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Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of
second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider
profile which probes more of the mirror surface reduces this noise. The “Mesa” beam shape has been
proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two
parameters: twist angle a and beam width D. Varying « allows a continuous transition from the nearly flat
(a = 0) to the nearly concentric (&« = 7) Mesa beam configurations. We analytically prove that in the
limit D — oo hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise
is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave
Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius
of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in
general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute
the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic
function of beam width, but has local minima that occur due to finite mirror effects and leads to natural
choices of D. For an @ = 7 Mesa beam a local minimum occurs at D = 10.67 cm and leads to a
diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We
find that if one requires a diffraction loss of strictly 1 ppm, the @ = 0.917 hyperboloidal beam is optimal,
leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by
about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an
iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us
to increase the D parameter to 11.35 cm for a nearly concentric Mesa beam and lower the coating noise by

about 30% compared to the original Mesa configuration.
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L. INTRODUCTION

The initial baseline design for the Advanced LIGO
(Laser Interferometer Gravitational-wave Observatory)
gravitational-wave detectors [1,2] employs Gaussian
beams in the arm cavities. The leading noise source in
the most sensitive frequency band of the instruments
( ~ 30-300 Hz) is the thermal noise in the substrate and
reflective coating of the mirror test masses. Lowering
thermal noise is therefore of paramount importance for
achieving a higher event rate in LIGO. There are a number
of other detectors that are being built or upgraded to similar
specifications. While we will choose to study Advanced
LIGO for definiteness, our general conclusions should be
more widely applicable to any interferometeric detector
that needs to limit thermal noise. Some of the important
parameters that we use are summarized in Table 1.

LIGO is a Fabry-Perot interferometer with four mirrored

PACS numbers: 04.80.Nn, 07.60.Ly, 41.85.Ew, 42.15.Eq

position of the test masses, averaging over the mirrored
surface, with the average weighted by the power distribu-
tion of the beam. Thus, the highly illuminated central area
is weighted more than the mirror boundary that is left
nearly dark. One way of decreasing the thermal noise is
to flatten the beam so that a larger fraction of the mirror
is in use. Motivated by this intuitive reasoning,
O’Shaughnessy et al. [3,4] proposed the flat-topped Mesa
beams, which were subsequently explored in detail by
them and others [5-8]. These beams would lower the
thermal noise by a factor of approximately 2.5 compared
to the baseline design. The original Mesa beam supported
by nearly flat Mexican Hat mirrors was found to be sus-
ceptible to a tilt instability [9]. This triggered the proposal
of a Mesa beam supported by nearly concentric mirrors
[10]. In the same paper, a family of hyperboloidal beams

test masses. The resonant beams in the cavity measure the TABLE I Advanced LIGO Parameters

- L 3999.01 m Length of LIGO cavity
*apl27 @astro.cornell.edu Ay 1.064 X 107° m Laser wavelength
ruxandra@astro.cornell.edu w, JAL/27 = 2.6023 cm Minimal Gaussian width
*dtsang @astro.cornell.edu R 17 cm Mirror radius
Ymihai @aei.mpg.de
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that include all Mesa and Gaussian beams previously
considered was introduced. Mesa is currently the leading
alternative beam design for Advanced LIGO, and is being
studied experimentally [11,12].

In this paper we first discuss the formulation of hyper-
boloidal beams. The ‘“‘nearly flat” Mesa is created by
superposing minimal Gaussians with generators uniformly
distributed inside a cylinder, and the ‘“‘nearly concentric’
by generators falling inside a cone, and passing through the
center of the cavity. These two choices have the same
intensity distribution on the mirrors, but the second has a
much smaller susceptibility to tilt instability. The hyper-
boloidal beams smoothly interpolate between these two
cases by twisting the generators of the minimal
Gaussians by an angle a. After discussing some geometric
properties of the beams, we present a proof that Gaussian
beams are a special case of the hyperboloidal beams,
confirming a conjecture in [10].

We then compute the three types of mirror thermal noise
for a variety of hyperboloidal beam shapes, using a set of
simple scaling laws developed in [13,14] that simplify
previous work [15—17]. The first is substrate Brownian
noise, occurring due to mechanical dissipation in the ma-
terial; this is the least significant source of thermal noise.
The substrate thermoelastic noise is caused by random
thermal expansion. The coating also has both Brownian
and thermoelastic noise, but these follow the same scaling
laws so we consider them as a single source. The coating
noise is the most severe of the three types for the fused-
silica substrates currently planned for Advanced LIGO.
The substrate thermoelastic noise would dominate in a
material like sapphire which has a higher thermal expan-
sion coefficient. We show that the noises decrease with
increasing width of the beam, as expected, and that the
hyperboloidal beams have larger noise than the relevant
Mesa beams.

The constraint on our ability to lower the noise comes
from the need to keep the diffraction loss small.
Gravitational-wave interferometers must keep a large cir-
culating power in the cavity, and so cannot allow signifi-
cant amounts of light to escape past the edge of the mirrors.
The current design constraint used in the most recent
papers [8,18,19] is a diffraction loss of 1 part per million
(ppm) per bounce for 17 cm fused-silica mirrors. The
clipping approximation Eq. (18) indicates that the desired
Mesa width is approximately D = 10 cm. Previous works
[7,20] have shown that the clipping approximation is not
accurate for Gaussian beams of finite mirrors, and have
used Fast Fourier transform simulations for accurate
calculations.

We calculate the diffraction losses accurately from ei-
genvalues of the cavity propagator using an exponentially
convergent code that enables us to study the structure of
Mesa and other hyperboloidal beams as a function of D,
mirror radius, and twist angle « in detail. We find that the
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diffraction loss is not a monotonic function of D, but due to
finite mirror effects has anomalous local minima where the
loss is significantly below what is expected from the clip-
ping approximation. These minima are observed to be-
come more shallow and eventually disappear as the
radius of the mirror is increased. However, for the mirror
radii and beam widths relevant for Advanced LIGO the
finite mirror effects are important. We show that they can
be used to increase the width of the beam, lowering the
noise even further than previous work.

Finally, we develop an iteration scheme to redesign the
mirror, explicitly accounting for finite mirror effects. The
iterated mirror is altered to match the phasefront of the
primary eigenbeam of the finite mirror cavity, reducing the
diffraction loss of this mode, thus allowing even larger
beam widths to satisfy the diffraction loss constraint.

The mathematical construction of the hyperboloidal
beams is discussed in Sec. II, while the asymptotic limit
of the hyperboloidal beams is derived in Sec. IIl. The
thermal noise scaling laws are described in Sec. IV. The
cavity propagator construction and eigenmode decompo-
sition are presented in Sec. V, with the results, including
finite mirror effects, discussed in Sec VI. We then summa-
rize our work in Sec. VIL

II. CONSTRUCTION OF THE BEAMS

The beams we study are supported by two identical
mirrors facing each other, forming a cavity of length L.
The mirrors are cylindrically symmetric around the optical
axis, which runs along the length of the cavity and will be
called the z axis. The center of the cavity, equidistant
between the mirrors, is z = 0; the mirrors are located at
7= —zg and z = zz, where zz = L/2. The transverse
distance from the z axis will be denoted by r, and the
angular coordinate by ¢.

The cavity is fed with laser light with wavelength A,
and the distance between the mirrors is fine-tuned so that
the cavity resonates in its fundamental mode, with a field
amplitude U(r, z) and intensity |U(r, z)|%. In this paper we
focus on axisymmetric modes with no ¢ dependence in the
beams. Nonaxisymmetric modes are important for studies
of the tilt and parametric instabilities [6,21], but are not
discussed in detail in this work. The narrowest possible
Gaussian mode that can exist in a cavity of given length is
called the minimal Gaussian, which has the intensity dis-
tribution
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where wg = /Agzgr/ .

A hyperboloidal beam is the superposition of minimal
Gaussians chosen such that the symmetry axis of the
individual minimal Gaussians are generators of a set of
coaxial hyperboloids. The beam family has two parame-

|U(r, 2)|* =
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ters: «, the twist angle one would have to rotate the two
basis of a set of coaxial cylinders with respect to each other
to obtain the hyperboloids, and D, the radius of a section
perpendicular to the optic axis of the outermost hyperbo-
loid at the end of the cavity. In the case a = 0, the
propagation axes are parallel and fill a cylinder of radius
D. This is the Mesa beam supported by nearly flat mirrors.
For o = 7 the lines all cross at z = 0 forming two cones.
This configuration also generates a Mesa beam, but one
supported by nearly concentric mirrors. Varying o
smoothly deforms the beam and the mirror shape between
the two configurations. Some examples of the beam shapes
are displayed in Fig. 1(a).

For the cavity to support the desired beams, the phase of
the electric field of the beam should be constant on the
mirror surface. We will focus our attention on the mirror on
the positive z side of the cavity. The wave front can be
approximated by the “fiducial spheroid,”

¢ = Sa(r) = /8 — Psin’(a/2) )

For a = 0, this is the mirror plane z = zz; for @« = 7, the
fiducial spheroid is a sphere centered on z = 0, and clearly
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the lines which generate the hyperboloid are all radii of the
sphere.

There are two equivalent expressions for the field am-
plitude evaluated on the fiducial spheroid. The first is the
integral expression [10]

Ry (2
= Af ] d(ﬁol’o

X exp|: 7o
WG

B (2 + r(z) — 2rry cosgy)

Ua(r, S4)

5 sing sina

22 (1- icosa)} 3)
where A is a complex constant.

The second is the method that we use in this paper. The
beam is constructed as shown in [22] by an expansion in
Gausse-Laguerre eigenbeams of spherical mirrors. They
are closely related to the Gauss-Laguerre basis functions
given by

Yn(€) = V2exp(=£2/2)L,,(£2), 4

where L, is the mth Laguerre polynomial. Then the Gauss-
Laguerre eigenbeams are

V2r ikyr?
el el ubriel
X explilkoz — 2m + 1)P(z))] (5)

v, (r,z) =

where

w(z) = w1 + (z/2¢)%,

R(z) =z + 73/z,

(6)
®(z) = arctan(z/zz)
and ky = 27/ Ay. The expansion is written as
Ua(r,2) = Z AW, (1, 2). (7)

The expansion coefficients that result in hyperboloidal
beams are

2w D
A = (- Cosa)’”\/_ Op(m+ 1,2 ®)
D? 2w/

P(a, x) is the incomplete gamma function
[se 't tdr

—ta—1
Tetalgp=J08 L&
[ e 1 dt

Pla, x) = 9)

F( )

The mirror shape that supports a hyperboloidal beam is
not exactly the fiducial spheroid. We make a correction
h(r) so that the surface of the mirror is given by z,,(r) =
S, (r) — h(r). The correction is chosen so that the mirror is
located at a phasefront of the beam. We find the mirror
surface from U,(r, S,) by

(10)

h(r) = kolArg<Ua(r’ Sa))

U.0,5,))
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The shape of a(r), or the mirror itself, is generally referred
to as a “Mexican hat,” and some examples are displayed in
Fig. 1(b).

As expected, the beams for @ and —a are identical, as
they correspond to hyperboloids that are simply twisted in
opposite directions. There is a duality between « and 7 —
«. This was first mentioned in [10] for all «’s, then studied
in more depth for « = 0 and &« = 7 in [6] and, finally,
analytically understood in [5]. This duality extends to
several quantities. The beam intensity profiles are identi-

cal. The corrections to the mirror shape are opposite,
h,(r) = —h,_,. There are also dualities in the eigenval-
ues of the propagator [5,6,10,22] that we will not discuss in
this paper.

III. ASYMPTOTIC BEHAVIOR OF WIDE
HYPERBOLOIDAL BEAMS

It was conjectured by Bondarescu and Thorne [10] that
the beam becomes a Gaussian in the limit D — oo. We will
prove this analytically for the intensity profile of the beam,
evaluated on the plane z = zz which would be the surface
of a perfectly flat mirror. The intensity varies slowly
enough with z that this will also be the intensity profile
on the mirror to a good approximation. Our proof uses the
expression for the beam amplitude in terms of a summation
of Gauss-Laguerre functions. The essential ingredient is
the realization that the expansion coefficients take the form
A'Y = (constant)” as D — o0, where the constant depends
only on «. This allows us to analytically perform the
summation to obtain the beam profile.

In the limit x — oo, the incomplete gamma function
P(a,x) = 1, giving A,, = V2w}(— cosa)”/D?. The ap-
proximation z = zz yields

W(ZR) = \/EWO, R(ZR) = ZZR, (I)(ZR) = 77/4,

Y

and the Gauss-Laguerre propagators become

W 20) = (e D0,
where 7 = r/wg and the r-dependent part of the phase has
been absorbed into ¢ (7). Since in the end we will only be
interested in the intensity profile, the exact form of ¢(7) is
unimportant.

The expansion for U, then becomes

12)

o0 2
U,(F zg) = Z (— cosa)m%
m=0

X (e*(iw/Z))me*(Fz/Z)Lm(,—.Z)eiqb(i)

= (@>2€(72/z)€i¢(?) Z (l Cosa)mLG(Fz)'
m=0

D
13)
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We now use the generating function for the Laguerre
polynomials [23]

[oe]

Z (x)t’" —

1 ¢
(.4 - X
2 tp<1ﬂ>

to evaluate the sum in (13), with r = icosa. The final
result is an intensity profile

(14)

_ woV1 + cos’a

sina

(15)

1 r
Vo P = s exp| = 7 |

0

The minimal Gaussian a = 7/2 is seen to have o =
wg. The width is symmetric under &« — 7 — «, as ex-
pected from the duality relation [5,10], and goes to infinity
at @ = 0 or 7. This includes every Gaussian beam capable
of resonating in a cavity of the given length.

IV. THERMAL NOISES

There are a number of noise sources limiting the sensi-
tivity of ground-based gravitational-wave interferometers.
Seismic noise causes an effective cutoff in the lowest
frequencies that can be measured. Fundamental problems
such as shot noise and radiation pressure noise, as well as
technical issues, are important limitations on the sensitivity
throughout the frequency band. However, the major con-
tribution in the most sensitive frequencies of LIGO is the
thermal noise in the mirrors. Reducing the thermal noise is
the goal of this paper.

The mirror consists of a substrate with a coating, and we
must consider noises due to fluctuations of both. The
substrate and coating have both thermoelastic and
Brownian contributions to the noise. Thermoelastic noise
is caused by expansions in the material caused by random
heat flow. Brownian noise is due to the coupling of normal
modes of vibration by imperfections in the material. As a
practical matter, both types of noises in the coating have
the same scaling law so they do not have to be considered
separately. In fact, for the fused-silica mirrors now under
consideration for Advanced LIGO, the coating noises are
the dominant contribution. However, use of a material like
sapphire, with a higher coefficient of thermal expansion,
would cause the substrate thermoelastic noise to dominate.
We will calculate all three types of noise in this paper.

A set of simple scaling laws was derived by Lovelace
[13] in parallel with O’Shaughnessy [14] that are appli-
cable to beams of arbitrary shape. The noise is proportional
to an integral depending on the intensity and an overall
constant which is independent of the shape of the beam.
The noises are given by

&zqf%®W% (16)
0

042003-4



FINITE MIRROR EFFECTS IN ADVANCED ...

I(k) = ﬁ) ® Jo(kn)|U(r)|?rdr, (17)

where n specifies the type of noise under consideration,
and I(k) is the 2D axisymmetric Fourier transform of the
beam intensity with k the radial wave number. The sub-
strate Brownian noise has n = 0, coating Brownian and
coating thermoelastic noises have n = 1, and substrate
thermoelastic noise has n = 2. We are interested in com-
paring noises given by different beam shapes, so the overall
constants C, are not important. The resulting amplitude
sensitivity is the square root of the noise, and has units of
meters/~/Hz.

These scaling laws were derived for half-infinite mir-
rors, meaning that effects of the finite radius and thickness
of the mirror are ignored. For the specific mirrors under
consideration for Advanced LIGO, the width and thickness
of the mirror are large enough compared to the beam width
[13] that this should be a good approximation. The results
of [17] suggest that we can expect corrections of not much
more than 10% to the half-infinite scaling law expressions
that we are using.

V. EIGENVALUES OF THE PROPAGATOR

The idealized picture of a locked cavity is that the
mirrors are perfectly aligned and a precise distance from
each other. The beam should leave one mirror, reflect off
the other, and when it returns it should be the same shape
and exactly in phase. The beam will have lost some inten-
sity due to diffraction and the finite extent of the mirror. In
order to build up a very intense beam with a relatively weak
laser, the beam must reflect very many times. The loss per
half-trip (from one mirror to the other) must be below
approximately 60 ppm. The majority of the loss will be
due to absorption in the mirror and other factors, not
diffraction. The commonly agreed upon budget for losses
due to diffraction is 1 ppm.

In previous work, the clipping approximation is often
used to estimate the diffraction loss by calculating the
fraction of the intensity of the beam which falls outside
the mirror. It is given by

DL = 277'[oo |U,(r)|rdr. (18)
R

Our numerical code is accurate and fast enough to compute
the diffraction loss directly from the eigenvalues of the
propagator, which is more accurate.

The propagator also allows us to estimate the difficulty
of locking the interferometer. The finesse of Advanced
LIGO is about 1200 [24]. This sets the width of the
resonance for the cavity [25] to be about 27/1200 =
0.005 radians. If any other modes with a small diffraction
loss have an argument within this distance of the desired
mode, there will be severe problems with locking the
cavity. For axisymmetric modes, we find that this is not
the case (see Table IT) and the arguments of the eigenvalues
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TABLE II. The diffraction loss and phase separation for ei-
genvalues with losses less than 10%, in three different hyper-
boloidal configurations with 1 ppm loss in the fundamental
mode. Only axisymmetric modes are shown.

a=1 D =9.62 cm

Diffraction loss Phase
1.0 ppm 0.0
121.7 ppm —1.5104
182.3 ppm —0.5835
334.8 ppm —2.6677
7941.6 ppm 2.2904
45401.8 ppm 0.8325

a = 0957 D =971 cm
Diffraction loss Phase
1.0 ppm 0.0
136.2 ppm —1.5079
195.3 ppm —0.5802
302.3 ppm —2.6630
7225.3 ppm 2.2976
44104.7 ppm 0.8422

a = 0907 D =11.01 cm
Diffraction loss Phase
1.0 ppm 0.0
18.6 ppm —0.4797
951.8 ppm 1.3048
3400.8 ppm 2.7653
5870.7 ppm —2.3322
61706.3 ppm 1.4493

are well separated enough that locking with Mesa or any of
the other beams that we study should be no more difficult
than locking the currently proposed Mesa.

A. Integral form of the propagator

The propagator from a single point r, ¢ on one mirror to
a point ¥/, ¢’ on the other (see for instance [5]) is
iko

K(r, p, v, ¢ (1 + cos@)e kP, (19)

47p
where p is the path length between the two points, 6 the
angle between the cavity axis and the path, and r and ¢ are
the standard cylindrical radial coordinate and azimuthal
angle. The cavity is very long compared to the radius of the
mirrors so we can immediately make the paraxial approxi-
mation § = 0. The path length can be approximated as

p = ((S.(r) + S,(r) — h(r) — h(r'))?
+ (r+ ' — 2rr' cos(¢p — ¢'))?)'/2
2

~L+ cosa(% + £_L> — h(r) — h(r")

~ - cos(¢p — ¢) (20)
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since L > r and L > h(r). This expression is the path
length used to find the phase of the propagator. In the
prefactor of the propagator we only need the much simpler
p = L in order to compute the amplitude to an accuracy of
sznirror/L2 - 10_9‘

We assume that the cavity is axisymmetric, which means
that the eigenmodes of the propagator can also be written
as eigenstates of rotation. Thus we write the complex beam
amplitude as VO, b)) = V@ (r)e=m$. To determine the
modes of the cavity, we have an eigenvalue problem given
by the integral

(i) y,(0) _ R VN VO
Yme(r:Qb) Ordrd‘ﬁx(r,(ﬁ:r’(ﬁ)vm(ryd)),
(21)

where yg,? is the associated eigenvalue, and R is the mirror
radius. Integrating over ¢’ produces

Dy — (R racr (0 oD (0
Vo Vit (1) rdr' K, (r, ¥V (), (22)
0
"k, korr!
j(‘r : / = Jm v
() = = ()
X exp[ik()(—L + h(r) + h(r')
2 2
- cosa(zr—L + ;—L>>} (23)

where for convenience we have defined a “‘radial kernel”
XK, J,(x) is the m™ order Bessel function of the first kind.
In what follows, we specialize to axisymmetric modes
(m = 0), as we are not focusing on tilt or parametric
instabilities which involve modes with m > 0.

B. Discrete form of the propagator

The above integral must be converted to a discrete sum
to be suitable for numerical computation. We choose to do
this using a Chebyshev quadrature [23,26], which is ap-
propriate for the finite range of . We use N collocation
points r, with associated integration weights wy. The in-
tegral is converted to

N
y(i)V(()')(rj) = Z Ki(r), rk)rkka(()l)(l”k)- (24)
=

This is a matrix eigenvalue problem which is easy to solve
numerically. We will order the eigenstates by the number
of radial nodes, the number of times that V(()’)(r) goes to
zero. The fundamental mode (i = 0) has zero nodes and as
R — oo it limits to the hyperboloidal beam that the cavity is
designed to support. We will show that finite mirror effects
cause the actual eigenstate to be slightly different.

We performed a convergence test where we varied the
number of collocation points, N, and observed exponential
convergence. The diffraction loss for the lowest eigenvalue
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for the @« = 7 Mesa beam with D = 10.67 cm, R =
17 cm changes in the 5th digit when varying N between
N = 250 and N = 500. We are using N = 1000 or N =
500 for all of the calculations in this paper. On a typical
single processor laptop computer, our code takes ~10
seconds for N =500 and ~1 minute for N = 1000 to
calculate the eigenmodes of any given cavity.

C. Meaning of eigenvalues

The eigenvectors of the propagator are the field ampli-
tudes of the cavity’s resonant modes. Fine-tuning the
length L of the cavity to L + 6L changes the eigenvalue
to exp(—ikySL)y. This tuning is used to select the desired
mode; when the argument of the eigenvalue is zero it will
resonate in the cavity. The magnitude of the eigenvalue is
the fraction by which the amplitude changes during a half-
trip. We must have |y| < 1 for finite mirrors, because some
light will always be lost to diffraction. We define the
diffraction loss in parts per million over one half-trip
through the cavity as

D L =101 — |y[?). (25)

Advanced LIGO requires a diffraction loss per half-trip of
about 1 ppm. In the next section, we will discuss the results
of our analysis, where we study the noise characteristics of
the hyperboloidal beams given the constraint on the dif-
fraction loss.

VI. RESULTS

Our goal of reducing the noises in LIGO is constrained
by the need to keep the diffraction loss at nearly 1 ppm.
The hyperboloidal beams have two parameters, D and «. D
is roughly the width of the beam, and « is the shape. The
duality relation reduces the range of « that we need to
consider. We focus our attention on 7/2 < a < 7 since
the intensity profiles are identical to those in the range from
0 to 7r/2 but the mirrors are nearly concentric as needed to
decrease the tilt instability. The Mesa profile obtained for
a = 7 has the flat-top shape required to decrease the
thermal noises. As « goes toward 77/2 the beam becomes
more rounded, losing the flat top and sharp decay near the
edge. We have shown that D — oo the beam becomes a
Gaussian whose width is wyv/1 + cos’a/ sina. For @ near
ar, this Gaussian is nearly infinitely wide, and at & = 7/2
the beam becomes the minimal Gaussian of width wy,.
From the clipping approximation we can estimate that at
a = 0.2477 and o = 0.7537, D = oo the diffraction loss
is about 1 ppm. We do not have to consider any values of «
between these since the widest beam consistent with the
diffraction loss constraint would be the D = oo Gaussian.

A. Finite mirror effects

If the mirrors were infinite in extent, no light would
propagate off of the mirror and there would be no diffrac-
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tion loss, giving eigenvalues of unit magnitude. The clip-
ping approximation assumes that the beam is the one
supported by infinite mirrors. This is not the case as
diffraction also causes the beam profile to change. The
propagator is a more accurate calculation because it finds
the precise beam profile supported by the mirrors. The
clipping approximation is typically an underestimate of
the diffraction loss [3,4]. In Fig. 2(a), we show that this
is indeed usually the case. However, for some ranges of
beam width D there is an anomalously low diffraction loss
below the clipping approximation.

To study this effect, we varied the mirror radius and
computed the diffraction loss as a function of D. The

1000 A L L B B L ) B R
F|—- R=16cm -~
F|— R=17cm T e
— R=18cm T
E 100? - -+ Clipping Approximation . .
3. F
RS - T T T T —
2 10g - -
Q F E
— E
= i
.2
5 1k =
S o
= AT,
S g T E
0.01
12
0.05 -
B
5
“E 0 -
=i
\
,\‘
A
-0.05 —
r [cm]
FIG. 2. (a) The diffraction loss for a Mesa configuration (o =

) is shown as a function of D on a logarithmic plot for several
different mirror radii: R = 16 cm, R = 17 cm, and R = 18 cm.
The diffraction loss computed numerically using Eq. (25) (solid,
dashed, and dotted-dashed lines) exhibits local minima due to
finite mirror effects. It can be seen that the minima get narrower
as R increases and that they go below the values estimated using
the clipping approximation (dotted lines). (b) The fractional

difference |UIZ ../|U |12heory — 1 between the theoretical infinite

mirror beam intensity profile and the actual profile given by the
first eigenvector of the propagator in Eq. (22) is plotted for D =
10.67 cm and R = 16, 17, 18, and 20 cm. The deviation de-
creases with R as expected.
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mirrors that we study in this paper have radius R =
17 cm, so we compared with R=16cm and R =
18 cm. The local minimum becomes narrower and shal-
lower for increasing mirror radii. This is suggestive of a
finite mirror effect that will disappear when the mirror
radius is significantly larger than the radius of the beam.

Figure 2(b) shows the deviation of the beam from the
infinite mirror Mesa beam. A concentric Mesa (a = )
beam with D = 10.67 cm is chosen. This is the location of
a local minimum of the diffraction loss with respect to D.
The beam intensity is computed directly from the eigen-
vector of the propagator. The intensity is normalized by
integrating over the mirror rather than over the entire
mirror plane as with the infinite mirror case. However,
this only causes a fractional error in the normalization on
the order of 107%. As shown in the figure, the finite mirror
causes deviations from the infinite mirror beam; the pla-
teau of the beam is less flat than expected. When the radius
of the mirror is increased, the deviations retain their shape
but decrease in size. For R = 20 cm, the beam is very close
to the infinite mirror expectation. There is still a difference
near the outer edge of the beam, causing the intensity to
decay more quickly with radius than in the infinite mirror
case.

Our numerical results suggest that the anomalous dif-
fraction loss is related to the deviation of the beam from the
ideal Mesa shape. As D increases, the clipping approxi-
mation predicts a smooth increase in diffraction loss due to
the widening beam. Finite mirror effects increase with the
ratio D/R, so they alone do not explain this unexpected
behavior. For the values of D that yield an anomalous
diffraction loss, the variations around the plateau
(Fig. 2(b)) have an organized shape with an approximate
wavelength of w,. The variations in these cases have a
shape such that they alter the falloff of the beam at the
edge, i.e. in the last 2 cm of the mirror. This has an obvious
beneficial effect on the diffraction loss.

We expect that the fundamental mode of the cavity (the
hyperboloidal shape, with no nodes) should have the low-
est diffraction loss. However, this is not the case for all
choices of @ and D. Surprisingly, the diffraction loss of the
first excited axisymmetric mode can decrease below that of
the fundamental mode. This occurs, for &« = 77, for a small
range of D around 10.5 cm, with diffraction losses around
4 ppm. The arguments of two eigenvalues remain well
separated. Figure 3 shows the crossing of the two diffrac-
tion loss curves.

To investigate the cause of this crossing, we choose the
specific value D = 10.52 cm and increase the mirror ra-
dius to 18 cm. The diffraction loss of the fundamental
mode decreases from 3.7 ppm to 0.4 ppm, while the first
excited mode only decreases from 3.6 ppm to 2.3 ppm so
the diffraction loss of the fundamental mode is now lowest.
Further increasing the mirror radius to 20 cm causes the
losses of the second and third excited modes to cross.
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FIG. 3. The diffraction losses of the fundamental mode and the
first excited mode are plotted as a function of D for the & = 7
Mesa configuration. The two curves cross due to finite mirror
effects causing an anomalous diffraction loss for the first excited
mode.

Despite changes of the mirror radius, the arguments of the
eigenvalues change by less than a percent (we are only
considering eigenvalues with losses less than 10 000 ppm
because otherwise they would dissipate too quickly to be of
interest). This dependence on mitror radius tends to con-
firm that this is a finite mirror effect. Having demonstrated
that this effect can have substantial and beneficial effects
on the diffraction loss, we now turn our attention to study-
ing the parameter space of hyperboloidal beams in more
detail. Further studies of the precise cause of the anoma-
lous losses may want to focus on the deviation of the beam
from its theoretical expectation, as well as the behavior
with changing mirror radius.

B. Noises for fixed D

The width of the beam increases with increasing D,
which averages the fluctuations over more of the mirror
surface and therefore decreases the noise. It is less clear
how the noise will behave when « is changed. We begin by
fixing D = 10 cm and ignoring the diffraction loss con-
straint. Figure 4 shows that all three types of noise increase
as a moves away from O and 7r. Substrate thermoelastic
noise is most affected by changing «, followed by the
coating noises (recall that both types of coating noise
follow the same scaling law).

As « is decreased from 7r, the noises increase if D is
kept fixed. At the same time, the diffraction loss decreases.
If we keep the diffraction loss fixed, the D can be increased
as a decreases toward 77/2. Widening the beam tends to
decrease the noise, which partially offsets the increase
from changing . We fixed the loss at 1.4 ppm and found
that the noise still increases for beams other than Mesa. We
expect that for larger diffraction losses this result will still
hold. However, at 1 ppm the anomalous behavior of the
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FIG. 4. The noise ratios Noise, /Noiseyesa, — 1 for three types
of noise are shown as a function of « for fixed D = 10 cm. The
minimal Gaussian a = /2 has the highest noise and Mesa
(a = 0, ) has the lowest noise.

diffraction loss due to finite mirror effects changes this
conclusion.

C. Hyperboloidal beams with 1 ppm diffraction loss

As «a decreases from 7 toward 77/2, the beam loses its
flat top and sharp falloff, and approaches the minimal
Gaussian. Also, the D corresponding to the local minimum
in diffraction loss increases, and the local minimum be-
comes deeper and wider. Figure 5 shows the diffraction
loss versus D for three values of «, while Fig. 6 gives D
and diffraction loss at the local minimum for a range of «.
The local minimum of the diffraction loss for a Mesa beam
(e = ) is at D = 10.67 cm, and has 1.4 ppm. As dis-
cussed above, the Mesa has the lowest noise of the hyper-
boloidal family for this diffraction loss.
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FIG. 5. Diffraction loss as a function of D is displayed for o =
7, @ = 0.957, a = 0.907. It can be seen that as « decreases the
minimum diffraction loss is lower and occurs for larger D.
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. . . I o |
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0.927 because below 0.927r the diffraction loss at the local o
minimum is below 1 ppm. The noises therefore drop sub- - .
bp p FIG. 7. (a) The largest values of D giving a strict 1 ppm

stantially when a = 0.917 as in Fig. 7(b). The coating
noise decreases by 12% and the substrate thermoelastic by
19%, relative to the 1 ppm Mesa beam. A strict require-
ment of 1 ppm diffraction loss therefore combines with the
finite mirror effects to make the a =091z, D=
10.94 cm configuration the best choice.

D. Correcting for finite mirror effects

Restructuring the mirror to specifically account for finite
mirror effects allows us to increase D in hyperboloidal
beams (thereby reducing thermal noise), while keeping
within given diffraction loss constraints. The restructured
beams can reduce the diffraction loss by a factor of 30 to
100, allowing a wider beam. For the Mesa case this allows
for a net noise reduction of 30% for the beam satisfying the
1 ppm diffraction loss constraint.

As noted above, the original Mesa beam used to con-
struct the mirror is infinite in extent. The mirror is designed
to be a phasefront of the theoretical beam. Since the mirror
is actually finite, for D ~ R there can be substantial effects
due to missing light that was incident on the mirror plane
outside the mirror radius. To account for these finite mirror
effects we reconstruct the mirror, with the goal of making
the phase of the first eigenbeam constant at the mirror
surface, rather than the phase of the idealized infinite
beam.

diffraction loss are shown as a function of «. The discontinuity
is caused by finite mirror effects as explained in the text. (b) The
corresponding values of the noise, normalized so that the noises
for the 1 ppm Mesa (o = 7, D = 9.62 cm) are all equal to 1.
The discontinuity in allowed maximum D leads to a sharp drop
in noise at & = 0.917.
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FIG. 8. The phase of the fundamental eigenbeam as a function
of radius is shown for iteration zero and 250. It can be seen that
the iteration scheme drives it closer to zero as expected.
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FIG. 9. The diffraction loss in ppm calculated using the clip-
ping approximation is compared to that using the propagator
eigenvalues for the iterated and original mirrors as a function of
D. As before, the configuration studied is &« = 7 Mesa with R =
17 cm. The iteration process lowers the diffraction loss by a
factor of 30 to 100.

The propagator formulation allows us to explicitly cal-
culate the phase of the eigenbeams, as a function of r. As
the mirror deviation from the fiducial spheroid A(r) enters
into the calculation of phase through the propagator, we
use an iteration scheme to adjust the mirror to match the
eigenbeam phasefront motivated by the argument of the
propagator:

arg[ K(r, r')] = 7/2 + ko(h(r) + h(¥') — L)

r2 r12
— kgcosa|l —+ —). (26)
2L 2L
2.5 1
E i e Diffraction Loss at Each Iteration
o | — Best Fit
A=
2 L
& 2r
'J -
=
2
o |
s
?E 1.5 B
a
r \ ! \ | i
0 50 100 150 200 250
Iteration

FIG. 10. The diffraction loss is shown as function of
iteration number for a @ = 7 Mesa configuration with D =
11.35 cm. The original beam (not shown) has diffraction loss at
46.5 ppm, and it can be seen that after a few iterations the
diffraction loss begins to converge to an exponential with lower
bound ~1 ppm. The best-fit exponential is given by 0.96 +
1.616 exp(—0.013i) ppm, where i is the iteration number.
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We see in Eq. (26) that if the phase of the eigenbeam is too
large at some radius r, reducing the value of /(r) should act
to roughly reduce the phase of the new eigenbeam.

With this motivation, we apply the simple iteration
scheme:

Biwi(r) = hi(r) = ¢ X arg[v,?”<r>/v§'><o>} 27)

where the i denotes the ith iteration, Vl(l) (r) is the first
eigenbeam for the mirror with deviation 4;(r), and ¢ > 0 is
an arbitrary constant less than unity, chosen to prevent
overshoot.

This iteration scheme successfully reduces the relative
phase of the eigenbeam, as shown in Fig. 8. Optimizing the
mirror surface to match the phasefront of the primary
eigenbeam also acts to reduce the diffraction loss for that

TABLE III. The phase separation for the axisymmetric (m =
0) modes with diffraction losses less than 10%, both before and
after the iteration scheme is applied. The phases do not change
significantly as the mirror is iterated. The absolute value of the
eigenvalues with nonzero phase (and hence the diffraction loss)
increase upon iterating. Preliminary calculations show that non-
axisymmetric modes have diffraction losses increased by the
iteration process while the phases change by no more than 5%.

a =1 D = 11.35 cm (Uniterated)
Diffraction loss Phase
46.5 ppm 0.0
128.5 ppm —0.4313
341.7 ppm —1.1895
10530.8 ppm —2.1470
38445.0 ppm 3.0277
a=1 D = 11.35 cm (Iterated)
Diffraction loss Phase
1.0 ppm 0.0
320.6 ppm —0.4319
1100.1 ppm —1.1920
26167.4 ppm —2.1593
66808.7 ppm 2.9873
a =097 D = 11.87 cm (Uniterated)
Diffraction loss Phase
43.5 ppm 0.0
205.0 ppm —0.4173
371.2 ppm —1.1665
10626.6 ppm —2.1082
50723.6 ppm 3.0878
a =097 D = 11.87 cm (Iterated)
Diffraction loss Phase
1.0 ppm 0.0
366.6 ppm —0.4185
2013.4 ppm —1.1701
32628.3 ppm —2.1267
87359.8 ppm 3.0335
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mode in general, with the iteration scheme providing con-
vergence towards an apparent lower bound for the diffrac-
tion loss, while increasing the diffraction loss for other
higher-order eigenbeams. This lower bound increases with
D (Fig. 9).

This diffraction loss is plotted against the iteration num-
ber for the Mesa (a« = 7) case with D = 11.35 cm in
Fig. 10. The iteration scheme is shown to lower the dif-
fraction loss for this D from 46.5 ppm to a ~1 ppm lower
bound, satisfying the required design constraint. The dif-
fraction losses of higher-order modes are more than
doubled in the iterated case as illustrated in Table III.

The beam for the iterated mirror with D = 11.35 cm is
close to the original Mesa, but with variations in the central
plateau of relative amplitude ~1/30 and variations of
radial wavelength ~w, (Fig. 11). This seems to be an
unavoidable consequence of a finite R, as even the original
eigenbeam has roughly similar features. Despite changing
the variations in the plateau of the beam intensity the
process of iteration does not significantly affect the noises
computed using Eq. (16).

Similarly the iterated mirror has variations of the central
mirror shape of similar radial scale, with amplitude on the
order of 2 nm, shown in Fig. 12. The most significant
feature of the iterated mirror is the inward tilting of the
outer edge of the mirror, though preliminary studies show
that the primary contribution to reducing the diffraction
loss is due to the variations near the center of the mirror.

Reformulating the mirror to account for finite mirror
effects allows us to increase the D parameter of the beam
from 9.62 cm to 11.35 cm for a concentric Mesa beam
while still maintaining a 1 ppm diffraction loss. Though
this design may introduce more complications in the con-
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FIG. 11. The intensity profile |U,|? for the mirror with R =

00, R = 17 cm uniterated and R = 17 cm at iteration 250 are
compared for the a = 7 Mesa configuration with D =
11.35 cm. The finite mirror effects induce oscillations in the
intensity profile that do not disappear when the mirror is cor-
rected. An inset shows the central 8 cm “plateau’’ of the beam in
detail.
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FIG. 12. The correction to the mirror H, at iteration 0 and at
iteration 250 are compared for the @« = 7 Mesa configuration
with D = 11.35 cm, R = 17 cm. The iteration scheme introdu-
ces some bumps on the mirror of the size ~2 nm. The inset
shows the central 8 cm of the mirror in more detail.

TABLE IV. The coating, substrate Brownian and substrate
thermoelastic noise are displayed after the iteration process.
The diffraction loss is kept constant at 1 ppm. The noises are
normalized to noises of the original (& = 7) Mesa (with D =
9.62 cm) that gives the 1 ppm diffraction loss. It can be seen that
the iteration scheme lowers the noise by about 30% for @ =
by allowing larger D for the same 1 ppm diffraction loss.

Substrate Substrate
D Coating Brownian Thermoelastic
o [cm] noise noise noise
T 11.35 0.72 0.84 0.63
0.97 11.87 0.80 0.90 0.69

struction of the mirror itself, it allows a significant reduc-
tion in noise by broadening the beam. This iteration
scheme can also be used for other values of «, as shown
in Table III, where the iterated mirror for &« = 0.97 has a
diffraction loss lower bound of 1 ppm for D = 11.87 cm.
However, we find that & = 7 is optimal for noise reduc-
tion. (See Table IV.)

VII. CONCLUSIONS

In this paper, we studied thermal noise and diffraction
loss for the hyperboloidal family of light beams and mirror
shapes in detail for the first time. This family had been
initially proposed to unify the concentric (¢ = 7) and
nearly flat (&« = 0) Mesa configurations through variations
of the twist angle «. In this paper we also presented an
analytic proof that Gaussian beams are a limiting case of
the hyperboloidal beam as D — oco. This was previously
conjectured in Ref. [10]. We developed a pseudospectral
code both fast and accurate enough to calculate the dif-
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fraction loss directly from the beam propagator. We find
that the finite radius of the mirror causes beam shapes to
deviate significantly from the infinite mirror theoretical
expectations. This causes a previously unnoticed local
minima in the diffraction loss that can be exploited to
find a natural beam width D for the current diffraction
loss constraints of about 1 ppm. For an « = 7 Mesa beam
a local minimum occurs at D = 10.67 cm giving 1.4 ppm
diffraction loss for a mirror of radius R = 17 cm. If one
requires a strict enforcement of the 1 ppm diffraction loss
we show that a hyperboloidal beam with @ = 0.917 and
D = 10.94 cm has lower noise than that of the @ = 7
Mesa with 1 ppm diffraction loss. The coating noise
changes by about 12% and the substrate thermoelastic
noise and substrate Brownian noise change by 5% and
19%, respectively.

We also propose new mirror and beam shape configura-
tions that explicitly account for finite mirror effects by
reformulating the mirror surface to coincide with the pha-
sefront of the primary eigenbeam. These beams reduce the
diffraction loss by more than an order of magnitude for the
range of D considered here (between 10 cm and 11.8 cm).
This allows the use of wider beams for the same diffraction
loss constraints on the primary eigenmode, while the dif-
fraction losses of higher-order modes (both axisymmetric
and nonaxisymmetric) are increased. We are able to widen
the @ = m Mesa beam for a R = 17 cm mirror while
keeping the diffraction loss fixed at 1 ppm from a width
of D =9.62 cmto D = 11.35 cm. This lowers the coating
thermal noise by about 30% (compared to the smaller D
Mesa) and the other noises (substrate Brownian and sub-
strate thermoelastic noise) by comparable factors.
However, feasibility of the construction of the mirrors
must also be taken into account.

The noniterated beams taking advantage of the local
minimum in diffraction loss discussed above are supported
by strict hyperboloidal or Mesa mirrors, which would be no
harder to make than the current Mesa designs, and would
still lower the coating thermal noise by 12%. If one is to
consider the more ambitious goal of lowering the coating
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thermal noise by 28% while using a beam that is very
similar to Mesa through the iteration scheme described,
the limitations on mirror manufacturing errors are likely to
be more stringent, but still less than the currently consid-
ered conical beams [8,19]. In addition, the methods devel-
oped here for reducing the diffraction loss of the Mesa
beam may be applied in the case of the conical beams
previously considered [8,19]. The phasefronts of conical
beams considered there have not been optimized to match
the finite mirror surface.

Recently, parametric instability [21,27-29] was found
to be a serious problem in Advanced LIGO. Choosing D at
the minimum of the diffraction loss curve of the hyper-
boloidal beams increases the diffraction loss of the higher
eigenmodes, thus in principle somewhat improving the
parametric instability. The effect is most pronounced in
the case of the iterated mirrors which also have the most
drastic thermal noise reduction.
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