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Coupling the scale invariant unparticle sector to flavor physics and assuming that it remains scale
invariant I investigate its consequences in heavy flavor physics. A characteristic feature of unparticle
physics is a CP-even phase leading to novel CP violating phenomena. The phase is large, based on the
assumption that the unparticle sector is strongly self-coupled. I consider the CP asymmetry in the leptonic
decay B� ! ��� and the hadronic decay Bd ! D�D�, taking into account constraints of branching
ratios and time dependent CP asymmetries. It turns out that the CP asymmetry can be very large even for
small couplings because the unparticle interaction term has a lower scaling dimension than the four-Fermi
weak interaction term. CP asymmetries in leptonic decays such as B� ! ��� are neither experimentally
searched for nor predicted by any other model. I show that the novel CP violation is consistent with the
CPT theorem. I identify the CP compensating mode in the unparticle sector and explicitly demonstrate
the exact cancellation as demanded by the CPT theorem.
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I. INTRODUCTION

The possibility of a strongly coupled scale invariant
sector, weakly coupled to the standard model (SM), was
advocated by Georgi in [1,2]. The operators of the scale
invariant theory do not describe single particle excitations
but entail a continuous spectrum, hence the name ‘‘unpar-
ticle.’’ An interesting deconstruction of this spectrum in
terms of a particle tower was given in Ref. [3]. By parame-
trizing a variety of interactions, unparticle phenomena
were investigated at various energy scales and domains
of particle physics such as electroweak physics [4–6], the
breaking of scale invariance due to the coupling of the
unparticle to the Higgs vacuum expectation value (VEV)
[7,8], collider physics [9–11] (the latter investigates the
(un)resonance in the Drell-Yan process due to the breaking
of scale invariance by assuming a model proposed in [7]),
deep inelastic scattering [12,13], B, D-physics [14–18],
light flavor physics [19,20], g� � 2 [14,21] lepton flavor
violation [22,23], invisible decays [24], cosmology [25]
long-range interaction [26] in conjunction with a 5th force
[27,28], interaction with the Higgs and mixing with the
Higgs VEV [29] and gravity [30].

According to [1] at a very high energy scale MU �
1 TeV the particle world could be described by the SM and
a strongly self-coupled ultraviolet (UV) sector, interacting
with each other via a heavy particle of mass MU and is
described by the effective nonrenormalizable Lagrangian

 L eff �
1

MdUV��dSM�4�
U

OSMOUV !
�

�dU��dSM�4�
U

OSMOU;

(1)

and at some energy �U the UV sector flows into a strongly
coupled infrared (IR) fixed point where the UV operator

undergoes dimensional transmutation OUV !

��U�
dUV�dUOU and the coupling indicated above is � �

cU��U=MU�
dUV��dSM�4�, with cU being a matching coef-

ficient expected to be of order one.
From a Lagrangian of the type (1) either real [1] or

virtual effects [2] can be investigated from symmetry
properties and the scaling dimension dU alone. The mean-
ing of the real emission of an unparticle is at present
unclear or at least model dependent. Virtual effects are
described in a transparent way within the formalism of
perturbative field theory by the propagator, which can be
constructed from the dispersion relation

 �U�P2� � i
Z 1

0
d4xeip	xh0jTOU�x�O

y
U�0�j0i

�
Z 1

0

ds
2�

2 Im
�U�s��

s� P2 � i0
� s:t: (2)

It is assumed that P2 � 0 and P0 > 0 and s.t. stands for
possible subtraction terms due to nonconvergence in the
UV. The imaginary part is related to the local matrix
element by the optical theorem

 2 Im
�U�P2�� � jh0jOU�0�jPij2P�2 � AdU�P
2�dU�2;

(3)

whose form is dictated by the scaling dimension of OU.
The dispersion integral is then elementary [2,4],
 

�U�P2� �
AdU

2 sin�dU��
1

��P2 � i0�2�dU

!
P2>0 AdU

2 sin�dU��
e�idU�

�P2�2�dU
; (4)

for appropriate dU to be discussed below. The normaliza-
tion factor AdU , which is arbitrary up to the requirement

�U�P
2�!dU!11=P2, has been chosen to be AdU �

16�5=2

2�dU
��dU � 1=2����dU � 1���2dU���1 [1]. It is the ana-*Roman.Zwicky@durham.ac.uk
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lytic continuation of the phase space volume of dU mass-
less particles based on the observation that the matrix
element h0jOU�0�jPi behaves as such. This led to the
statement that an unparticle looks like a nonintegral num-
ber dU of massless particles [1]. The propagator (4) ex-
poses power like scaling, unlike the logarithmic scaling of
the trivial UV fixed point of QCD, and a CP-even phase
factor e�idU�, whose consequences have been investigated
in many papers and constitutes the central ingredient to the
analysis presented here. The lower bound of values for the
scaling dimension of a generic operator is dU � 1� jL �
jR, where jL�R� is the Lorentz spin, for which the four
dimensional conformal group admits unitary representa-
tions [31]. This bound assures the IR convergence of the
dispersion integral (2). The integral diverges in the UV for
dU � 2, but on the other hand the theory is described in the
UV by the non–scale invariant theory of operators OUV,
which alters the dispersion integral in the UV. In principle
there is no upper boundary but nevertheless in the literature
most often the values 1< dU < 2 are assumed without
much loss for the phenomenological analyses.

Scale invariance is expected to be broken at lower en-
ergies, first by the emergence of the weak scale, by cou-
pling the unparticle to the Higgs VEV for instance [7], and
second in concrete realizations discrete parameters, such as
the number of colors, might only allow for a near critical
behavior. The breaking of scale invariance in the IR will
change the nature of the unparticle as a final state in case it
does not decay beforehand.

The discussion up to now has been mostly formal based
on symmetries. This raises the question of whether there
are indeed such theories in four dimension that flow into a
nontrivial IR fixed point. In Ref. [1] the (perturbative)
Banks-Zaks [32] fixed-point was given as an illustrative
example. Walking technicolor constitutes another ex-
ample, c.f. [33] and references therein, where a scale
invariant window is needed in order to suppress flavor-
changing neutral currents and contributions to the S-
parameter. Very recently it was shown that half of the
supersymmetric gauge theories and around a quarter of
the nonsupersymmetric gauge theories do indeed flow
into a scale invariant phase [34]. Furthermore, it was
pointed out that in an appropriate limit the so-called higher
dimensional (HEIDI) models, c.f. [35] and references
therein, assume the unparticle spectral relation (3) and
therefore reproduce the unparticle behavior. The role of
the nontrivial anomalous dimension is mimicked through,
possibly fractional, flat extra dimensions accessible to SM
singlet fields. It is worth pointing out that these models are
renormalizable for appropriate ranges of the anomalous
dimension.

Unparticle like behavior as in the propagator (4) can be
observed in well-known theories as well. For instance the
resummation of logarithms due to the emission and ab-
sorption of the massless photon in QED leads to an electron

propagator S�p� � �0 � p6 �m�=�p2 �m2 � i0�1�� alike
(4) [36]. The analogous case of jets in QCD was considered
in Ref. [37] which can give rise to large anomalous dimen-
sions in the case where the lower and higher jet scale are
widely separated. Another example is the scale invariant
and solvable two dimensional Thirring model, where the
exact propagator S�x� � x6 =��x2 � i0�1��, which is the
two dimensional coordinate space version of the unparticle
propagator (4), c.f. Sec. B of the appendix.

I will investigate the effects of the CP-even phase in the
propagator through CP violation in B physics. I analyze
leptonic decays of the type B! ��, where the SM and
beyond the standard models do not predict a CP asymme-
try and Bd ! D�D�, which is further motivated by the
unexpectedly large CP asymmetry measured by the Belle
collaboration [38].

The effective Lagrangian is parametrized as follows1:

 L eff �
�UDS�P�

�dU�1
U

� �U��5�D�OU �
��lS�P�

�dU�1
U

� ����5�l�OU

where U � �u; c; t�, D � �d; s; b�, � � ��e; ��; ���, and
l � �e;�; �� are summations over the families. The weak
(CP-odd) phases are parametrized as deviation from the
phases of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
Vud and analogously the leptons as deviations from the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U�l.

 �UDS � ei�
S
ud j�UDS j; �S

ud � arg
Vud� � ��
S
ud: (5)

The Lagrangian is a copy of the charged current sector of
the SM with scalar instead of vectorial interactions. The
unparticle therefore plays the role of the charged Higgs
rather than the W boson. This allows me to apply, up to
some level, the same tools in the unparticle sector as in the
SM.

I shall also investigate how large the impact of unpar-
ticles can be without conflicting with branching ratio and
indirect CP asymmetry predictions.

The paper is organized as follows. In Sec. II the leptonic
decay B! �� and Bd ! D�D� are investigated followed
by a discussion of similar channels. In Sec. III I verify a
constraint on CP violation from CPT-invariance; namely,
that the partial sum of particle and antiparticle rates, with
final states rescattering into each other, are equal. In
Sec. IV I present the dimensional analysis of [7] adapted
to a weak process. The paper ends with a summary and
conclusions in Sec. V.

In this paper I shall adopt �U � 1 TeV as the scale of
the IR fixed point. It is not difficult to rescale the results to

1The channel B� ! ��� is mediated by a �P
 S� � �P
 P�
structure whereas Bd ! D�D� decays via a �S
 P� interaction.
The vector and axial couplings are discussed in the text above
and I do not consider tensor couplings since they do not couple
to single scalar particles.
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a different scale; in the relevant places ��U=1 TeV� will
be shown explicitly in the formulas.

II. A LEPTONIC AND A HADRONIC DECAY

A. Formulas for CP violation

In this subsection I am giving the formulas for CP
violation used in the remaining part. I parametrize a decay
amplitude with strong CP-even (strong) phases �i and
CP-odd (weak) phases �i as

 

�A� �B! X� � A1e
i�1ei�1 � A2e

i�2ei�2 : (6)

For a two body decay, as used in this paper, the branching
ratio B and the CP averaged branching ratios are given by

 B �B0f�; f� � �1� 2� cos��12� �12� ��2�;

�B�B0 �f�; �f� � �1� 2� cos��12�cos��12� ��2�;

��
jA2j

2

jA1j
2 ; B0 � �� �B�

1

16�m3
B

�1=2�m2
B;m

2
C;m

2
D�jA1j

2;

(7)

where ��a;b;c��a2�b2�c2�2�ab�ac�bc�, �12�
�1��2, and �12 � �1 � �2. The (time dependent) CP
asymmetry for B� d is defined as
 

ACP�Bd ! f� �
�
 �B! f� � �
B! �f�

�
 �B! f� � �
B! �f�

� Sf sin��Mt� � Cf cos��Mt�; (8)

and the direct and the time dependent CP asymmetries C
and S are then given by
 

C �
2�
�f�

sin��12� sin��12�;

S � 	f
�1
�f�

�sin��d � 2�1� � 2� cos��12� sin��d ��12�

� �2 sin��d � 2�2��; (9)

where 	f is the CP eigenvalue of the final state f.

B. B� ! ���

In the standard model charged pseudoscalars decaying
to a lepton and a neutrino are of particular interest because
of their simple dependence on the pseudoscalar decay
constant and the CKM matrix element.

The novelty with an additional unparticle amplitude is a
CP asymmetry. I will investigate how large this asymmetry
can be, remaining consistent with the branching ratio
measurement. The unparticle amplitude is the same tree
level process as in the SM where the unparticle simply
replaces the W boson c.f. Fig. 1. The unparticle is prop-
agating at the scale mB and I therefore assume that the
scale invariant sector extends down to the mB scale.

The additional unparticle amplitude leads to a slight
complication. As a matter of fact in experiment one does

not observe the neutrino flavor but an inclusive measure-
ment on the neutrino flavor is performed since the neutri-
nos are not detectable. In the case where there is only one
amplitude, as in the SM, unitarity of the PMNS matrix
hides this fact from the final formula. This is not the case
for the unparticle amplitude and I shall therefore derive
formulas for B� ! ��� �

P
lB
� ! ���l via B� !

���l. The amplitude is the sum of two incoherent terms
of opposite parity in the final state2

 

A�B� ! ���l� � h��ljLeffj �Bi

� i
GF���

2
p V�ubU

�
��lfBm�


 �
 �����1��S
��le

�idU�e�i�
S
l �

� 
 ���5���1��P
��le

�idU�e�i�
P
l ��;

(10)

where �D
l � ��P

ub � ��
D
��l for D � �S; P�, l � �e;�; ��.

The B-meson decay constant is defined as
mbh0j �bi�5ujB�i � fBm2

B, where I neglect isospin break-
ing effects. The ratio of unparticle to SM amplitude is

 �D
��l �

j���lD j

jU��l j
~��� � rDl

~���;

~��� �
j�ub
P j

jVubj

AdU
2 sin�dU��

m2
B

mbm�

�GF=
���
2
p
��1

m2
B

�
m2
B

�2
U

�
dU�1

:

(11)

The enhancement factor
���
2
p
�GFm

2
B� � 5 	 103 is peculiar to

tree level weak processes. I will now make a simplifying
assumption in order to simplify the analysis. I impose the
left-handed chirality on the unparticle sector, i.e., ���lS �

���lP and (��� � ��S;P��� , ���� � ��S
��, rl � r�S;P�l ). This

means that the amplitudes for opposite parity give the same
result and this allows me to combine the two amplitudes
into one. The branching fractions to a specific neutrino
flavor final state are

FIG. 1. (left) SM diagram for B! ��. (right) Unparticle
diagram with CP-odd phase eidU�. The unparticle is denoted
by a double line.

2The amplitude (10) displays the famous helicity suppression
in the SM due to its chiral structure which manifests itself in the
fact that the amplitude is proportional to the lepton mass. For a
pseudoscalar coupling, as in the charged Higgs model, or the one
used here, the helicity suppression is relieved as can be inferred
from Eq. (11).
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 B �B� ! ���l� � BSM
�� jU��l j

2f���l

�B�B� ! ���l� � BSM
��l jU��l j

2 �f���l
;

(12)

with f and �f as in (7), �12 � ��l, �12 � �dU�. The
familiar SM branching fraction reads

 B SM
�� � ��B��

G2
F

8�
jVubj

2f2
BmBm

2
�

�
1�

m2
�

m2
B

�
2

(13)

and does not depend on the neutrino flavor. Please note that
in the SM BSM

�� �
�BSM
�� . The experimentally tractable or

neutrino inclusive branching fraction is

 

B�B� ! ���� �
X
l

B�B� ! ���l�

� BSM
��

X
l

jU��l j
2�1� 2rl ~���


 cos��l � dU�� � �rl ~����
2�

� BSM
�� �1�

X
l

jU��l j
2�2rl ~���


 cos��l � dU�� � �rl ~����
2�: (14)

The formula could be further simplified if the rl were
independent of l, which I shall assume shortly below.
The CP averaged branching fraction is

 

�B�B� ! ���� � BSM
�� F

� BSM
�� �1�

X
l

jU��l j
2�2rl ~���


 cos��l� cos�dU�� � �rl ~����
2��: (15)

The CP asymmetry assumes the following form

 A CP���� �
��B� ! �� ��� � ��B� ! ����
��B� ! �� ��� � ��B� ! ����

�
2~���

F
sin�dU��

X
l

sin��l�rljU��l j
2; (16)

where F is implicitly defined in Eq. (15). Let me note that
the CP violation encountered here is proportional to
�Im
V�ub�

ub
P U

�
������S �, which is hidden in the formula

above, and is the product of two quadratic reparametriza-
tion invariants. The effect is entirely proportional to the
sine of the phase difference between the CKM (PMNS) and
the unparticle flavor sector and can therefore not occur in
the SM. In order to do a qualitative assessment I shall study
the case where there is no flavor dependent perturbation in
the neutrino sector and therefore drop the label l. The
formulas for the CP averaged branching ratio and the CP
asymmetry then simplify to

 

�B�B� ! ���� ! BSM
�� �1� 2��� cos���


 cos�dU�� � �2
���

!
����=2

BSM
�� �1��2

���;

ACP���� !
2��� sin��� sin�dU��

1� 2��� cos��� cos�dU�� ��2
��

!
����=2�2j���jj sin�dU��j

1� �2
��

; (17)

where in the last step I have simplified the formulas further
by setting the weak phase difference to 90(270�).3 N.B. in
the notation used in Eq. (16) ACP���� � �C��. This
choice maximizes the CP violation for appropriate values
for ��l. Before I am able to constrain the CP violation with
the rate I have to give the theoretical and experimental
results of the latter.

The following hadronic parameters, �B
�
� 1:643 ps,

fB � �189� 27� MeV a lattice average from [39], and
jVubj � 3:64�24� 	 10�3 from the fit to the angles of the
CKM triangle [39], are used to estimate the SM branching
fraction

 B �B� ! ����SM
theory � 83�40� 	 10�6: (18)

I have doubled the uncertainty due to jVubj. This estimate
has to be compared with the measurements at the
B-factories

 (19)

1. Weak phase � � 90�270��, flavor independent
perturbation neutrino sector

In Fig. 2 (left) the branching fraction (17) is plotted as a
function of ��� with uncertainty taken from the SM esti-
mate (18) at ��� � 0. The shaded band corresponds to the
HFAG bounds in Eq. (19). The CP asymmetry is plotted to
the right of that figure. The branching ratio does not set
limits on the amount of CP violation, demanding the
uncertainty bands to be tangent at worst j���j< 1:8.
Even in the case where the HFAG and theory uncertainty
are halved, the value j���j � 1, at which the CP asymme-
try is maximal, is still consistent.

3N.B. sin�dU��< 0 for 1< dU < 2 as assumed throughout
this paper. This is the reason for the absolute values in the
equation above.
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2. Weak phase � � 90�270��, flavor independent
perturbation neutrino sector

In this subsection I shall repeat the analysis for a general
weak phase difference and show two dimensional plots in
the variables ��; dU� for different ratios of effective cou-
plings. The quantity ��� (11), used in the previous para-
graph, depends on the ratio of effective coupling and
scaling dimension as follows:

 ��� � 
��
AdU

2 sin�dU��
m2
B

mbm�

�GF=
���
2
p
��1

m2
B

�
m2
B

�2
U

�
dU�1

’ 2300
�
2:8 	 10�5 �U

1 TeV

�
dU�1 AdU

sin�dU��

��;

where

 
�� �
j�ub
P �

��
�S;P�j

jVubU��j
: (20)

In Fig. 3 (right) the CP asymmetry C�� is plotted as a
function of ��; dU� for 
�� � �100; 10�2; 10�4�. The pat-
tern is clearly regular and the condition for a large asym-
metry is j���j � 1. For smaller values of 
�� the amount of
possible CP violation is decreasing because the condition
mentioned above cannot be satisfied. The constraint on the
branching fraction, Fig. 3 (left), is defined by the following
acceptance function:
 

A�dU; �; 
� � �1� r�dU; �; 
����1� r�dU; �; 
��;

r�dU; �; 
� �
1

�B
jBSM

�� �1� 2��� cos��� cos�dU��

��2
��� �BHFAGj; (21)

for BSM
�� � 83 	 10�6, BHFAG � 132 	 10�6, and for the

quantity �B I add the uncertainty of the SM prediction
and the HFAG value linearly to �B ’ 80 	 10�6. This
function assumes values between 0 and 1, where 1 signifies
maximal agreement and 0 means that the point is excluded;
or in other words I consider predictions with a deviation
larger than �B as excluded.

For smaller values of 
�� the linear term for the branch-
ing ratio in Eq. (17) becomes dominant and a regular
pattern in cos��� emerges. Note that since the predicted
branching fraction is lower than the central value from
experiment, the weak angle � � 180� is currently disfa-
vored since it would lower the theory prediction even
more.

C. Discussion and remarks onB! ��,D! ��,Bs !
����, etc.

It has been seen that applying the unparticle scenario to
the leptonic decay B! �� leads to CP violation. There is
no experimental data available that gives both the negative
and positive charged semileptonic decay rates, i.e., quotes
(bounds) on CP asymmetry in a semileptonic decay.

The current data on B! �� do not allow one to set
bounds on the amount of possible CP violation. The
amount of events at BABAR and Belle are of the order
�20. An improvement in theory, in particular, on the
B-meson decay constant, and the large statistics of a
Super B-factory would of course improve the situation.
Unfortunately the decay B� ! ��� will not be possible or
competitive at CERN LHCb because of the neutrino final
state and the intricacies in the � detection, whether
D�Ds� ! ��;��� decays are possible at LHCb is currently
under investigation.

I shall comment on other leptonic modes. They are all
described by the same formula (13) for B! �� with
obvious substitutions for Vub, fB, mB, and m�. I may also
consider the D-decays assuming that the scale invariant
sector extends to�2 GeV. The decay D� ! ��� is mea-
sured by CLEO [40]; the �50 events lead to a 13%
accuracy. The decay constant fD� � 220�20� MeV is
taken as an average value of theory determinations from
the table in [40] and jVcdj � 0:227 [41]. The Cabibbo
allowed decays D�s ! ��� are measured as well [41],
although with less precision. The decay constant fD�s �
264�36� is obtained from an average of fD�s =fD� �
1:20�5� of the table in [40] and jVcsj � 0:957�17��93�
[41]. A summary of the experimental [41] and theory
predictions is

0.5 1 1.5 2

50

75

100

125

150

175

200
B B 10 6B B ν 10 6

-2 -1 1 2

-1

-0.5

0.5

1

C B ν sin dUπ

FIG. 2 (color online). A weak phase difference � � 90�270�� is assumed here for ��� positive(negative). (left) Branching fraction
(17) as a function of ���. The black bands correspond to the SM estimate (18) at ��� � 0. The shaded band corresponds to the HFAG
bounds in Eq. (19). (right) The CP asymmetry as a function of ��� in units of j sin�dU��j. The scale �U � 1 TeV is chosen here. N.B.
in the notation used in Eq. (16) ACP���� � �C��.
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FIG. 3 (color online). A horizontal line of figures corresponds to different fractions of effective couplings 
 � 100;�2;�4 as defined in
(21). (left) Constraints on the ��; dU� parameter space from the branching fraction. The values in the dark regions are allowed whereas
white ones are excluded, c.f. Eq. (21) for a more details. (right) The CP asymmetry as a function of ��; dU�. The scale �U � 1 TeV is
chosen here.
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B! �� B! �� B! e�

Experiment 132�49� 	 10�6 <17 	 10�7 <9:8 	 10�6

Theory 83�50%� 	 10�6 3:7�50%� 	 10�7 8:4�50%� 	 10�12

D! �� D! �� D! e�
Experiment <2:1 	 10�3 4:4�7� 	 10�4 <2:4 	 10�5

Theory 1:1�20%� 	 10�3 4:3�20%� 	 10�4 1:0�20%� 	 10�10

Ds ! �� Ds ! �� Ds ! e�
Experiment 6:4�15� 	 10�2 6:3�18� 	 10�3 	 	 	

Theory 5:5�30%� 	 10�2 5:7�30%� 	 10�3 1:3�30%� 	 10�7

The B decays are predicted to 50% due to uncertainties in
fB and jVubj, whereas the D�Ds� decays have a lower
uncertainty 20(30)% due to fD�fDs

�. The helicity suppres-
sion in the SM is apparent from the table.

Repeating the analysis for D� ! ���, as shown in
Fig. 2, I obtain that j�D!��j< 0:65 which still allows
for a rather large CP asymmetry, jCD!��j< 0:9.

The prediction of these modes in the SM is solid and a
significant deviation would be a clear hint for new physics.
In particular one expects larger rates in models where the
helicity suppression is relieved. An example is the charged
Higgs or the effective Lagrangian used in this paper. The
charged Higgs does not predict a significantCP asymmetry
whereas in unparticle models it is possible and therefore a
CP asymmetry could be used to discriminate between the
models.

I would also like to mention the decay K� ! ���; the
KLOE collaboration reports �860 000 events and a
branching ratio B�K� ! ������� � 0:6366�9��15� [42].
On the one hand it seems unreasonable that the scale
invariant sector could extend to �500 MeV but on the
other this channel has the largest statistics. If one assumes
that theory predicts the rate to 5% (10%) this would
roughly bound j�K!��j< 20�30� and the CP asymmetry
to jCK!��j< 0:4�0:55�.

Finally a comment about B�d;s� ! ����. This channel
is rare since it is a flavor-changing neutral decay further
suppressed by the coupling of the Z and the helicity of final
states, B�B�d;s� ! �����SM � 10�10�10�8�. The branch-
ing ratio is not yet measured; the bounds are about one and
a half orders of magnitude away from the SM prediction.
An analysis along the lines of B! �� does not make sense
since there are no direct constraints in that channel. A
possibility would be to combine it with constraints from
�M�d;s�, which are measured, as advocated in Ref. [15].

D. Bd ! D�D�; scale invariant sector at 2 GeV

The decay Bd ! D�D� corresponds to a b! �ccd tran-
sition at the quark level and is color allowed. It has the
same quark level transition as Bd ! J=��0 but two com-
plications arise as compared to the latter. First, since it is
color allowed it receives sizable contributions from a
gluonic penguin [43] and second the final states combine
into a sum of isospin I � 0 and I � 1 waves which have in

general different final state interaction phases. Ultimately I
will neglect the penguins in my analysis, to be discussed
below. My motivation to investigate the Bd ! D�D� is
driven by the measurement of a largeCP asymmetry by the
Belle collaboration [38]. The SM expectation is CSM

D�D� ’

�0:05.

 (22)

It has to be said that the Belle result is somewhat moder-
ated by a significantly lower value from BABAR [44] with
opposite sign. Note that the central values from Belle also
violate the general bound C2 � S2 � 1.

It shall be my goal to see how large a CP asymmetry
CD�D� the unparticles scenario can generate and still be
consistent with the branching fraction and the time depen-
dent CP asymmetry.

In my analysis the unparticle will replace the W in the
tree level amplitude in, c.f. Fig. 4 (left). I therefore assume
that the scale invariant sector extends to the D-meson scale
�2 GeV.

I shall first reconsider the situation in the SM before I
move on to the unparticles. Writing the amplitude as the
sum of the tree and penguin topology
 

A�Bd ! D�D�� �AT �AP

�AT�1� ei�PTei�rPT�; (23)

the ratio of penguin to tree amplitude rPT can then be
estimated by the Bander-Silverman-Soni mechanism

cb

−c

d

db

c

−c

FIG. 4. b! d �cc (left) tree diagram, (right) penguin diagram
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[43], c.f. [45] or [46] for an updated analysis,

 �PT ’ 0:08; �PT ’ 205�: (24)

This allows one to obtain the asymmetries from (9),

 CSM
D�D� ’ �0:05; SSM

D�D� ’ �0:78: (25)

Comparing with the experimental results (22) I infer that
the SM is in good agreement with the time dependent CP
asymmetry SD�D� . The direct CP asymmetry CD�D� ’
0:05 is about 2 standard deviations lower than the HFAG
value 0.37(17). In view of the nonconsistency of the two
measurements it is certainly wise to wait for updates from
the B-factories. I will in the following neglect the penguin
contribution in regard to its moderate size (24) in the SM. I
will also neglect the ‘‘unparticle penguin.’’ The ratio of the
unparticle penguin amplitude to the unparticle amplitude is
expected to be of the same size as in the SM, unless the up-
type transition is enhanced by the effective couplings. I am
therefore implicitly assuming that j�ub

�S;P��
ud
�S;P�j &

j�cb
�S;P��

cd
�S;P�j.

I will describe the amplitude Bd ! D�D� within the
naive factorization approximation. Naive factorization de-
scribes color allowed modes (topology as in Fig. 4 to the
left) like B! ���� and Bd ! D��� with at least one
fast or light meson with an accuracy of around 10–20%
level. For Bd ! D�D�, factorization in general and naive
factorization are not expected to hold. The overlap of the
emitted D�-meson with the Bd ! D� transition is ex-
pected to be relatively large. However it is empirically
observed that naive factorization still works reasonably
well. I shall account for final state interactions, not in-
cluded in naive factorization, by an isospin analysis of
�Bd ! D�D� [45] adapted from �B;K� ! ��. Two out

of the three rates from the isospin triangle have been
measured,

 

�B�Bd ! D�D�� � 1:9�6� 	 10�4;

�B�B� ! �D0D�� � 4:8�1� 	 10�4;
(26)

which allow one to extract

 cos���1 � �0�=2� ’ �0:63�15�; (27)

the cosine of the strong phase difference of the isospin 0
and 1 up to a sign. The amplitude for Bd ! D�D� is
proportional to the latter,
 

A�Bd ! D�D�� �
GF���

2
p V�cbVcda1fD��m

2
B �m

2
D�f

BD
� �m

2
D�

�m2
Df

BD
� �m

2
D�� cos���1 � �0�=2�


 ei��1��0�=2

�ASM
DD; (28)

where a1 � C2 � C1=3 ’ 1 is the color allowed combina-
tion of tree level Wilson coefficients and the D-meson

decay constant is defined as mch0j �ci�5djD
�i � fDm

2
D,

where I neglect effects due to isospin breaking. The B!
D form factor can be parametrized by use of Lorentz
covariance as

 hDj �b��cjBi � fBD� �q
2��pB � pD�� � fBD� �q2�q�; (29)

with momentum transfer q � pB � pD. The form factors

are related to the famous Isgur-Wise function fBD� �q
2� ��������������

mB�mD
4mBmD

q
	�w�, fBD� �q

2� � �
�������������
mB�mD
4mBmD

q
	�w� in the heavy

quark limit. Here w � v 	 v0 � �m2
B �m

2
D �

q2�=�2mBmD�. Whereas the normalization of the Isgur-
Wise function 	�1� � 1 follows from charge normalization
in the heavy quark limit the values around maximum recoil
are much less known. I shall take the value fBD� �0� � 0:54
from [47] and scale it up to q2 � m2

D by use of a single pole
model [48], 	�w� �

����������������������
2=�w� 1�

p
�wmax � w�m2

B�c
��=�w�

w�m2
B�c
��. The B�c-meson has the correct quantum numbers

JP � 1� and its mass is the same in the heavy quark limit
as mBc � 6:29 GeV [41]. I obtain f��m

2
D� ’ 0:7. With

fD � 220 MeV I get

 

�B�Bd ! D�D��SM
theory � 1:7�10� 	 10�4 (30)

as a theory estimate, where the bulk of the uncertainty
quoted is due to the isospin final state interaction phases.
This estimate has to be compared to the experimental value
[41]

 

�B�Bd ! D�D��PDG � 1:9�6� 	 10�4: (31)

The agreement seems accidentally good in regard to the
approximations made.

As in the previous section I parametrize the amplitude

 A �Bd ! D�D�� �ASM
DD�1��DDe�i�Ue�i�� (32)

with ASM
DD as given in (28) and relative weak phase � �

��cb � ��cd. The ratio of SM to unparticle amplitude is

 

�DD �
j�cb
S �

cd
P j

jVcbVcdj

1

a1

AdU
2 sin�dU��

m2
D

mc�mb �mc�



�GF=

���
2
p
��1

m2
D

�
m2
D

�2
U

�
dU�1

: (33)

As in B! �nu there is an enhancement factor���
2
p
�GFm

2
D�
�1 � 3 	 104 which is peculiar to weak tree

level processes. Note that, unlike for B! ��, the negative
parity of the D-meson selects only the �cdP coupling in the
final vertex. The observables are obtained from Eq. (9)
with 	D�D� � 1,�d � 2�,�1 � 0,�2 � ��, and �12 �
dU�:
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BDD � BSM
DDf�DD

; �BDD � BSM
DD

�f�DD
;

CDD �
2�DD

�f�DD

sin
�� sin
dU��;

SDD �
�1
�f�DD

�sin
2�� � 2�DD cos
dU�� sin
2����

��2
DD sin
2�� 2���; (34)

and

 B SM
DD � ��Bd�

G2
F

32�mB
a2

1f
2
D��m

2
B �m

2
D�f

BD
� �m

2
D�

�m2
Df

BD
� �m2

D��
2jV�cbVcdj

2: (35)

1. Weak phase � � 90�270��

In order to look for maximal CP violation one may again
set the weak phase difference to 90(270�) in the formulas
in Eq. (34). In Fig. 5 (left) the branching fraction is plotted
as a function of �DD with uncertainty taken from the SM
estimate (30) at �DD � 0. The shaded band corresponds to
the HFAG bounds in Eq. (31). The new feature as com-
pared to the B! �� analysis is the constraint from SD�D�
which corresponds to the figure in the middle. The CP
asymmetry is plotted to the right of that figure. Once more
the branching ratio does not set limits on the amounts of
CP violation, in fact the uncertainties are very similar as in
B! ��. Demanding the uncertainty bands to be tangential
at worst results in j�DDj< 1:5. The constraints from
SD�D� do depend on the scaling dimension. The parameter
dU � 1:1, for example, seems slightly disfavored as com-
pared to the value dU � 1:9.

2. Weak phase � � 90�270��

I investigate the two dimensional parameter space
��; dU� for different ratios of effective couplings. These
quantities relate to �DD (33) as follows:

 �DD � 
DD

AdU
2 sin�dU��

m2
D

mc�mb �mc�

�GF=
���
2
p
��1

m2
D




�
m2
D

�2
U

�
dU�1

’ 17 	 103

�
3:5 	 10�6 �U

1 TeV

�
dU�1 AdU

sin�dU��

DD;

where

 
DD �
j�cb
S �

cd
P j

jVcbVcdj
: (36)

In Fig. 6 (right) CP asymmetry CD�D� is plotted as a
function ��; dU� for 
DD � �100;�2;�4�. The pattern is
very similar in its form to B! ��. A large asymmetry is
obtained for j���j � 1, which cannot be attained for
smaller values 
DD. The constraint on the branching frac-
tion, Fig. 3 (left), and the CP asymmetry SD�D� are eval-
uated with the same kind of acceptance function as for
B! �� (21). The corresponding values for the CP asym-
metry are SSM

D�D� � � sin�2�� � 0:69, SHFAG � �0:75
and �S � 0:52 corresponds to 2 standard deviations. The
values for the branching fraction are BSM

D�D� � 1:7 	 10�4,
BHFAG
D�D� � 1:9 	 10�4 and �B � 1:6 corresponds to linear

addition of the theoretical and experimental uncertainty.
A qualitative result that can be inferred from Fig. 3 is

that the parameter space of a large positive CP asymmetry
CD�D� is disfavored by the bounds from the SD�D� . A
negative CD�D� demands a weak phase�< 180� and then
the linear and quadratic terms in SD�D� add constructively
and are in conflict with the consistent result between the
SM and experiment in this observable. As for B! �� for
small 
DD the linear terms dominate the quadratic ones and
a regular pattern in cos��� and sin�2���� emerges.

E. Discussion of Bd ! D�D� and remarks on U-spin
and color related channels

A large CP asymmetry CD�D� would be a rather puz-
zling fact, as for instance discussed in Ref. [49]. One is led
to suspect that the gluonic penguin Bd ! D �qq with q � c

0.5 1 1.5 2
0.5

2

2.5

3

4
B B D D 10 4

0.5 1 1.5

1.5

2

3

3.5

4
B B D D 10 4

-2 -1 1 2

-1

0.5

1

S B D D

-2 -1 1 2

-1

-0.5

1

S B D D

-2 -1 1 2

-1

-0.5

1

C B D D sin duΠ

-2 -1 1 2

-1

-0.5

0.5

1

C B D D sin duπ

FIG. 5 (color online). A weak phase difference � � 90�270�� is assumed here for �DD positive (negative). (left) Branching fraction
(34) as a function of �DD. The black bands correspond to the SM estimate (30) at �DD � 0. The shaded band corresponds to the HFAG
bounds in Eq. (31). (middle) Time dependent CP asymmetry SD�D� as a function of �DD for dU � 1:1, 1.5, 1.9 where the dashes get
shorter for larger values of dU. The interpolation between those values is fairly smooth. (right) The CP asymmetry as a function of
�DD in units of j sin�dU��j.
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might be enhanced by new physics. This scenario would or
should lead to enhanced penguin amplitudes for q �
�u; d; s� as well and enter Bd ! ���;KK� in disagreement
with the B-factory data.

It has been seen that an unparticle scenario can lead, for
appropriate parameters, to enhanced CP violation. One
might wonder whether similar results should not also
show up in U-spin (s$ d) and color related channels.
The plots in Fig. 6 indicate that the CP asymmetry S in
general does not necessarily receive large contributions.
This can be inferred from Eq. (34) or by noting that the
unparticles just contribute to a large SM background from
sin�2��. I shall therefore focus on the CP asymmetry C.
Let me note however that the situation for Bs decays is
different since the mixing phase �s ’ 0 (�d ’ 2�) in the
SM and the contributions of unparticles would be not be
shielded by a large SM value.

The color related or color suppressed channel of Bd !
D�D� is B! J=��0. The CP asymmetry has been mea-

suredCJ=��0
� �0:11�20� [41], which is not conclusive in

regard to its size. In the color suppressed modes the non-
factorizable contributions are enhanced due to different
combinations of Wilson coefficients (typically�2–3 larger
than the factorizable amplitude) and have large strong
phases. On the practical side it is harder to estimate them
reliably in the SM and even more in the unparticle sce-
nario, where the unparticle is dynamical as compared to the
contracted W-boson propagator in the SM. The strong
phases and the different hierarchy between factorizable
and nonfactorizable contributions in the SM and the un-
particle scenario4 make it impossible to draw conclusions
without explicit calculations.

FIG. 6 (color online). The observables with fractions of effective couplings 
 � 100;�2;�4, as defined in (36), are plotted from the top
of the figure to the bottom. Constraints on the ��; dU� parameter space from (left) the branching fraction and (middle) the CP
asymmetry SD�D� (middle). The values in the dark regions are allowed whereas white ones are disfavored, c.f. text for more details.
(right) The CP asymmetry CD�D� as a function of ��; dU�. The scale �U � 1 TeV is chosen here.

4A parametric estimate gives that the nonfactorizable contri-
butions in the unparticle scenario are suppressed by a factor
2m2

D=�m
2
J=� �m

2
B� � 0:2 as compared to the SM.
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The U-spin related transitions b! �ccs are CKM en-
hanced and therefore statistics should make them more
attractive. In principle there is no reason that generic new
physics respects the CKM hierarchy and U-spin. In the
unparticle scenario there is no principle that dictates a
CKM-like hierarchy in the coefficients �ud in the effective
Lagrangian (5). Therefore they are not necessarily of major
concern. Let me nevertheless discuss them. The gold plated
decay B! J=�Ks is also color-suppressed. The measure-
ment of the CP asymmetry SJ=�Ks � sin�2�� has allowed
determination of the angle � in the SM, whereas the CP
asymmetry CJ=�Ks � 0 is consistent with experiment. This
mode is highly consistent with the SM or more precisely
with one dominant amplitude. The branching fraction of
the color allowed decay Bd ! D�D�s has been measured
but no CP asymmetry has been reported, presumably
because it does not exhibit CP violation in mixing. If the
Belle CP asymmetry in CD�D� gets confirmed a look at the
CP asymmetry appears mandatory.

In summary the most interesting parallel channel is
probably Bd ! J=��0, and the improvement of the mea-
surement in CJ=��0

should be watched along with CD�D� .
In the scenario I described I would generically expect a
large CP asymmetry CD�D� to be accompanied by a large
asymmetry in CJ=��0

. It is a serious point of criticism, but
on the other hand the experimental result is not conclusive
and in theory there might be cancellations between the
strong phase eidU� and the phase from the nonfactorizable
interactions. The time dependent CP asymmetries S are
shielded by large SM backgrounds for the Bd-meson,
whereas in the Bs system the SM expectation is S� 0 in
many cases (e.g., Bs ! J=��) and the unparticle scenario
might reveal itself.

It has been seen that CP violation in Bd ! D�D� and
B! �� can be maximal in the unparticle scenario. After
this phenomenological section I shall elaborate on whether
a CP asymmetry in leptonic decays is possible. Thereafter
I shall turn to the question of whether the scale invariance
at the TeV-scale or near scale invariance could still be
effective at heavy flavor scales �5 GeV.

III. CONSTRAINTS FROM CPT ON (NEW) CP
VIOLATION

The invariance under CPT symmetry imposes con-
straints on the amount of CP violation; it enforces the
equality of the partial sum of rates of particles and anti-
particles, to be made more precise below. Neither the SM
nor any well-known new physics model predict CP viola-
tion in leptonic decays such as B! �� studied in this
paper. The aim of this section is to verify explicitly whether
the CP violation is consistent with the constraints from
CPT.

Let me note that I expect that CPT invariance holds for a
theory with a local Hermitian Lagrangian such as in
Eq. (5). The explicit verification of CPT invariance de-

mands that �L�x���1 � L��x�y � L��x�, where � �
CPT denotes the combined CPT transformation. The
Lagrangian (5) fulfills this requirement provided that
�OU�x��

�1 � OyU��x�, which I cannot verify explicitly
since I do not have equations of motion or a Lagrangian for
the unparticle field at hand from where I would infer the
transformation under C, P, and T. There also exists a
general proof of the CPT theorem in the framework of
axiomatic field theory [50] based on general principles and
axioms such as Lorentz invariance, uniqueness of the
vacuum, and causality of field commutators. The unpar-
ticle field does obey causality; the commutator for a scale
invariant field can be calculated as a function of the its
scaling dimension c.f. the appendix.

Summarizing, although I am not able to verify CPT
invariance I at the same time do not find any indications
why it should be violated.

It is well-known that CPT symmetry implies equality of
the decay rates of particles and antiparticles. In practice
there is even a stronger consequence, e.g., [51–53] or [54]
where it was applied to charmless B-decays. The final state
particles can be divided into subclasses of particles which
rescatter into each other. It is a fact that the sum of the
partial rates of these subclasses for a particle and its
antiparticle must be the same. This can be inferred from
the following relationship [52] between the weak decay
amplitudes of a B-meson and its antiparticle �B to a final
state fx:

 h �fxjHdecayj �Bi� �
X
i

hfxjSyjfiihfijHdecayjBi; (37)

where Hdecay corresponds to the weak transition operator
and S is the scattering matrix. This relation is derived from
the completeness relation 1 �

P
ijfiihfij and the fact that

the CPT-operator is antiunitary. An equivalent but alter-
native relation on the level of decay rates can be found in
Ref. [51]. From Eq. (37) it is then inferred that all states fj
which rescatter into fx form a subclass whose partial rates
of particles and antiparticles sum to zero,

 

X
i2I

���B! fi� � 0; hfijSyjfji � 0; i; j 2 I;

(38)

where

 ���B! f� � ��B! f� � �� �B! �f�: (39)

The exact relation between the CP asymmetry and the
difference of decay rates can be inferred from Eq. (8).
Whereas the new CP asymmetry generated by
ACP�D

�D�� � ���Bd ! D�D�� may be compensated
by ���Bd ! �D0D0� for instance, it is at first sight not clear
which mode would compensate for the new CP asymmetry
in ACP���� � ���B� ! ����. Among the SM final
states there does not seem to be an appropriate candidate.
One is led to look in the unparticle sector for a suitable
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candidate. A firm hint can be gained by counting the
coupling constants. Denoting the weak coupling by v and
the unparticle coupling by � (5), the CP asymmetry, which
arises due to an interference of the two amplitudes depicted
in Fig. 1, is of the orderO��2v2�. The processesB� !U�

with an interference of the two amplitudes depicted in
Fig. 7 have the same counting in the coupling constants.
One amplitude corresponds to a tree decay and the other
one incorporates a virtual correction due to a fermion loop
of the � and the �. The process B� !U� is kinematically
allowed since the unparticle has a continuous mass spec-
trum. It does not proceed at resonance, but rather behaves
like a multiparticle final state and is a realization of
Georgi’s observation that the unparticle field in a final state
behaves like a nonintegral number dU of massless
particles.

I shall now explicitly verify the CPT constraint

 ���B� ! ���� � ���B� !U�����loop � 0: (40)

For the sake of simplicity I shall assume as previously that
there is no flavor dependent perturbation in the neutrino
sector and that ���P � ��

��
S in (5). The formula for the first

difference can be read off from Eq. (17),

 

���B� ! ���� � �4BSM
�� sin��� sin�dU�����

�� sin���
GF

2
���
2
p
�

mB

mb
m�f2

B

�
1�

m2
�

m2
B

�
2


 j�S���PubVubU��jAdU

�
m2
B

�2
U

�
dU�1

: (41)

Note that the cancellation of the phase factor sin�dU�� by
the same factor in the denominator, as previously men-
tioned, is crucial for the cancellation here since the graphs
in Fig. 7 do not involve this factor. The amplitude of the
graph in Fig. 7 to the left is

 

A�B� !U��Fig:7�left� � �ub�
P A1

�
�ub�
P

�dU�1

m2
B

mb
fBhPjO

y
Uj0i (42)

and the amplitude of the graph to the right of Fig. 7 is

 

A�B� !U��Fig:7�right� � ����S V�ubU
�
��A2

�
����S

�dU�1
i
GF���

2
p V�ubU

�
��m�fB


�S�P�m2
B�hPjO

y
Uj0i; (43)

where I have factored out the weak parameters and the rest
of the amplitude is parametrized in terms of the variables
A�1;2�. The fermion loop �S�P is given by the correlation
function
 

�S�P�p
2
B � m2

B� � i
Z
d4xe�ipB	xh0jT
 ���1� �5����x�


 
 ���1� �5����0�j0i: (44)

The decay rate is calculated from

 � �
jAj2

2mB

Z
d� with

Z
d� � AdU�m

2
B�
dU�2 (45)

being the phase space volume. The difference of decay
rates is given by
 

���B� !U�����loop � 4 sin���Im
A�
1A2�


 AdU�m
2
B�
dU�2: (46)

Since A1 is real only the imaginary part of A2 will enter.
The only strong phase is due to the � and the � going on
shell in the loop in Fig. 7 (right). Therefore one only needs
to know the imaginary part of the fermion loop which is
given by

 Im 
�S�P�m
2
B � i0�� �

1

4�
m2
B

�
1�

m2
�

m2
B

�
2
: (47)

Assembling the formulas I get
 

���B� !U���� � sin���
GF

2
���
2
p
�

mB

mb
m�f

2
B

�
1�

m2
�

m2
B

�
2


 j���S �
ub
P VubU��jAdU

�
m2
B

�2
U

�
dU�1

;

(48)

which fulfills the CPT constraint Eq. (40) together with
(41).

I have explicitly verified the CPT constraint (38) for the
decay B! �� with unparticle-SM interactions given by
the Lagrangian (5). I do not dare to speculate in any detail
on how a decay B� !U� might be observed in a labo-
ratory experiment. It can be said though that the unparticle
has directed momentum, mass, and charge which it directly
inherits from the B-meson. Moreover in the case where
there is a CP asymmetry in B! �� due to unparticles, it is
precisely the CPT constraint (40) which tells one that there
is an excess of charged unparticle degrees of freedom
produced. Whether a part of this charge could annihilate
into neutral particles or decay into charged particles re-

FIG. 7. Decay B� !U�, the double lines denote an unpar-
ticle (left) leading order (right) with virtual ��-loop correction.
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mains unclear since the nature of this degree of freedom
remains unknown at this stage. These questions could be
addressed once a concrete model realizing the unparticle
scenario is known.

IV. BREAKING OF SCALE INVARIANCE—
DIMENSIONAL ANALYSIS

I expect scale invariance to be broken at lower energies
for two different reasons.

First, in concrete realizations discrete parameters, such
as the number of colors, might only allow for a near critical
behavior of the coupling constant, as sketched in Fig. 8.

Second, the SM scales will be mediated to the unparticle
sectors by the interactions of the type (1). The SM is not
scale invariant at the electroweak scale. The logarithmic
running and, in particular, the vacuum expectation value of
the Higgs, which give masses to the fundamental particles,
are responsible for the breaking of scale invariance. It is
therefore a legitimate question at what scale the symmetry
breaking will be transmitted to the unparticle sector by the
effective Lagrangian (1). This will depend on the strength
of the coupling and the relevance of the operators in the
effective Lagrangian.

The authors of Ref. [7] have addressed this question,
which I shall adapt accordingly for the weak sector.
Following Ref. [7] I assume that the unparticle field is
coupled to the Higgs sector like

 L eff �
�H

�
dU0
�2

U

jHj2OU0
; (49)

with �H � cHU��U=MU�
dUV0

�2 in my notation. I have used
a new symbol OU0

for the unparticle operator. This opera-
tor is not the same as the one used in Eq. (5) since it has to
be electrically neutral. The important quantities for a
quantitative analysis are dU0

and �H of which I have
limited knowledge and therefore the statements will not
be conclusive. In the case where one thinks of the unpar-

ticle as being charged under SU�2�L, OU0
would appear as

�Leff � �q��5�qOU0
in addition to the effective

Lagrangian (5) and dU0
� dU seems unavoidable. In the

case where OU is the only unparticle field then the com-
posite operator OU0

� OUO
y
U seems the canonical quan-

tity and can have an anomalous dimension in the range
0 � dU0

� 2dU. The Thirring model at coupling � � 2�
[55] would be an example saturating the lower bound,
whereas supersymmetric QCD at the conformal IR fixed-
point [56] constitutes an example saturating the upper
bound. In the following I shall quote values for the bounds
and the mean value explicitly. The Higgs VEV hjHj2i �
v2=2 is expected to break scale invariance at a scale ~�

 

�H

�
dU0
�2

U

v2

2
~�dU0 � ~�4 ) ~� � �U

�
�H

v2

2�2
U

�
1=4�dU0 :

(50)

For illustrative purposes a possible unparticle scenario is
sketched in Fig. 8 where the coupling of the unparticle
sector as a function of the energy is sketched. What would
this scale be in the cases I have investigated? Besides �U

there are two unknowns in the equation above, first dU0

which appears explicitly in my results and �H �
cHU��U=MU�

dUV0
�2. In the latter the matching coefficient

will remain unknown but the ratio ��U=MU� is encoded in
the size of the matching coefficients 
DD�
��� (11) and
(33) and the UV dimensions of the flavor sector. Taking
B! DD as an example the breaking scale is

 

~� � �U

�
cHU

v2

2�2
U

�

DD

RDD

�
dUV0

�2=2�dUV�1�
�

1=4�dU0 ; (51)

where RDD � jccb
S c

cd
S j=jVcbVcdj. The value RDD � 1 is

natural in case the unparticle sector has the same flavor
hierarchy as the SM. For illustrative purposes let me as-
sume for example �U � 1 TeV, dU � 1:2, dU0

�

�0; 1:2; 2:4�, 
DD � 10�3:5, the ratio of amplitudes and
the breaking scale for fixed values of UV dimensions
become
 

�DD ’ �0:40RDD;

�dUV; dUV0
� � �3; 6�;

~� ’ �56; 16; 0:7� GeV�RDDcHU�
1=�4:0;2:8;1:6�;

�dUV; dUV0
� � �3; 3�;

~� ’ �250; 140; 30� GeV�R�1=4
DD cHU�

1=�4:0;2:8;1:6�:

(52)

The situation is not conclusive, which is not surprising
bearing in mind that in the absence of a model there are
simply too many unknowns. In the case where both UV
dimensions are the same, which should be the case when
OU and OU0

result from the same structure, a small
matching coefficient cHU is needed for a sizable effect at
the heavy flavor scales. If the UV dimensions differ by a

FIG. 8 (color online). A possible scenario, inspired from
(walking) technicolor-like theories, of unparticle physics with
a nearly scale invariant window between the lower scale ~�
Eq. (50) and the IR fixed point scale �U Eq. (1). The coupling
to the Higgs VEV could cause the theory to exit the IR fixed
point at the scale ~�. The ordinate denotes the coupling g2

U of the
unparticle sector.
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factor of 2, which can be the case when OU0
� OUO

y
U,

effects are possible for moderate matching coefficient cHU.
The effect �DD � �0:40 appears larger than the analy-

sis or conclusions in Ref. [7] suggest. There are two
reasons. First and simply, the CP violating phenomenon
investigated in this paper is linear in the ratio of ampli-
tudes, whereas [7] describes a case where the effect is
proportional to the square of the amplitude. Second, it
was assumed that the SM Lagrangian has dimension four.
The crucial point is that the weak Lagrangian has dimen-
sion six, dLweak

� 6 being suppressed by two powers of the
weak scale, whereas the unparticle Lagrangian has dimen-
sion dLunp

� dU � dSM. In terms of the effective
Lagrangian (5) and 1< dU < 2, 4< dLunp

< 5 the unpar-
ticle operator is more relevant than the weak operator. This
gives rise to an enhancement factor in the amplitudes

 

���
2
p
�GF�

2
HF�
�1 �

8m2
W

g2�2
HF

� 103–104; (53)

which is explicit in the results of Eqs. (11) and (33). In
more physical terms one could state that the weak boson
propagates at the high weak scale whereas the unparticle
propagates at the low heavy flavor scale.

Adapting the analysis of Ref. [7] I imagine an experi-
ment at a scale�HF, the unparticle Lagrangian (1) scales as
Leff ’ �S=�dU��dSM�4�

U �dSM�dU
HF , the weak Lagrangian as

Lweak ’ GF�
6
HF, and the ratio is

 � ’ cSU

�
�U

MU

�
dUV�dU

�
�HF

MU

�
dU�dSM�4

�
G�1
F

�2
HF

�
: (54)

Imposing that the energy scale of the experiment is higher
than the breaking scale, i.e., �HF * ~�, the following
bound is obtained5:

 � &
cSU
cHU

�
�HF

MU

�
dSM�2

�
2�2

HF

v2

��
G�1
F

�2
HF

��
�U

�HF

�
dU0
�dU

’
4cSU
cHU

�
�HF

MU

�
dSM�2

�
�U

�HF

�
dU0
�dU

:

The term in the middle is easily interpreted. The first factor
measures the ratio of the two couplings. The second is a
measure between the relevance or dimension of the SM
operator that is coupled to the unparticle and the dimension
of the Higgs operator. In the third term the scale of the
experiment has to compete with the Higgs VEV. The fourth
term is peculiar to the weak interactions, as described
above, and is due to the fact that the weak process takes
place at the weak scale G�1

F and the unparticle propagates
at the low scale �F. The fifth term is due to the difference
of anomalous dimensions of the charged unparticle opera-
tor in the effective Lagrangian (5) and the neutral unpar-

ticle operator coupling to the Higgs VEV (49), whether it
acts as an enhancing or decreasing factor depends on the
anomalous dimensions.

Dimensional analysis is not very reliable. A quantitative
analysis could be done once a explicit model is proposed of
which I have mentioned a few candidates in the
introduction.

V. CRITICAL DISCUSSION AND CONCLUSIONS

In this paper I have investigated the consequences of the
unparticle scenario in heavy flavor physics. The new fea-
ture is a CP-even or strong phase that arises in the propa-
gator as a consequence of the nonintegral scaling
dimension. A crucial point is that the phase is sizable,
based on the assumption that the unparticle sector is
strongly self-coupled. The strong phase together with
non-CKM(PMNS) phases in the weak unparticle sector
gives rise to novel CP violating phenomena.
CP violation in leptonic decays, such as B! ��, is

unprecedented so far in other models and not searched
for in experiment.6 I have verified in Sec. III that the novel
CP violation is consistent with the CPT theorem; namely,
the equality of the sum of partial rates, of the subclasses of
final states rescattering into each other, of particle and
antiparticle. Since ����� is essentially a class on its own
I have inferred that the compensating mode must be due to
unparticles. As I have quantitatively verified, the compen-
sating mode is B� !U�. This might appear surprising at
first sight but is possible since the unparticle does not have
a definite mass but a continuous spectrum like a multi-
particle state which was one of the basic observations in
Georgi’s first paper [1].

I have investigated the extension of the scale invariant
sector to lower energies resorting to dimensional analysis,
building up on the work [7]. I have found that effects at the
heavy flavor scales are possible provided the coupling of
the unparticle field to the Higgs VEV is moderate at the
scale �U. The effects are sizable for two reasons. First the
effect of CP violation is linear and not shielded by a large
SM background, and second the scaling dimension of the
unparticle Lagrangian is more relevant than the one of the
weak Lagrangian. Because of the enhancement factor���

2
p
�GF�

2
H� � 103–104 the CP asymmetries in the two

channels can be as large as 80% for ratios of unparticle
to SM couplings 
���DD� � 10�3 (21) and (36).

Bearing in mind the breaking of scale invariance I have
chosen decays where the unparticle propagates at a rela-
tively large scale. The two examples I have investigated are
the decays B� ! ��� and Bd ! D�D�. In doing so I
have assumed the scale invariant sector extends to the scale
�5 GeV for the former and to �2 GeV for the latter.

5Setting cU ! 1, the fourth and the fifth term to one and
taking the square root of the equation, the bound in Ref. [7] is
recovered with �2 � �.

6To the knowledge of the author there is no experimental data
available with bounds on CP asymmetries in leptonic decays.
Charge symmetry is usually implied in the analysis.

ROMAN ZWICKY PHYSICAL REVIEW D 77, 036004 (2008)

036004-14



The investigation of B! �� was motivated by the fact
that CP violation in leptonic decays are unprecedented and
that it is a channel that has already been measured to some
degree. Generic plots for the parameter space of the
anomalous dimension and the weak phase difference are
shown in Fig. 3. The current experimental data is not yet
strong enough to set absolute bounds on the amount of CP
violation. Comments on flavor related decays are given in
Sec. II C. In particular the channel D! �� might be of
interest since more events have been collected [40] than in
B! �� [57,58].

The investigation of the nonleptonic decay Bd ! D�D�

was motivated by the large asymmetry CD�D� reported by
Belle [38]. I have neglected the penguin contribution and
treated the decay in naive factorization. As compared to
B! �� there is a third observable, the time dependent CP
asymmetry SD�D� . The latter agrees rather well with the
SM predictions and sets constraints on CD�D� . It is pos-
sible though to find values where the CP violation is
maximal and satisfies the constraints of the branching ratio
and the time dependent CP asymmetry. As for B! ��,
plots for generic parameters are shown in Fig. 6. It is
encouraging that for small ratios of effective couplings
the constraints from SD�D� allow for a large negative
asymmetry CD�D� as reported by Belle whereas the oppo-
site sign seems to be disfavored. This fact is general to any
analysis with two amplitudes; the unparticles just provide a
scenario with two amplitudes and possible large weak and
strong phase differences. The true meaning is that in the
case where the decay is described by two amplitudes, the
sign of the Belle measurement is more consistent than the
opposite sign. Discussions on U-spin and color related
decays are given in Sec. II E. Let me emphasize two points
from this section once more. Generically one would expect
a large asymmetry in CD�D� to be accompanied by a large
asymmetry in the color related CJ=��0

. Currently the ex-
perimental value CPDG

J=��0
� �0:11�20� [41] is not conclu-

sive. It also has to be said that on the theoretical side the
channel Bd ! J=��0 is more challenging because the
nonfactorizable contributions are enhanced. For Bd decays
the time dependent asymmetries are typically proportional
to sin�2�� or sin�2
�, the large angles of the Bd triangle,
and new physics contributions are therefore hard to see.
For Bs decays, the mixing phase is �s ’ 0 and therefore
the unparticle scenario could give rise to sizable correc-
tions. This would be particularly interesting for Bs !
J=��, which is the main channel at the LHCb to extract
the Bs mixing phase �s.

The drawbacks of the scenario so far is that there is yet
no concrete model and that it is not clear to what energies
the scale invariant sector extends or what the meaning of
the emission of a real unparticle is.7 The construction of an

explicit model of the unparticle scenario would permit one
to study these questions in a concrete and quantitative way.
Two possible candidates are walking technicolor theories
[33] and the higher dimensional models (HEIDI) [35]
mentioned in the introduction.
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APPENDIX: EXPLICIT RESULTS IN COORDINATE
SPACE

1. The commutator

The unparticle field is a scale invariant field. The com-
mutator of a scale invariant field is easily obtained, in terms
of the scaling dimension dU, from the two point function

 C�x� � h
OU�x�; OU�0��i0

�
2

i
��x0�Im
hTOU�x�OU�0�i0�

�
2

i
��x0�Im

�Z d4P

�2��4
eiPxi�U�P

2�

�

� ��x0�
2dU�3

i�2

AdU
2 sin�dU��



��dU�Im
��x2 � i0��dU�

��2� dU�

� i��x0�
��x2�

�x2�dU
��dU � 1=2��1=2�2dU

��2dU���1� dU�
:

The free field case dU ! 1

 lim
dU!1�

C�x� �
�i
2�

sgn�x0���x
2�

may be recovered by use of the formula lim�!0��jzj
1�� �

��z�. Or for any integer n

 lim
dU!n�

C�x� � �isgn�x0��
�n�1��x2�;

it is seen that the commutator has support on the light cone
only.

7As opposed to a virtual particle, on which I focused through-
out this paper.
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2. The Thirring model—an example with phase factor

The Thirring model belongs to the class of exactly
solvable two dimensional models. It is a fermionic model
with a vector current-current interaction. The exact solu-
tion of the two point function was obtained by Johnson [59]
as a function of free fields

 h0jT��x� ���0�j0i � �ie�i4��D0�x�G0�x�; (A1)

where

 D0�x� �
�i
4�

log��x2 � i0�; G0�x� �
1

2�
x6

x2 � i0
(A2)

are the free bosonic and fermionic Greens functions. The
anomalous coupling constant is identified in terms of a
function of the Thirring model coupling constant � as � �

��2=4�2��1� �2=4�2��1 [55]. N.B. � > 0 in accordance
with 1< dU < 2 and dU � 1=2� �.

 h0jT��x� ���0�j0i �
i

2�
x6

��x2 � i0�1��
(A3)

This corresponds to the form of a fermionic unparticle
propagator (4) in coordinate space up to an overall nor-
malization constant. The phase factor arises due to resum-
mation of thresholds at x2 > 0. Note that the overall
normalization in a scale invariant theory is a matter of
convention and is hidden in the arbitrary scale factor in
the logarithm of the free bosonic function log
��x2 �
i0��2�. In the notation of Eq. (1) the scale� is proportional
to the fixed point scale �U. This scale exhibits the phe-
nomenon of dimensional transmutation of the operators
OUV in Eq. (1) to the operators OU in Eq. (1).
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