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We calculate the matrix elements of the gluonic contributions to the energy-momentum tensor for a
pion of mass 600<M� < 1100 MeV in quenched lattice QCD. We find that gluons contribute �37�
8� 12�% of the pion’s light-cone momentum. The bare matrix elements corresponding to the trace
anomaly contribution to the pion mass are also obtained. The discretizations of the energy-momentum
tensor we use have other promising applications, ranging from calculating the origin of hadron spin to
QCD thermodynamics.
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I. INTRODUCTION

A striking feature of QCD is the large contribution of
gluons to the mass and momentum of hadrons, so it is of
fundamental interest to calculate the contributions of glu-
ons from first principles using lattice QCD.

The first moments

 hxif�q
2� �

X
f�u;d;s

Z 1

0
xdxf �f�x; q2� � f�x; q2�g; (1)

 hxig�q2� �
Z 1
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of the quark and gluon distribution functions f�x�, �f�x�
(f � u; d; s; . . . ) and g�x� acquire a precise field-theoretic
meaning via the operator product expansion in QCD. They
satisfy the well-known momentum sum rule (MSR) hxif�
�q2� � hxig�q2� � 1 and are related to the corresponding
contributions to the energy-momentum tensor T�� eval-
uated on the hadronic state. Separating the traceless part
�T�� from the trace part S for gluons, denoted ‘‘g,’’ and
quarks, denoted ‘‘f,’’ T�� has the explicit form
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where D
$
� � ~D� �D� �, 	�g� is the beta function, �m�g� is

the anomalous dimension of the mass operator, and all
expressions are written in Euclidean space. For an on-shell
particle with four-momentum p � �iEp;p�, E2

p �

M2 � p2, we have the relations

 h�;pj
Z
d3z �Tf;g

00 �z�j�;pi �
�
Ep �

1

4
M2=Ep

�
hxif;g; (4)

 h�;pj
Z
d3zSf;g�z�j�;pi � �M2=Ep�bf;g; (5)

 hxif � hxig � bf � bg � 1; (6)

where states are normalized according to hpjpi � 1. We
shall return to the renormalization of hxif;g below.

Equation (4) shows that in the infinite momentum frame,
where Ep � P! 1, hxig represents the momentum frac-
tion arising from gluons, and calculating hxig is the main
goal of this work. In the rest frame, the gluon contribution
of Eq. (4) to the hadron mass is 3

4Mhxig [1]. From Eq. (5) in
the rest frame, the contribution of the trace anomaly Sg to
the hadron mass is 1

4bgM [1], and in this work we perform
the first step to calculate this matrix element as well.

Whereas nonsinglet matrix elements can now be calcu-
lated to high precision in full QCD in the chiral regime [2–
4], calculations of matrix elements of singlet operators are
far less developed due to the computational challenges of
calculating disconnected diagrams and matrix elements of
gluon fields, which are notoriously noisy due to quantum
fluctuations. The first attempt to calculate the glue momen-
tum fraction was in the proton in [5], and was found to be
numerically very challenging. In this exploratory study we
treat the case of ‘‘heavy pions’’ with masses in the range
600 MeV<M� < 1060 MeV, where hadronic matrix el-
ements in the quenched approximation, which neglects
quark loops, are generally close to those in full QCD.
The techniques developed here are applicable in full
QCD calculations, and to the case of the proton.

II. LATTICE FORMULATION

We use the Wilson gluon action 1
g2

0

P
x;���Trf1�

P���x�g, where P�� is the plaquette, and the Wilson fer-
mion action [6] at an inverse coupling 6=g2

0 � 	 � 6:0,
corresponding to a lattice spacing a � 0:093 fm for r0 �
0:5 fm [7]. There are two distinct ways [8] to discretize the
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Euclidean gluon energy operator �Tg
00 �

1
2 ��Ea �Ea �

Ba �Ba� and the trace anomaly Sg � 	�g�
g �E

a � Ea � Ba �

Ba� on a hypercubic lattice.
The first, denoted ‘‘bp’’ for bare plaquette, uses a sum of

bare plaquettes P�� around a body-centered point x �
x� 1

2 a
P
� �̂ , which, when summed over a time slice,

yields
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The other form, denoted ‘‘bc’’ for bare clover, is
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where F̂���x� is the clover-shaped discretization of the
field-strength tensor (see [9]). This form allows for the
discretizations of off-diagonal elements of �T�� as well.
Each of the normalization factors Zg�g0�, 
bc�g0�, and

bc
s �g0� in Eqs. (7) and (8) is of the form 1� O�g2

0�.
Another freedom in discretization is local smoothing of

the fields by replacing each link in Eqs. (7) or (8) by a sum
of a connected product of links joining the same lattice
points. This only changes the fields by higher dimension
operators, and HYP smearing [10] is particularly suited for
this application because it preserves the symmetry between
all Euclidean directions and is localized within a single
hypercube. We use the original HYP-smearing parameters
[10], and project onto SU(3) as in [11].

Our criteria for the choice of the discretization are to
maximize the signal-to-noise ratio, minimize cutoff ef-
fects, and preserve locality as much as possible. The nois-
iest quantity we calculate is �T00�x�, which involves the near
cancellation of E2 and B2. Hence, we studied the signal-to-
noise ratio for four different discretizations by comparing
the variance of a related thermodynamic variable, the
entropy density at temperature T � 1=L0 � 1:21Tc [12],
which is proportional to the expectation value of

P
x

�T00�x�,
on an L0 � L3 lattice with L=a � 16 and L0=a � 6. The
resulting variances for the plaquette and clover discretiza-
tions with bare and HYP links are shown in Table I. We
find dramatic differences between the discretizations, with
HYP smearing reducing the bare-plaquette variance by a

factor of 41 and the HYP-clover operator reducing the
variance by a factor of 87. Variance reduction comes at
the cost of a certain loss of locality, since the HYP-
plaquette and HYP-clover operators have extent 3a and
4a, respectively.

The normalization factor Zg�g0� appearing in Eq. (7) is
dictated by an exact lattice sum rule for the Wilson gauge
action and is known to about 1% (see [13] and references
therein). To obtain the absolute normalization of other
discretizations, it is sufficient to compute their normaliza-
tion 
�g0� relative to that of the bare plaquette, and the
resulting 
’s are given in Table I for the four
discretizations.

As a compromise between locality and variance reduc-
tion, from now on we work with the HYP-plaquette dis-
cretization. We checked its discretization errors by
computing the dependence of 
 on a=L0, which is a non-
locality effect. Figure 1 shows that the dependence of 
 on
a=L0 is mild and statistically consistent with zero for
L0=a � 6, and that all four lattice operators are viable
discretizations of the same continuum operator. As a check
of the normalization of the HYP-plaquette operator, we
computed its expectation value on the lightest scalar glue-
ball. In that case, we know that the momentum fraction
carried by the glue is 1 [see [14] for an early calculation in
SU(2) gauge theory], and indeed we find hxi�G�g � 1:16�18�.

TABLE I. Left: the relative variance, hO2i=hOi2 � 1, of the
operators O �

P
x�o�x� � hoi0� (top: o � �T00; bottom: o � S)

on a 6� 163 lattice at 	 � 6:0 for different discretizations
described in the text. Right: the normalization 
�g0; a=L0�
(top) and 
s�g0; a=L0� (bottom) of the operator relative to the
bare plaquette, determined on the same lattice.

Relative variance Normalization
Bare HYP Bare HYP

�T00 Plaquette 26.4(71) 0.6518(43) 1 0.5489(68)
clover 3.85(11) 0.3049(41) 2.184(67) 0.613(20)

S Plaquette 2.64(12) 0.474(13) 1 0.9951(77)
clover 1.180(39) 0.2975(72) 4.062(30) 1.410(13)
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FIG. 1 (color online). A study of cutoff effects: the normal-
ization 
�g0; a=L0� of three discretizations of �T00 relative to the
one based on the bare plaquette as a function of L0=a.
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III. THE GLUON MOMENTUM FRACTION
IN THE PION

We consider a triplet of Wilson quarks, labeled u, d, s,
with periodic boundary conditions in all directions and
with common � � 0:1515, 0.1530, and 0.1550 correspond-
ing to pion masses approximately 1060, 890, and 620 MeV
on lattices 32� 123, 32� 163, 48� 163 and 244. To cal-
culate the gluonic momentum fraction in the pion, we
define the effective momentum fraction
 

hxi���g;eff�x
min
0 � �

8

3M�

a3

j�0j

X
x;x02�0

�P
yhj�0� �Thp

00�x�j�
L0

2 ; y�iP
y0 hj�0�j�

L0

2 ; y
0�i

� h �Thp
00�x�i

�
; (9)

and similarly for b�bare�
g by substituting �Thp

00 ! Shp. Here
�0 � fxmin

0 ; . . . ; L0

2 � x
min
0 � a; L0

2 � x
min
0 ; . . . ; L0 � xmin

0 �

ag. This corresponds to creating a pion at the origin,
annihilating it at the middle time slice, measuring the gluon
operator over all times at least xmin

0 away from the source or
sink, dividing by the corresponding pion two-point func-
tion, and subtracting the vacuum expectation value of the
operator. For large L0 and xmin

0 , hxi���g;eff ! hxi
���
g .

As a source field for the pion, we use the isovector
pseudoscalar density j�x� � �d�x��5u�x�. Its two-point
function is positive on every configuration, for each of
which we do 12 inversions corresponding to Dirac and
color indices. On a 244 lattice, we take advantage of the
symmetry between all directions to perform these inver-
sions at the points k�6; 6; 6; 6� for k � 0, 1, 2, 3, and
symmetrize expression (9) with respect to all directions,
so that

P
x;�

�T���x� vanishes on every configuration.

Figure 2 shows our stable plateaus for hxi���g;eff at large
values of xmin

0 for two lattice sizes, and all the results are
summarized in Table II.

Equation (6) has been derived for QCD at finite lattice
spacing in [15]. In particular, we have

 1 � hxig � hxif ; hxif � Zf�g0�hxi
bare
f ; (10)

where, disregarding disconnected diagrams, hxibare
f has

been computed in [16] at the same bare parameters (	 �
6, � � 0:1530). The factor Zf�g0� is the fermion analog of
Zg�g0�; see Eq. (7).

IV. RENORMALIZATION OF hxig

Recall that, in QCD, the renormalization pattern in the
singlet sector reads [17]

 

�Tg
00���

�Tf
00���

" #
�

Zgg 1� Zff

1� Zgg Zff

" #
�Tg

00�g0�
�Tf

00�g0�

" #
; (11)

provided �Tf;g
00 �g0� are normalized so that Eqs. (4) and (6)

hold. In lattice regularization, this requires the scheme-
independent Zg�g0� and Zf�g0� factors, while Zgg and Zff

are scheme-dependent functions of �a�; g0�. The renor-
malization group equation then takes the form
 

�@�
hxig��2�

hxif��2�

" #
�� �g2���

cgg� �g� �cff� �g�

�cgg� �g� cff� �g�

" #

�
hxig��2�

hxif��2�

" #

with �@� log	Zgg � Zff � 1
 � � �g2	cgg � cff
 and
cgg;ff� �g � 0� � Nf

12�2 , 4
9�2 , respectively [18,19]. Besides

the zero mode �T00, the linear combination 	1�
����
 �Tg

00��� � ���� �Tf
00��� renormalizes multiplicatively

with anomalous dimension � �g2	cff � cgg
, where
�@�� � � �g2	�cff � cgg��� cff
. Note that the asymp-
totic glue momentum fraction is given by cff�0�=	cff�0��
cgg�0�
�Zgg�1�� 1�Zff�1�����1��16=	16�3Nf
.

In the quenched approximation, Zgg � 1 due to the
absence of quark loops [20,21]. This implies that the
singlet part renormalizes multiplicatively and with the
same anomalous dimension as the nonsinglet part, which
has been computed nonperturbatively in [22],

 hxig��
2� � hxig � 	1� Zff�a�; g0�
hxif ; (12)

 hxif��2� � Zff�a�; g0�hxif : (13)

The factor Zf�g0� � 1� O�g2
0� is as yet unknown beyond

tree level. If we allow for a conservative error, based on the
typical size of one-loop corrections, Zf�g0� � 1:0�2�, then
using hxibare

f � 0:616�4� and Zff�a�; g0�Zf�g0� � 0:99�4�
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FIG. 2 (color online). The effective gluonic momentum frac-
tion, Eq. (9), in a heavy pion, M� ’ 1060 MeV.

TABLE II. The glue momentum fraction hxi���g (top) and the
bare trace anomaly matrix element b�bare�

g (bottom) in the pion.
The integer in each subscript denotes the number of configura-
tions used.

M� (MeV) 32� 123 32� 163 48� 163 244

1060(10) 0:39�6�23091 0:29�9�7113 0:40�8�8331 0:34�9�1048

891(9) � � � � � � � � � 0:36�8�3066

624(6) � � � � � � � � � 0:58�16�2538

1060(10) 0:89�3�23091 0:95�5�7113 1:00�4�8331 0:77�7�1048

891(9) � � � � � � � � � 1:02�6�3066

624(6) � � � � � � � � � 2:2�1�2538
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for the MS scheme at � � 2 GeV [16,22], we obtain
 

hxi���g ��2
MS
� 4 GeV2� � 0:37�8��12� �M� � 890 MeV�;

where the first error is statistical and the second comes
from the uncertainty in Zf�g0�. The fact that our result and
the valence quark momentum fraction, computed in [16],
add up to 0.99(8)(12) suggests that the omitted discon-
nected diagrams are small.

We can make a semiquantitative comparison with phe-
nomenology by performing a chiral extrapolation linear in
M2
�, with the result hxig � 0:6�2��1� at the physical pion

mass. This result is compatible with phenomenological
determinations [23,24], hxiMSg � 0:38�5� at Q2 �

4 GeV2, based on Drell-Yan and prompt photoproduction.
In this comparison, we emphasize the uncertainty in the
form of our chiral extrapolation, the current large statistical
errors in the lowest mass result, and the model assumption
that sea quarks carry 10%–20% of the momentum in the
phenomenological estimate.

V. DISCUSSION OF bg

In a chirally symmetric formulation of massless QCD,
the trace anomaly is the only contribution to Sg�x�, and its
matrix elements are renormalization group invariant. With
Wilson fermions, however, the absence of chiral symmetry
implies that the trace anomaly acquires a linearly divergent
contribution from the operator �  . Thus our matrix ele-
ments b�bare�

g should be regarded as intermediate results.
The coefficient of the counterterm, as well as its discon-
nected diagrams, will have to be computed before we can
quote a physical value for bg in the pion. Not surprisingly,

b�bare�
g shows a strong quark-mass dependence, since the

missing disconnected diagrams are suppressed by 1=m. We
note that b�bare�

g � 0:9�1� at the largest mass is of the same
order of magnitude as Ji’s phenomenological estimate of
bg in the proton [1], 0.85(5).

VI. CONCLUSION

We have computed the glue momentum fraction hxig in a
pion of mass 0:6 GeV<M� < 1:06 GeV using quenched
lattice QCD simulations. We find 37(8)(12)% at �MS �

2 GeV, a result compatible with phenomenological deter-
minations [23,24]. Although it appears difficult to achieve
precision at the percent level, the present method is appli-
cable to full QCD . Presently the largest uncertainty comes
from the normalization of the quark contribution to the
renormalized hxig, and could be reduced significantly by a
one-loop calculation. We also evaluated the bare trace
anomaly contribution to the pion’s mass. The counterterm
remains to be calculated, but it will ultimately be prefer-
able to use chiral fermions to avoid mixing with the lower
dimensional fermion operator.

Finally, we remark that the freedom of choosing a
numerically advantageous discretization of T�� can be
exploited in other contexts, for instance in thermodynamics
and the calculation of transport coefficients.
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