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We study cosmological perturbations in the context of an interacting dark energy model, in which the
cosmological term decays linearly with the Hubble parameter, with concomitant matter production. A
previous joint analysis of the redshift-distance relation for type Ia supernovas, barionic acoustic
oscillations, and the position of the first peak in the anisotropy spectrum of the cosmic microwave
background has led to acceptable values for the cosmological parameters. Here we present our analysis of
small perturbations, under the assumption that the cosmological term, and therefore the matter production,
are strictly homogeneous. Such a homogeneous production tends to dilute the matter contrast, leading to a
late-time suppression in the power spectrum. Nevertheless, an excellent agreement with the observational
data can be achieved by using a higher matter density as compared to the concordance value previously
obtained. This may indicate that our hypothesis of homogeneous matter production must be relaxed by
allowing perturbations in the interacting cosmological term.
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I. INTRODUCTION

The cosmological constant problem has acquired a re-
newed importance since several independent observations
have been pointing to the presence of a negative pressure
component in the cosmic fluid [1]. From the point of view
of quantum field theories, the natural candidate for such a
dark energy is the quantum vacuum. Since, at the macro-
scopic level, it has the symmetry of the background, its
energy-momentum tensor has the form T�� � �g��, where
� is a scalar function of coordinates. This leads, in the case
of an isotropic and homogeneous space-time and comov-
ing observers, to the equation of state p� � ��� � ��,
where � may be, in general, a function of time. In the case
of a constant �, the vacuum contribution plays the role of a
cosmological constant in Einstein’s equations.

However, the estimation of the vacuum energy density
by quantum field theories in the flat space-time leads, after
some regularization procedure, to a very huge result when
compared to the observed value. A possible way out of this
difficult is to argue that such a result is valid only in a flat
background, in which the very Einstein equations predict a
null total energy-momentum tensor. Therefore, the huge
vacuum density should be canceled by a bare cosmological
constant, like in a renormalization process. Now, if we
could obtain the vacuum density in the Friedmann-
Lemaitre-Robertson-Walker (FLRW) space-time, after
the subtraction of the Minkowskian result it would remain
an effective time-dependent � term, which decreases with
the expansion.

The idea of a time-dependent cosmological term has
found different phenomenological implementations [2],

being a subject of renewed interest in recent years [3–5].
A general feature of all those approaches is the production
of matter, concomitant with the vacuum decay in order to
assure the covariant conservation of the total energy [6].
Indeed, in the FLRW space-time, the Bianchi identities
lead to the conservation equation

 _� T � 3H��T � pT� � 0; (1)

where �T and pT stand for the total energy density and
pressure, respectively, andH � _a=a is the Hubble parame-
ter. By writing �T � �m �� and pT � pm �� (where
�m and pm are the energy density and pressure of matter),
the above equation reduces to

 _�m � 3H��m � pm� � � _�; (2)

which shows that, in the case of a varying �, matter is not
independently conserved.1

An important point to be clarified in this kind of model is
the homogeneity of matter production. Of course, in a
strictly homogeneous space-time the production is homo-
geneous, since �m and � depends only on time. But, in the
presence of density perturbations, is the new matter pro-
duced homogeneously, or just where matter already exists
[8]? In the case of a homogeneous production, the new
matter tends to dilute the density perturbations, leading to a

*Permanent address: Departamento de Fı́sica, Universidade
Federal do Espı́rito Santo, Vitória, ES, Brazil.

1Properly speaking, we should also consider the pressure and
energy associated to the very process of matter production, that
is, the energy-momentum tensor of the interaction between
matter and vacuum. In this sense, decaying vacuum models do
not differ essentially from interacting dark energy models [7],
with the scalar function � replaced by a scalar field interacting
with matter. Nevertheless, if the vacuum decays into nonrelativ-
istic particles, as we will consider here, the interaction term can
be neglected, and the above decomposition may be considered a
good approximation.
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suppression of the density contrast. In some models, this
suppression is strong enough to impose very restrictive
observational limits to them [9].

In this paper we will analyze the evolution of density
perturbations in a particular, spatially flat, cosmological
model with vacuum decay [10,11]. It can be based on a
phenomenological prescription for the variation of � with
time [12], given by � � �H �m�4 �m4, where m is a
characteristic energy that can be identified with the scale of
the QCD vacuum condensation, the latest cosmological
vacuum transition. Although it can be corroborated by
holographic arguments [12,13], based on the thermody-
namics of de Sitter space-times, here we will take it just as
a phenomenological ansatz. In the limit of very early times,
we have � � H4, which provides a nonsingular inflation-
ary solution [12].

In the opposite limit of large times we have � � �H,
with � � m3. This scaling law for the vacuum density was
also suggested in [3], on the basis of different arguments. It
leads to a cosmological scenario in qualitative agreement
with the standard one [10], with an initial radiation era
followed by a long phase dominated by dust. This dust
phase tends asymptotically to a de Sitter universe, with the
deceleration/acceleration transition occurring some time
before the present epoch. On the other hand, a quantitative
analysis has shown a good accordance with supernova
observations, leading to age and matter density parameters
inside the limits imposed by other independent observa-
tions [11].

Since the radiation phase we obtain is indistinguishable
from the standard one, our analysis will be initially focused
on the evolution of density perturbations of nonrelativistic
matter in the dust-dominated phase, considering wave-
lengths inside the horizon.2 In this way, it will be possible
to make use of a generalization of the Newtonian linear
treatment of the problem, which includes the effects of
matter production [14]. We will show that, even in the case
of a homogeneous vacuum decay, the contrast suppression
is important only for late times, not affecting the process of
galaxy formation. On the other hand, it dominates for
future times, and we will discuss how this behavior can
possibly alleviate another problem related to the cosmo-
logical term: the cosmic coincidence problem.

Subsequently, a relativistic analysis will be performed,
in order to construct the matter power spectrum. Again, the
hypothesis of homogeneous matter production will be
used, leading as well to a consequent power suppression.

A second interesting difference as compared to the �CDM
model is a shift of the spectrum turnover to the left, that is,
to smaller wave numbers. The late-time suppression is not
very sensitive to the value used for the matter density, a
feature that can already be noted from the Newtonian
analysis. On the other hand, the correction of the turnover
position, by taking a higher matter density, displaces all the
spectrum to the right, compensating the late-time power
suppression. In this way we can obtain an excellent fit of
data, but with a higher matter density in comparison with
the standard case.

The article is organized as follows. In next section we
review the main features of our interacting model. In
Sec. III we perform the Newtonian analysis of evolution
of density perturbations in the matter era. In Sec. IV the
matter power spectrum is constructed, on the basis of a
simplified relativistic calculation. In Sec. V the reader can
find our concluding remarks.

II. THE MODEL

The Friedmann equations in the spatially flat case are
given by (1) and �T � 3H2. Let us take �T � �m ��,
pT � pm ��, and pm � ��� 1��m, with constant �. Let
us also take the ansatz � � �H, with � constant and
positive. We obtain the evolution equation

 2 _H � 3�H2 � ��H � 0: (3)

The solution, for �m;H > 0, is given by [10]

 a � C�exp���t=2� � 1�2=�3��; (4)

where a is the scale factor, C is an integration constant, and
a second one was taken equal to zero in order to have a � 0
for t � 0.

In the radiation phase, taking � � 4=3 and the limit of
early times (�t	 1), we have

 a �
�������������������
2C2�t=3

q
: (5)

This is the same scaling law we obtain in the standard case,
leading to H � 1=2t. In the same limit we then have �m �
�T �� � 3H2 � �H � 3H2 � �T . By using (5) we then
obtain

 �T � �m �
�2C4

3a4 �
3

4t2
; (6)

i.e., the same variation law for radiation one obtains in the
standard model, which shows that, during the radiation era,
both the cosmological term and the matter production can
be dismissed.

On the other hand, in the matter era we obtain, by doing
� � 1,

 a � C�exp��t=2� � 1�2=3: (7)

Taking again the limit of early times, we have

2As already commented, we will assume that the vacuum is
decaying into nonrelativistic particles, in order to avoid any
conflict with cosmic microwave background (CMB) observa-
tions and with the observed coldness of dark matter. We will also
suppose that only dark matter is produced, since the baryon
content is well constrained by nucleosynthesis. Evidently, these
assumptions cannot be verified without a microscopic theory of
the vacuum-matter interaction.
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 a � C��t=2�2=3; (8)

as in the Einstein-de Sitter solution. It is also easy to see
that, in the opposite limit t! 1, (7) tends to the de Sitter
solution.

With the help of (7), and by using � � �H and �m �
3H2 � �H, it is straightforward to derive the matter and
vacuum densities as functions of the scale factor. One has

 �m �
�2C3

3a3 �
�2C3=2

3a3=2
; (9)

 � �
�2

3
�
�2C3=2

3a3=2
: (10)

In these expressions, the first terms give the standard
scaling of matter (baryons included) and vacuum densities,
being dominant in the limits of early and very late times,
respectively. The second ones are owing to the process of
matter production, being important at an intermediate time
scale.

With (9) and (10) we obtain, for the total energy density
and pressure,3

 �T �
�2

3

��
C
a

�
3=2
� 1

�
2
; (11)

 pT � �

������
�2

3

s
�1=2
T : (12)

From (7) we can also derive the Hubble parameter as a
function of time in the matter era. It is given by

 H �
�=3

1� exp���t=2�
: (13)

With this expression, and by using (7) and (9), it is not
difficult to obtain the present age of the universe, given, in
terms of the age parameter, by

 H0t0 �
2 ln�m0

3��m0 � 1�
; (14)

where �m0 � �m0=3H2
0 is the relative matter density at

present.
Finally, with the help of (7) and (13), we can express H

as a function of the redshift z � a0=a� 1, which leads to

 H�z� � H0�1��m0 ��m0�z� 1�3=2�: (15)

With this function we have analyzed the redshift-
distance relation for type Ia supernovas [11], obtaining
data fits as good as with the flat �CDM model. With the
Supernova Legacy Survey (SNLS) [18]—the most confi-
dent survey we have so far—the best fit is given by h �
0:70
 0:02 and �m0 � 0:32
 0:05 (with 2�), with a
reduced �-square �2

r � 1:01 [here, h �
H0=�100 km=s Mpc�]. On the other hand, a joint analysis
of the Legacy Survey, baryonic acoustic oscillations, and
the position of the first peak of CMB anisotropies has led to
the concordance values h � 0:69
 0:01 and �m0 �
0:36
 0:01 (with 2�), with �2

r � 1:01 [19]. With these
results one can obtain, from (14), a universe age t0 �
15:0 Gyr, inside the interval allowed by age estimations
of globular clusters [20].

III. NEWTONIAN EVOLUTION OF DENSITY
PERTURBATIONS

The Newtonian equation for the evolution of density
perturbations in a pressureless fluid can be generalized in
order to account for matter production [14]. In this gener-
alized form, it is given by

 

@2�

@t2
�

�
2H�

�

�m

�
@�
@t
�

�
�m
2
� 2H

�

�m
�
@
@t

�
�

�m

��
�� 0:

(16)

Here, � � ��m=�m is the density contrast of the pressure-
less matter, and � is the source of matter production,
defined as

 _�m � 3H��m � pm� � �: (17)

In the case of a constant �, � � 0, and (16) reduces to the
usual nonrelativistic equation for the linear evolution of the
contrast. In our case, on the other hand, � � � _� �
�� _H, as can be seen from (2).

Equation (16) is derived on the basis of two main
assumptions [14]. The first one is that the produced parti-
cles have negligible velocities as measured by observers
comoving with the cosmic fluid. This is a reasonable
hypothesis, since we are dealing with a nonrelativistic
phase of universe expansion, when H (and so �) varies
slowly enough. The second assumption is that the vacuum
component � is strictly homogeneous, which means that
matter production is homogeneous as well. This stronger
hypothesis is totally ad hoc at the present stage of the
model development and, as we will see, leads to a suppres-
sion of the contrast at large times.

In order to solve (16) for our case, it is convenient to
introduce the new variable

 x � exp���t=2�: (18)

After calculating �m, H, and � as functions of x with the
help of (7), (9), and (13), Eq. (16) takes the form

 3x2�x� 1�2�00 � 4x�x� 1��0 � 2�3x� 2�� � 0; (19)

3These are the same expressions we obtain for a generalized
Chaplygin gas (characterized by the equation of state pch �
�A=��ch [15]), if we choose � � �1=2 and A �

�����������
�2=3

p
(see

[16] for a detailed discussion about this and other curious
equivalences between dark energy models). Note, however,
that the oscillations in the evolution of density perturbations
characteristic of a Chaplygin gas [17] are not present in our case,
as we will see below.
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where the prime means derivative with respect to x. It is
possible to show that, in the limit of early times, it reduces
to the evolution equation for the contrast in the Einstein-de
Sitter model, as should be.

The general solution of (19) can be written as

 � �
x

x� 1

�
C1 � C2

�
2

3
	�x; 1=3; 2=3� � x1=3�x� 1�2=3

��
;

(20)

whereC1 andC2 are integration constants to be determined
by initial conditions, and 	�x; a; b� is the incomplete beta
function, defined as

 	�x; a; b� �
Z x

0
ya�1�1� y�b�1dy: (21)

This 	 function can be expanded in a Laurent series
around x � 1, leading to

 	�x; 1=3; 2=3� � 	�1; 1=3; 2=3� � 3
2�x� 1�2=3: (22)

In this way, with the help of (18) and (22) we can expand
(20) around t � 0, obtaining

 � �
D1

t
�D2t2=3; (23)

which is precisely the general solution obtained in the
Einstein-de Sitter model, as expected. The new arbitrary
constants are given by

 D1 � �
2

�

�
C1 �

2

3
	�1; 1=3; 2=3�C2

�
; (24)

 D2 �
�4��2=3

15
C2: (25)

If, in the early time approximation (23), we want to
retain just the growing mode, proportional to t2=3, we
must choose D1 � 0. Then, our general solution (20)
reduces to

 

�
C2
�

2x�	�1; 1=3; 2=3� � 	�x; 1=3; 2=3��

3�1� x�
�

x4=3

�1� x�1=3
:

(26)

The above solution can be expressed as functions of t or a,
with the help of (7) and (18). It can also be expressed as a
function of the redshift, by using the relation

 x �
�m0�1� z�3=2

1��m0 ��m0�1� z�
3=2
; (27)

which can be derived with the help of (7), (9), and (13).
Figures 1 and 2 show the density contrast (26) as a

function of a and z, respectively. We have taken a0 � 1,
and used for the matter density parameter the best-fit value
we have obtained from the SNLS analysis [11], �m0 �
0:32. The integration constantC2 was chosen so that for the
time of last scattering (z � 1100) one has � � 10�5, as
imposed by anisotropy observations of the cosmic micro-
wave background [21]. For the sake of comparison, we
have also plotted the evolution of the density contrast in the
Einstein-de Sitter solution and in the spatially flat �CDM
model with �m0 � 0:27.

In our case the density contrast grows monotonically
with time until z � 0:6, after which it decreases monotoni-
cally, tending to zero in the limit t! 1. The consequences
of such a suppression at large times will be discussed in our
Conclusions, where a possible relation with the cosmic
coincidence problem will be outlined. The important point
here is that the evolution of � in our case is indistinguish-
able from its behavior in the �CDM case until z � 5, that
is, along the entire era of galaxy formation. On the other
hand, the late-time suppression leads to a present contrast
approximately 1=3 of the standard one, a difference that
will be manifest in the power spectrum, as we will see now.

IV. THE POWER SPECTRUM

The shape of the spectrum depends on several parame-
ters. But one of the most important is given by the moment
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FIG. 1. The density contrast as a function of the scale factor.
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FIG. 2. The density contrast as a function of the redshift.

BORGES, CARNEIRO, FABRIS, AND PIGOZZO PHYSICAL REVIEW D 77, 043513 (2008)

043513-4



of equilibrium between radiation and matter, �R � �m,
where �R and �m are the respective density parameters
(relative to the critical density). In the �CDM model, we
have

 �R �
�R0

a4 � �R0�1� z�
4; (28)

 �m �
�m0

a3 � �m0�1� z�
3; (29)

where �R0 and �m0 are the density parameters for radia-
tion and matter today. The redshift at equilibrium is then
given by

 1� zeq �
�m0

�R0
: (30)

Following [22], we fix, for the �CDM model,

 �m0h2 � 0:127; �R0h2 � 4:1� 10�5: (31)

This implies

 1� zeq � 3097: (32)

Remark that this value, as a matter of fact, is independent
of h.

Now, we can analyze the moment the perturbations enter
in the horizon. This is obtained by inspecting the perturbed
equations. In general, it can be written as

 

��� 2
_a
a

_��
�
v2
s
k2

a2 �
3

2

�
_a
a

�
2
�
� � 0: (33)

In this equation, � is the density contrast, and v2
s �

@p
@�

represents the sound velocity in unities of c (the velocity of
light). The presence of a first derivative term is related to
the friction due to the expansion of the universe, while the
two last terms describe the interplay between the pressure,
that avoids the collapse, and the gravitational attraction,
that drives the collapse. When the first of these terms
dominates, the perturbation does not grow; when the sec-
ond one dominates, the perturbation increases. Ignoring
numerical factors of order of unities, related to the sound
velocity, equation of state etc., the condition that separates
both regimes is

 k �
a
dH

; dH �
c
H
�
ca

_a
: (34)

In this expression, dH is the Hubble radius. Of course, this
is just an estimation.

For the �CDM model, we have

 dH �
c
H0
f�m0�1� z�

3 ��R0�1� z�
4 ���0g

�1=2;

(35)

where ��0 is the density parameter for the cosmological
term today. Hence, we have

 ��1� z�klH0�
2 � �m0�1� z�3 ��R0�1� z�4 ���0;

(36)

where lH0 is the Hubble’s radius today, lH0 �
3000h�1 Mpc. In general, for large values of z the term
��0 can be ignored. In doing so, and using the expression
above for z � zeq, we find the formula (7.39) of Ref. [23],

 keq �

���������
2

�R0

s
�m0

lH0
: (37)

Using, besides the values of �m0 and �R0 already
quoted, also h � 0:7, we obtain

 keq � 0:013: (38)

We notice that, using the BBKS transfer function for the
�CDM model [24], the turning point is also located at k �
0:013.

Now, the observations cover scales from kminh�1 �
0:010 until kmaxh�1 � 0:185. Using the parameters above,
we find that these modes entered in the Hubble horizon at

 kmin ! z1 � 2077; kmax ! z2 � 59 143: (39)

That is, essentially, all modes entered in the radiation
dominate era.

Turning to the present interacting model, the main mod-
ifications are the following:

(1) The expression governing the moment the modes
enter in the Hubble horizon is given by
 

�klH0�1�z��2�
1

�m0���0
���0��m0�1�z�3=2�2

��R0�1�z�4; (40)

with �m0 ���0 � 1. This is an approximate ex-
pression obtained from (15) by adding a conserved
radiation density to the Friedmann equation
3H2 � �T .4

(2) An inspection of (15) for high z, when � and the
matter production are dismissable, shows that
�m�z� � �2

m0�1� z�
3. In other words, we have

the same scaling of conserved matter as in the
standard model, but with an extra factor �m0. This
is owing to the matter production between t�z� and
t0: in order to have the same matter density today,
we need a smaller density at high redshifts. As a

4Note that the inclusion of conserved radiation changes the
dynamics, and, consequently, the production of matter, ��z� and
�m�z� also change. Therefore, the exact generalization of (15)
requires a reanalysis of the dynamics. Nevertheless, as �R0 �
10�4 	 1, when the vacuum and the matter production begin to
have importance, the radiation is negligible, and vice versa. In
this way, (40) can be considered a very good approximation.
Indeed, a numerical analysis in the range 0< z < 104 has shown
that the difference between (40) and the exact H�z� is as small as
0.01%.
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consequence, the redshift of equilibrium between
matter and radiation is now given by zeq �

�2
m0=�R0, while for the correspondent wave num-

ber we obtain, instead of (37),

 keq �

���������
2

�R0

s
�2
m0

lH0
: (41)

Note the extra factor �m0 as compared to the cor-
responding �CDM expression. As this factor is
smaller than unity, this means that the turnover of
the spectrum is moved to the left, that is, to smaller
k’s as compared to the standard model.

(3) The matter density parameter and the Hubble pa-
rameter are not the same as before. In the subse-
quent analysis we will use �m0 � 0:32 and h � 0:7
(the type Ia supernovas best fitting [11]).

Now, the results are the following:
(1) The equilibrium occurs at zeq � 2263, which im-

plies keq � 0:007;
(2) The mode kmin enters in the Hubble horizon at z1 �

3469, while the mode kmax at z2 � 81 404.
As already noticed, the results indicate that the spectrum

is displaced to the left, implying that there is a power
suppression with respect to the �CDM model. Moreover,
there is, as we have seen in the previous section, an addi-
tional power suppression during the matter dominated
phase. Hence, essentially, we must expect that the power
spectrum displays, in what concerns matter agglomeration,
an expressive power suppression in comparison with the
�CDM model.

However, we can displace the spectrum to the right,
instead of displace it to the left, if the values of �m0 and/
or h are increased. For example, for �m0 � 0:48 and h �
0:73, the keq occurs at 0.016, with zeq � 5094. Moreover,
kmin enters in the Hubble horizon at z1 � 2589 and kmax at
z2 � 80 020. The substantial displacement to the right of
keq compensates the smaller growing of perturbations dur-
ing the matter dominated phase. So, the general features of
the power spectrum are reproduced for larger values of
�m0 as compared to the �CDM model.

A precise derivation of the spectrum is a very tough
calculation, since the Einstein-Boltzmann coupled system
must be considered. A complete analysis for the �CDM
model leads to the so-called BBKS transfer function [24],
which gives the spectrum today as a function of a given
primordial spectrum. For the scale invariant spectrum,
favored by the primordial inflationary scenario, the
BBKS transfer function is given by

 Pm�k� � j�m�k�j
2 � AT�k�

g2��m0�

g2��T�
k; (42)

where A is a normalization of the spectrum (which can be
fixed by the spectrum of anisotropy of the cosmic micro-
wave background radiation), T�k� is given by

 

T�k� �
ln�1� 2:34q�

2:34q
�1� 3:89q� �16:1q�2 � �5:64q�3

� �6:71q�4��1=4; (43)

 q �
k
h�

Mpc�1; � � �dm0he��b0���b0=�dm0�; (44)

and where �m0, �dm0, �b0, and �T are, respectively, the
present density parameters of pressureless (baryonic�
dark) matter, dark matter, baryons, and the total energy.
The function g��� is defined by

 g����
5

2
�
�

�4=7���0�

�
1�

�

2

��
1�

��0

70

��
�1
: (45)

The transfer function defined above represents the fitting of
the complete numerical evaluation.

A simplified version of the transfer function, which
keeps all its essential features, can be obtained by integrat-
ing the perturbed equations for the coupled system con-
taining radiation and pressureless matter, from a very high
redshift until today [25,26]. The starting point is given by
the Einstein equations and the conservation law for the
energy-momentum tensor:

 R�� � 8
G
X
i

�
Ti�� �

1

2
g��T

i
�
; (46)

 T��i � 0; (47)

where the indice denotes the ith fluid component. One of
them will be radiation. The other one will be the pressure-
less matter in the �CDM case, or the vacuum-matter
interacting fluids in our case (remember that, in our case,
the pressureless matter is not independently conserved,
since it interacts with vacuum). Introducing the perturba-
tions, g�� � g0

�� � h��, �i � �0
i � ��, pi � p0

i � �pi,
with �g0

��; �
0
i ; p

0
i � being the background solutions, and

imposing the synchronous coordinate condition h�0 � 0,
we end up with the following set of coupled equations:

 

�h� 2
_a
a

_h � �m�m � 2�R�R; (48)

 

_�m �
_�

�m
�m �

_h
2
; (49)

 

_� R �
4

3

�
v
a
�

_h
2

�
� 0; (50)

 _v �
k2

4a
�R; (51)

where h � hkk=a
2, �m and �R are the density contrast for

matter and radiation, respectively, v is connected with the
peculiar velocities of the perturbed radiative fluid, and in
the �CDM case _� is, evidently, zero.

We now eliminate the variable _h using (49), divide all
the expressions by H2

0 , and rewrite the resulting equations
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in terms of the redshift z, which becomes the new dynami-
cal variable. In the �CDM case the system of equations is
reduced to
 

�00m �
g�z�
f�z�

�0m
1� z

�
3

2f�z�
f�m0�1� z��m

� 2�R0�1� z�2�Rg; (52)

 �0R �
4

3

�
v���������
f�z�

p � �0m

�
� 0; (53)

 v0 � �
�
klH0

2

�
2 �R���������
f�z�

p ; (54)

where the primes indicate derivative with respect to the
redshift z. The background functions f�z� and g�z� are
given by

 f�z� �
_a2

a2 � �m0�1� z�
3 ��R0�1� z�

4 ���0; (55)

 g�z� �
�a
a
� �

1

2
�m0�1� z�3 ��R0�1� z�4 ���0:

(56)

Integrating, for example, from z � 108 (when the initial
spectrum is supposed to be scale invariant, i.e., �m, �R /���
k
p

) until today, z � 0, we can reproduce the BBKS trans-
fer function with about 10% of precision.

We can perform the same calculation for the present
model, finding the following set of perturbed equations:
 

�00m �
�
�0�
�m
�
g1�z�
f1�z�

1

�1� z�2

�
�0m �

�
g1�z�
f1�z�

�0�
�m

1

�1� z�2

�
�00�
�m
�

�0m�0�
�2
m

�
�m �

3

2

1

f1�z��1� z�
4 f�m�m � 2�R�Rg;

(57)

 �0R �
4

3

�
v

�1� z�
�����������
f1�z�

p � �0m �
�0�
�m

�m

�
� 0; (58)

 v0 � �
�
klH0

2

�
2 �R
�1� z�

�����������
f1�z�

p : (59)

In these equations, we use the following definitions:
 

f1�z� � _a2

�
1

���0 ��m0��1� z�2
f��0 ��m0�1� z�

3=2g2

� �1� z�2�R0; (60)

 g1�z� � �a � �
�1� z�2

2
f01�z�; (61)

 �m�z� �
��0�m0

��0 ��m0

�
�m0

��0
�1� z�3 � �1� z�3=2

�
; (62)
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FIG. 3 (color online). The matter power spectra as given by the
BBKS transfer function (dashed line), the approximative nu-
merical analysis used here for �CDM (continuous line), and for
the interacting model (dot-dashed line). The data come from the
2dFGRS galaxy survey program [27]. It has been used �m0 �
0:36 for the interacting model.
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FIG. 4 (color online). The matter power spectra as given by the
BBKS transfer function (dashed line), the approximative nu-
merical analysis used here for �CDM (continuous line), and for
the interacting model (dot-dashed line). The data come from the
2dFGRS galaxy survey program [27]. It has been used �m0 �
0:48 for the interacting model.
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 ���z� �
�2

�0

��0 ��m0

�
1�

�m0

��0
�1� z�3=2

�
: (63)

In Figs. 3 and 4 we display the results for the exact
transfer function for the �CDM model (dashed line), the
corresponding numerical approximation (continuous line),
and the approximative transfer function for the present
model (dot-dashed line). The observational data come
from the 2dFGRS galaxy survey program [27]. In the
case of the interaction model we used, in Fig. 3, �m0 �
0:36, the concordance value obtained from the joint analy-
sis of type Ia supernovas, baryonic acoustic oscillations,
and CMB [19]. In Fig. 4, on the other hand, we have used
�m0 � 0:48. We see that in the first case there is a sub-
stantial suppression of power, while in the second case,
where the dark matter parameter has been increased, the
agreement is excellent.

Hence, concerning the matter power spectra, the inter-
acting model with homogeneous matter production re-
quires an almost double quantity of dark matter with
respect to the �CDM model.

V. CONCLUSIONS

In spite of the physical plausibility of a time-dependent
cosmological term, a complete theoretical development of
this idea, including the microscopic details of the vacuum-
matter interaction, is still lacking. On the other hand,
macroscopic approaches depend on some phenomenologi-
cal hypothesis, leading some times to diverse prescriptions
for the vacuum decay.5 For this reason, a careful compari-
son with current observations is very important, playing the
role of corroborating or ruling out the different models.

We have already analyzed the supernova observations
[11], obtaining good fits and cosmological parameters in
accordance with other independent tests, as the age of
globular clusters and dynamical limits to the matter density
[28]. Other precise tests, as the position of the first acoustic
peak of the cosmic microwave background and the bar-
yonic acoustic oscillations have also been performed [19],
showing a good concordance when jointed to the super-
nova analysis.

In the present paper we have studied the evolution of
matter density perturbations, in particular, the contrast
suppression associated to the process of matter production.
We have shown that, even in the case of a homogeneous
production, the evolution of the contrast is the same as in
the standard recipe along the entire era of galaxy forma-
tion, diverging from the later only for z < 5.

On the other hand, the suppression would be dominant
for future times, and this may have an interesting relation
with another problem related to the cosmological term,
namely, the approximate coincidence between the present
densities of matter and dark energy. Indeed, we can see
from Figs. 1 and 2 that the matter contrast has its maximum
just before today, when matter and vacuum give similar
contributions to the total density. The largest structures
formed until now tend to disaggregate in the future, and
their existence then coincides with the time of approximate
equality between the matter and vacuum densities.

This could alleviate the cosmic coincidence problem, if
galaxies also follow such a process. However, we should
remember that galaxies have left the linear regime of
growth a long time ago, and that now their evolution is
nonlinear, driven essentially by their self-gravitation.
Therefore, an explanation of the cosmic coincidence in
the terms above will depend on a nonlinear study of density
perturbations in the context of the present model. Only
such an investigation would tell us whether the contrast
suppression described here can affect smaller structures
like galaxies.

Its also important to have in mind that the homogeneity
of the matter production, implicit in the derivation of
solution (26) and in our simplified relativistic treatment,
is just an ad hoc hypothesis, to be verified from both the
theoretical and observational viewpoints. For a constant,
noninteracting vacuum term it is certainly true, but not
necessarily in the present case. Any inhomogeneity of the
vacuum density around matter distributions may lead to an
inhomogeneous production, reducing in this way the con-
trast suppression. This would allow us to fit the observed
power spectrum with a smaller matter density, closer to the
concordance value obtained in [19]. Whether the matter
contrast will still have a maximum around the present time,
with the discussed implications for the coincidence prob-
lem, is a matter of investigation. A relativistic study of this
case, that is, with �� � 0, is already in progress.
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strain the fundamental parameters of the quantum model.
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