW detectors like BBO
[6]. It is speculated that future high frequency laser inter-
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FIG. 18 (color online). The sensitivity of the different gravi-
tational wave experiments, present and future, compared with
the possible stochastic backgrounds; we include the white dwarf
binaries (WDB) [64] and chaotic preheating (��4, coupled and
pure) for comparison. Note the two well-differentiated back-
grounds from high-scale and low-scale hybrid inflation. The
bound marked ‘‘?’’ is estimated from ultrahigh frequency laser
interferometers’ expectations [15].
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FIG. 17 (color online). Today’s ratio of gravitational waves
normalized to radiation energy density, for both the coupled and
the pure case. We took g�=g0 � 100 to redshift the spectra from
the time of the end of production until today.
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ferometers could be sensitive to a GWB in the MHz region
[15], although they are still far from the bound marked with
an interrogation sign. For a high-scale model of inflation,
we may never see the predicted GW background coming
from preheating, in spite of its large amplitude, because it
appears at very high frequencies, where no detector has yet
shown to be sufficiently sensitive. On the other hand, if
inflation occurred at low scales, even though we will never
have a chance to detect the GW produced during inflation
in the polarization anisotropies of the CMB, we do expect
gravitational waves from preheating to contribute with an
important background in sensitive detectors like BBO. The
detection and characterization of such a GW background,
coming from the complicated and mostly unknown epoch
of rehating of the Universe, may open a new window into
the very early universe, while providing a new test on
inflation.
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