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We study the generation of primeval magnetic fields during inflation era in nonlinear theories of
electrodynamics. Although the intensity of the produced fields strongly depends on characteristics of
inflation and on the form of electromagnetic Lagrangian, our results do not exclude the possibility that
these fields could be astrophysically interesting.
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I. INTRODUCTION

All galaxies seem to be permeated by magnetic fields
with intensities of order Bgalactic ’ 10�6 G [1].

To explain the galactic magnetism, generally one needs
the presence of seed magnetic fields prior to protogalaxy
collapse. When a protogalaxy collapses to form a galactic
disk, magnetic fields suffer an amplification (mainly due to
magnetic flux conservation) of order Apg ’ 104 [2].
Moreover, due to magnetohydrodynamic turbulence ef-
fects and differential rotation of galaxy, seed fields can
be further amplified. This last mechanism, know as ‘‘ga-
lactic dynamo’’ [3], can be very efficient and, in principle,
allow extremely weak seeds to reproduce the properties of
presently-observed galactic fields. Dynamo action pro-
duces an exponential amplification Adyn ’ e

��t, where
the growth rate � is a model-dependent quantity, and �t �
tf � ti is the time during which the dynamo operates. The
minimum and maximum values of � that can be found in
the literature are � ’ 0:45 Gyr�1 [4] and � ’ 5 Gyr�1 [5].
In a spatially-flat Friedman universe, the time interval is [6]

�t � �2=3H0�1=2
� � ln��!f �

���������������
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Here, H0 � 100h km sec�1 Mpc�1 is the Hubble constant
(h ’ 0:73 [7]), !i;f � �1� zi;f�

�3=2���=�m�
1=2, z is the

redshift, and �m ’ 0:28 and �� ’ 0:72 [7] are the actual
energy densities, in units of the critical density �cr �
3H2

0=8�G, associated to matter and cosmological con-
stant. Un upper bound on the value of redshift at which
the dynamo begins to operate, zi, is given by the redshift
zpg ’ 50 at which a protogalaxy separates from the Hubble
flow to then collapse [6]. If dynamo is efficient during
galactic disk formation or if its amplification becomes
effective only after that, is still not clear. In the latter
case, since astronomical observations indicate that disk

galaxies at z ’ 3 are still in progress of being formed [8],
one should take this value of redshift as a conservative
bound on zi. A lower bound on zf is zf ’ 0:4, since micro-
gauss magnetic fields have been detected in galaxies at that
redshift [9].

The galactic magnetism can be then explained as the
result of the amplification of comoving seed fields as
strong as Bseed * 10�6�1� zpg�

�2A�1
pg A

�1
dynG, where

the factor �1� zpg�
�2 takes into account the adiabatic

scaling of the magnetic field from the protogalaxy collapse
until today. Taking ��; zi; zf� � �5; 50; 0:4� we have
Bseed * 10�33 G, while for ��; zi; zf� � �0:45; 3; 0:4� we
get Bseed * 10�15 G. In order to have an efficient galactic
dynamo, however, the seed magnetic field must be corre-
lated on comoving scales of order 10 kpc. We observe,
also, that without dynamo amplification a comoving seed
field as strong as Bseed * 10�14 G is needed to explain
galactic magnetism. In this case, however, the field must be
correlated on comoving scales of order of linear dimen-
sions of a protogalaxy, that is 1 Mpc.

Surprisingly, there are compelling indications of exis-
tence of large-scale, microgauss magnetic fields in galaxy
clusters [6,10,11]. If confirmed, this would indicate that the
entire universe is magnetized.

Essentially, there are two possible classes of mecha-
nisms to produce cosmic fields depending on when they
are generated [12]: Astrophysical mechanisms acting dur-
ing large-scale structure formation [13], and mechanisms
acting in the primordial universe, during [14–21] or before
[22] inflation. However, we can admit the existence of
strong fields in the primordial universe provided that their
presence does not spoil predictions of the standard cosmo-
logical model, such as that of big bang nucleosynthesis
(BBN) [23], large-scale-structure formation (LSS) [24],
and cosmic microwave background (CMB) [25]. It turns
out that limits coming from LSS and CMB are more
stringent than those from BBN. Putting together the limits
found in Refs. [24,25] it results that, for comoving scales in
the range 400 pc & � & dH�t0�, where dH�t0� �H�1

0 �
4000 Mpc is the present size of the universe, the maximum
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strength allowed to comoving primordial fields is B�
10�9 G.

In the ambit of generation of cosmological fields in the
early universe, the mechanisms operating during inflation
are particularly attractive since they produce large-scale
correlated fields. Magnetic fields created after inflation,
instead, suffer from a ‘‘small-scale problem,’’ that is their
comoving correlation length is much smaller than the
characteristic scale of the observed cosmic fields [however,
if magnetohydrodynamic turbulence operates during their
evolution, an enhancement of correlation length can occur
(see, e.g., Ref. [26])].

It is worth noting that, due to conformal invariance of
standard (Maxwell) electrodynamics and to the fact the
spacetime described by the Robertson-Walker metric is
conformally flat, magnetic fields generated at inflation
are vanishingly small. For this reason, all generating mod-
els proposed in the literature repose on the breaking of
conformal invariance of Maxwell theory. This has been
attained, for instance, by nonminimally coupling the pho-
ton with gravity [14], introducing interactions of photons
with scalar, pseudoscalar, or vector fields (such as inflaton
[15], dilaton [16], pseudo-Goldstone bosons [17], axion
[18], or ‘‘graviphoton’’ [19]), taking into account the so-
called quantum conformal anomaly [20], and so on [21].

In this paper, we study the possibility to generate seed
magnetic fields during inflation in nonlinear theories of
electrodynamics (NLE) described by the general action

 S �
1

4�

Z
d4x

�������
�g
p

L�F�; (1)

where F � 1
4F��F

��, with F�� � @�A� � @�A� the elec-
tromagnetic field strength tensor, and g � detkg��k is the
determinant of the metric tensor.

Since the standard Maxwell theory is a good theory for
low energies, we shall assume that nonlinear Lagrangians
reduce to the Maxwell one, L�F� ’ �F, in the limit of
small fields F.

A considerable amount of interest has emerged in the
last few years in cosmological effects of nonlinear electro-
dynamics [27,28]. This is due principally to the fact that
some theories of NLE are able to produce inflation [28,29],
a period of cosmic acceleration [28,30], and can also avoid
the problem of initial singularity [28,31,32].

A natural candidate for NLE theories could be the Euler-
Heisenberg nonlinear effective Lagrangian induced by
charged scalar fields minimally coupled to the electromag-
netic field.

In general, nonlinear electrodynamic theories are non-
conformally invariant. As we shall see in the next section,
depending on the actual form of the Lagrangian, astro-
physically interesting magnetic fields can be generated
during inflation.

II. GENERATION OF SEED FIELDS IN NLE

A. Equations of motion

We will work in a flat universe described by a
Robertson-Walker metric, ds2 � a2����d�2 � dx2�,
where a��� is the expansion parameter and � is the con-
formal time related to the cosmic time t through d� �
dt=a. Introducing the electric and magnetic fields E and B
in the usual way as F0i � �a

2Ei, Fij � �ijka
2Bk (Latin

indices range from 1 to 3), and varying the action (1) with
respect to A�, we get the equations of motion:

 

@�a2E�
@�

�r	 �a2B� � �
@ lnLF

@�
a2E�r lnLF

	 a2B; (2)

and r 
 �LFE� � 0, together with the Bianchi identities:
@��a

2B� � r	 �a2E� � 0 andr 
B � 0. Here, subscript
on L denotes differentiation, and spatial derivatives are
taken with respect to comoving coordinates.

We are interested to the evolution of electromagnetic
fields outside the horizon, that is to modes whose physical
wavelength is much greater then the Hubble radius dH,
�phys � dH, where �phys � a�, dH �H�1, and � is the
comoving wavelength. Since �a�H�1, introducing the
comoving wave number k � 2�=�, the above condition
reads jk�j � 1. Observing that the first Bianchi identity
gives B�k�� � k�E�k��, we have that B2 is negligible
with respect to E2, and we can write @� lnLF ’

��@�E2=2��d lnLF=dF�. Moreover, we can neglect the
second term with respect to the first one both in the
left- and right-hand side of Eq. (2). In fact, it results
jr 	 a2Bj=j@��a2E�j � jk�j2 � 1, and jr lnLF 	

a2Bj=j�@� lnLF�a
2Ej � jk�j2 � 1. Finally, multiplying

Eq. (2) by E, and solving with respect to F ’ � 1
2 E2, we

get

 �LF�
2F / a�4: (3)

Knowing the form of nonlinear Lagrangian (see below),
from the above equation one gets the evolution law for the
electric field outside the horizon. Consequently, using the
first Bianchi identity, one finds how superhorizon magnetic
fields scale in time during inflation (see subsection II D).

B. Initial electromagnetic spectrum

During inflation, all fields are quantum mechanically
exited. Because the wavelength � associated to a given
fluctuation grows faster then the horizon, there will be a
time, say t1, when this mode crosses outside the horizon
itself. After that, this fluctuation cannot collapse back into
the vacuum being not causally self-correlated, and then
‘‘survives’’ as a classical real object [33]. The energy
associated to a given fluctuation is subjected to the uncer-
tainty relation, �E�t * 1. Therefore, the energy density in
the volume �V, E � �E=�V, is approximately given by
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E �H4, where H is the Hubble parameter. Here, we used
the fact that at the horizon crossing �t�H�1 and �V �
H�3 [33]. When a comoving length � crosses the horizon it
results jk�j ’ 1, and then from the first Bianchi identity we
get B2��� ’ E2���. Therefore, since F � � 1

2 �E
2 �B2�,

at the crossing the nonlinear terms in the electromagnetic
Lagrangian are negligible, and the energy density is simply
given by E ’ �1=8���E2 �B2�. Consequently, the spectra
of the quantum mechanically generated electric and mag-
netic fluctuations are given by

 

B2���
4�

��������t1

�
E2���

4�

��������t1

�H4jt1 �

�
8�
3

�
2 �2

tot���

m4
Pl

��������t1

; (4)

where in the last equality we used the Friedman equation
H2 � �8�=3��tot=m

2
Pl. Here, �tot is the total energy density

during inflation and mPl ’ 1019 GeV the Planck mass.
In the following we shall consider both the case of de

Sitter inflation and the case of ‘‘power-law inflation’’. It is
useful to write the expansion parameter as a��� / �s.
During de Sitter inflation s � �1 and the total energy is
a constant,1 �tot 
 M4. For power-law inflation described
by the equation of state ptot � ��tot with �1< �<
�1=3, we have s � 2=�1� 3�� and the total energy de-
creases as a power of the expansion parameter, �tot /

a�3�1���. Therefore, the total energy, when a comoving
length � crosses outside the horizon, depends on � [see
Eq. (13)].

C. Plasma effects

The effects of a conducting plasma in the early universe
on the evolution of magnetic fields are taken into account
by adding to the electromagnetic Lagrangian the source
term J�A� [14]. Here, the external current J�, expressed in
terms of the electric field, has the form J� � �0; 	cE�,
where 	c is the conductivity. Plasma effects introduce, in
the left-hand side of Eq. (2), the extra term�a	c�a2E�. In
the limit of high conductivity, 	c ! 1, one finds E! 0
and, consequently, from the first Bianchi identity, it follows
that the magnetic field is frozen into the plasma and
evolves adiabatically, a2B� const. More precisely, the
solution of Eq. (2), for modes outside the horizon and
when plasma effects are taken into account, is �LF�

2F /
a�4 exp��2

R
d�a	c�. Observing that

R
d�a	c � 	c=H,

we get that the magnetic field can be considered as frozen
into the plasma when	c � H. After inflation, the universe
enters in the so-called reheating phase, during which the
energy of the inflaton is converted into ordinary matter. In
this paper, we shall restrict our analysis to the case of
instantaneous reheating, that is after inflation the universe
enters the radiation dominated era. In this era, the con-

ductivity is approximatively equal to 	c � T [14], while
H� T2=mPl [35], where T is the temperature. Hence, the
condition of freezing of the magnetic field becomes T �
mPl.

The spectrum of gravitational waves generated at infla-
tion is submitted to constraints coming from CMB analysis
which requires �tot��� to be less than about 10�8m4

Pl on the
scale of the present Hubble radius [14]. This, in turns,
converts in a upper limit on the value of M, M &

10�2mPl. (One must impose also that M * 1 GeV, so
that the predictions of BBN are not spoiled [14].) Since
the temperature at the end of inflation is Tend � M, we
conclude that after inflation the universe is a good conduc-
tor, 	c � H, and the magnetic field evolves adiabatically,
irrespective of when it (eventually) reenters the horizon.

D. Form of NLE Lagrangian

In this paragraph, we consider three models of a non-
linear electromagnetic Lagrangian. In all cases, the
Lagrangian depends on a free mass parameter, m, such
that in the formal limit m! 1 we recover the standard
Maxwell theory. More precisely, it results L�F� ’ �F for
jFj � m4. In the case of small fields, jFj & m4, inflation-
produced fields are vanishingly small, and then cannot
explain the presently-observed fields. For this reason, we
shall restrict our analysis to the case of strong fields, jFj *

m.
As a first model, we consider the family of Lagrangians

 L �F� � �F�
Xn
i�2

ciFi; (5)

where i takes values on the integers, and the coefficients cj
have dimension �Mass�4�1�j�. We assume that cj �
m4�1�j�dj, where dj are dimensionless constants of order
unity. In a cosmological context, this type of Lagrangian
for n � 2 has been widely studied in the literature (see,
e.g., Refs. [27,28]). In Ref. [36], it has been shown that the
Lagrangian2

 L KK�F� � �F���b� 1�F2; (6)

� being a parameter with dimension �Mass��4 and b a
dimensionless parameter, derives from higher-curvature
gravity in Kaluza-Klein theory. In the limit of strong
electromagnetic fields, we have L�F� ’ cnF

n. In this
case, Eq. (3) gives

 E 2 ’ E2
1

�
a
a1

�
�4=�2n�1�

; (7)

1In de Sitter inflation, the spectrum of electromagnetic fluc-
tuations when crossing the horizon is jA�j � jF��j=H�H, that
is a scale-invariant spectrum corresponding to the Gibbons-
Hawking temperature TGH � H=�2�� [34].

2The full Lagrangian is LKK�F;G� � �F����b� 1�F2 �
3G2=2�, where G � 1

4F��
~F�� � E 
 B, and ~F�� �

�1=2
�������
�g
p

�����	F�	 is the dual electromagnetic field strength
tensor. However, in this paper, we are concerned only with
nonlinear theories depending on the invariant F.
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where a1 � a�t1�, and as initial value for the electric field
we have taken that at the horizon crossing, E2

1 � E2jt1 .
From the first Bianchi identity we get a2B� �k��a2E�
const, while from Eq. (7) we have a2E� �k��
 with 
 

4s�n� 1�=�2n� 1�. Since we are assuming jk�j � 1, if

 <�1 the magnetic field evolves as

 B 2 ’ B2
1

�
a
a1

�
2�2n�1�2s�=s�2n�1�

(8)

while, if 
 � �1, it scales adiabatically. For n � 1 we
have 
 � 0 while for n � 2 it results 
 <�1. Moreover,
since 2�2n� 1� 2s�=s�2n� 1�>�4 for n � 2, a
‘‘superadiabatic amplification’’ (i.e. B2 evolves less slowly
than the usual a�4) occurs during inflation.

We now consider a ‘‘toy model’’ described by the
Lagrangian

 L �F� � �Fe�cF; (9)

where c � m�4d, with d > 0 a dimensionless constant of
order unity. The exponential self-coupling in Lagrangian
(9) resembles to the exponential coupling / F��F��e��,
� being a dimensional constant, between the inflaton (di-
laton) � and the electromagnetic field, introduced in
Refs. [15,16]. In our case, the scalar field is replaced by
the scalar F. In the limit of strong fields, the solution of
Eq. (3) is approximately given by E2 ’ E2

1 �

m4 ln�a1=a�4=d. Neglecting the logarithmic term, we have
that the second model is equivalent to the first one with
n! 1.

As a third model, we consider the Born-Infeld (BI)
Lagrangian3

 L BI�F� � m4

�
1�

���������������
1�

2F

m4

s �
; (10)

where, for all field configurations, the condition 2F=m4 �
�1 (which corresponds to E2 & m4) has to be satisfied.
Born and Infeld proposed their theory [37] in order to
eliminate the divergence in the energy of a point-charge
particle. Indeed, in this theory the self-energy of a pointlike
charge is always finite and proportional to the parameterm.
The Born-Infeld model also appears in quantized string
theory [38] (in this case,m2 � 2��0, where �0 is the string
tension parameter). Cosmological effects of BI electrody-
namics, such as generation of an inflationary phase [29],
have been deeply studied in recent years.

Equation (3) gives E2 � m4��a=a1�
4�m4=E2

1 � 1� �
1��1. If E2

1 <m4, then for a� a1 we get the usual behav-
ior E2 / a�4. If E2

1 � m4, we have E2 � m4 for all times.
Therefore, this model is equivalent to the first one with
n! 1, and with the condition jFj * m4, that is E2

1 * m4,
replaced by E2

1 � m4.

E. Present magnetic fields

We now derive the actual strength of magnetic fields
generated during inflation in the nonlinear theories de-
scribed by the above three Lagrangians.

During de Sitter inflation any weak field, jFj & m4, is
exponentially washed out. We then analyze the case in
which electric fields remain strong from the first horizon
crossing to the end of inflation. Observing that the electric
field is a nonincreasing function of time, we then assume
that the quantity E2���=m4jtend

is greater then 1, where tend

is the time corresponding to the end of inflation. Taking
into account Eqs. (4) and (7), we can write the above
condition as

 m & 1020�1024�10 kpc�
��
�
M
mPl

�
2��

GeV; (11)

where � � 1=�2n� 1�, and we used aend=a1 � eN��� ’
1024�10 kpcM=mPl, N��� being the number of e-folds
elapsing from the crossing of a comoving length � outside
the horizon to the end of inflation [14].

The actual value of the magnetic field follows from
Eq. (8) and is BNLE ’ B1e

�
N����aend=a0�
2 where B1, the

magnetic field strength at the horizon crossing, is given by
Eq. (4), and 
 � 1� 2�. The last term in the above
equation takes into account the adiabatic dilution of the
magnetic field from the end of inflation until today, a � a0.
Using the relation (valid during radiation and matter domi-
nated eras) a / g�1=3

�S T�1, g�S�T� being the number of
effectively massless degrees of freedom referring to the
entropy density of the universe [35], we arrive to

 BNLE ’ 10�4�1024�10 kpc�
�

�
M
mPl

�
2�


G; (12)

where we used the values T0 ’ 2:35	 10�13 GeV,
g�S�T0� ’ 3:91, and we assumed g�S�Tend� � 102 [35]. (It
is useful to know that 1 G ’ 6:9	 10�20 GeV2). Observe
that the magnetic field during de Sitter inflation evolves as
B / a�
. The case of standard electromagnetic
Lagrangian corresponds to 
 � 2. Therefore, one finds
for � � 10 kpc the vanishingly small value B ’ 10�52 G.
In nonlinear electrodynamics, taking M ’ 10�2mPl and
� � 10 kpc, we find that BNLE is an increasing function
of n. In particular, we get BNLE ’ 10�45 G for n � 2,
BNLE ’ 10�33 G for n � 8, and BNLE ’ 10�30 G for n!
1, together with the conditions m & 108 GeV, m &

1014 GeV, and m & 1016 GeV, respectively. From the
above results, we see that NLE effects are able, in princi-
ple, to produce magnetic fields that can seed galactic
dynamo.

In the case of power-law inflation, a comoving length �
crosses outside the horizon when [14]

 �tot���jt1 ’
�
1024 M

mPl
�10 kpc

�
�2x

M4; (13)
3The full Lagrangian is LBI�F;G� � m4�1����������������������������������������������
1� 2F=m4 �G2=m8

p
� (see also footnote 2).
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where M4 
 �tot���jend is the total energy density at the
end of inflation, and x 
 3�1� ��=�1� 3��. The bound
on graviton production previously discussed translates to
[14] x � xmin, where xmin ’ �4� 2log10�M=mPl��=�29:8�
log10�M=mPl��. In the following, we assume for simplicity
that x � xmin, and that the electric field remains strong
during inflation. This corresponds to the ‘‘best case sce-
nario,’’ or to the minimum dilution of the magnetic field
during inflation. Taking into account Eqs. (4) and (7), and
using aend=a1 � �M4=�tot���jt1�

�3�1���, the condition
E2���=m4jtend

* 1 translates into Eq. (11) with the replace-
ment �! �0 � �� �1���xmin. The actual strength of
the inflation-produced magnetic field follows from
Eqs. (4), (8), and (13), and is given by Eq. (12) with 

replaced by 
0 � 1� 2�0. The standard case of linear
electrodynamics corresponds to 
0 � 2, and then reduces
to that studied for de Sitter inflation.

In Table I, we show the values of BNLE (for the case of
power-law inflation) for different values of n and M,
together with the condition on m in the order that electro-
magnetic fields be strong. Looking at the Table, we see that
magnetic fields able to seed galactic dynamo or directly
explain galactic magnetism can be produced.

III. CONCLUSIONS

Large-scale magnetic fields are ubiquitous in the present
universe. Astrophysical observations have proved the ex-
istence of microgauss magnetic fields in all types of gal-
axies (spiral, elliptical, barred and irregular). Remarkably,
there are hints of the existence of large-scale, microgauss
magnetic fields in galaxy clusters. This sort of ‘‘cosmic
magnetism’’ could have been aroused out of quantum
electromagnetic fluctuations excited during an inflationary
epoch of the universe. However, in the standard, confor-
mally invariant theory of electrodynamics, inflation-
produced fields are vanishingly small, and then cannot
explain the presently observed fields. Nevertheless, a lot
of (sometimes exotic) mechanisms able to break conformal
invariance of Maxwell’s electrodynamics, and then to pro-
duce astrophysically interesting fields, have been proposed
in the literature.

In this paper, we have investigated the possibility to
generate magnetic fields during the inflation era in non-
linear theories of electrodynamics, in which conformal
invariance is naturally broken. We have found that, for a
wide range of parameter space of inflationary models,
magnetic fields of cosmological interest can be created.
In particular, we have shown that magnetic fields able to
seed galactic dynamo or to explain directly the galactic
magnetism could be a natural consequence of such theo-
ries. However, since our results strongly depend on the
actual form of the (unknown) nonlinear electromagnetic
Lagrangian, they cannot give a definitive answer to the
question ‘‘Why is our universe magnetized?’’
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Note added.—After completion of this paper, we noted a
recent preprint by Kunze [39], who exploits a very similar
idea, but using a different (power-law) parametrization for
the nonlinear Lagrangian. We agree with Kunze’s results in
the common subcase of integer-exponent monomial. We
note, however, that we can obtain cosmic magnetic fields
of the observed size via power-law inflation (see Table I
and related comments), without necessarily invoking a
galactic dynamo as in Kunze’s paper.
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3 106 10�23 103 �0:7
1 1016 10�28 1015 0.9
1 1012 10�20 1013 0.1
1 109 10�14 1013 �0:6
1 108 10�12 1012 �0:9
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