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We present a renormalization procedure for Polyakov loops which explicitly implements the fact that
the renormalization constant depends only on the ultraviolet cutoff. Using this we study the renormalized
Polyakov loops in all representations up to the 27 of the gauge group SU(3). We find good evidence for
Casimir scaling of the Polyakov loops and for approximate large-N factorization. By studying many loops
together, we are able to show that there is a matrix model with a single coupling which can describe the
high temperature phase of QCD, although it is hard to construct explicitly. We present the first results for
the nonvanishing renormalized octet loop in the thermodynamic limit below the SU(3) phase transition,
and estimate the associated string breaking distance and the gluelump binding energy. By studying the
connection of the direct renormalization procedure with a generalization of an earlier suggestion which
goes by the name of the Q �Q renormalization procedure, we find that they are functionally equivalent.
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I. INTRODUCTION

The proof of confinement in QCD is now literally a
million dollar question [1]. There are many ideas about
the direction in which such a proof lies. No matter what
these ideas are, once they are properly formulated, they are
always open to test by lattice techniques. One of the long-
lasting ideas has been to examine a toy model of QCD for
large number of colors N [2]. Because of the enhanced
symmetry, many quantities become amenable to study in
this limit. Computations of corrections up to subleading
order, 1=N, have been made for quantities such as hadron
masses and pion-nucleon scattering, with intriguing re-
sults. Recently, by adding supersymmetries to large-N
QCD, very simple toy models have been constructed which
are amenable to analytical treatment using the AdS/CFT
correspondence [3]. Much excitement has been generated
by the plethora of predictions of such toy models, and there
has been exciting speculation about their applicability to
QCD.

At largeN the dynamics of quarks is secondary to that of
the gluons, being suppressed by power corrections in N.
Hence lattice tests of these ideas have been made in pure
gauge, or quenched, QCD. There have been investigations
of the string tension and its scaling withN [4], the nature of
the phase transition with changing N [5], and tests of
approximate scale invariance of finite temperature QCD
[6]. In this paper we investigate certain ideas about

Polyakov loops and their behavior at finite temperature
which have developed in recent years based on large N
and the AdS/CFT correspondence. We investigate matrix
models which could be expected to describe the high
temperature phase of pure gauge QCD. Our results put
very strong constraints on the kinds of matrix models
which may provide a description of pure gauge QCD.

The Polyakov loop is closely connected with confine-
ment since it is the order parameter for the transition from a
confined to a deconfined medium. Various models based on
Polyakov loops have been proposed to describe the tran-
sition to a quark gluon plasma phase and its properties at
zero as well as nonzero baryon density [7–22].
Furthermore the connection of SU(3) theory to the large
N limit, in the mean-field approximation, was discussed in
[8,9]. For a test of the reliability and comparison of these
Polyakov loop models to pure gauge theory and QCD with
dynamical quarks, a detailed knowledge of the behavior of
the Polyakov loop in the fundamental and higher represen-
tations in those theories is needed. The Polyakov loop
needs to be renormalized, since it has divergent contribu-
tions from the ultraviolet. In Sec. III we present a renor-
malization procedure which explicitly incorporates
properties expected of a good scheme. This direct renor-
malization technique is naturally applicable to Polyakov
loop expectation values in all representations of the color
group. The multiplicative renormalizations in different
representations are closely connected if the Polyakov loops
satisfy a property called Casimir scaling. We present tests
of Casimir scaling in Sec. IV. This leads, in Sec. V, to a test
of large-N factorization at N � 3. We find good evidence
for both in a temperature range not too close to Tc. Next, in
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Sec. VI, we examine whether the renormalized Polyakov
loops are described in an effective matrix model. By exam-
ining the renormalization scheme dependence of these
quantities, we find that a single parameter variation of
matrix models describes the temperature dependence of
the Polyakov loops in various representations. We also
show that the matrix model is unlikely to consist of a small
set of terms, and therefore hard to construct explicitly from
the phenomenology of Polyakov loops.

In Sec. VII we consider the adjoint Polyakov loop
correlations below Tc. We report the first measurement of
the renormalized adjoint Polyakov loops in the thermody-
namic limit at finite temperature in the confined phase of
QCD. We find that aspects of the adjoint Polyakov loop
correlations can be summarized in the physics of glue-
lumps, i.e., colorless states made of static adjoint sources
and glue.

In the appendices we consider a renormalization proce-
dure, the Q �Q procedure, earlier suggested in [23]. We
extend it to the renormalization of Polyakov loops in
arbitrary representations, consider the relation between
the direct and Q �Q renormalization procedures, and exam-
ine ‘‘color averaged’’ Polyakov loop correlators in various
representations.

II. DETAILS OF THE CALCULATIONS

We have performed simulations for temperatures up to
24Tc on N3

� � N� lattices with N� � 4; 6; 8 and N� up to
32 in SU(3) pure gauge theory with the tree level
Symanzik-improved gauge action [24,25]. We used a
pseudo heatbath algorithm with FHKP [26] updating in
the SU(2) subgroups. Each heatbath update was followed
by four overrelaxation steps. The statistics varies from
1000 to 10 000 of such sweeps after suitable thermaliza-
tion. The physical scale has been set using the zero tem-
perature string tension � [27] and a determination of the
critical coupling for the deconfinement transition from
[28]. We have calculated the Polyakov loops in all repre-
sentations up to D � 27 using the operators defined in
Eqs. (A12)–(A18). The errors on the observables were
determined with the jackknife method. Furthermore, we
have reanalyzed configurations generated using two flavors
of staggered quarks with mass m=T � 0:4 on a 163 � 4
lattice at several temperatures above and below the tran-
sition temperature [29,30]. At each temperature we have
used statistics of several thousands to calculate Polyakov
loops up to D � 27.

III. RENORMALIZATION OF POLYAKOV LOOPS

We define the thermal Wilson line P� ~x� at spatial posi-
tion ~x as

 P� ~x� �
YN��1

i�0

U� ~x;i�;0; (1)

where U� ~x;i�;0 is the gauge link matrix in the time direction
at the point ~x and Euclidean time i. U is a 3� 3 matrix
which belongs to SU(3). We define the local Polyakov loop
as the trace of P� ~x�,

 L� ~x� � TrP� ~x�; (2)

where the trace is normalized to one. We denote the
expectation value of the Polyakov loop in the fundamental
representation of SU(3) by

 L3 �

�
1

V

X
~x

L� ~x�
�
: (3)

Polyakov loops in different representations, LD, are de-
fined in Appendix A. The subscript D indicates the dimen-
sion of the color (irreducible) representation of the
Polyakov loop, e.g., L3 for fundamental or L8 for adjoint.
Expectation values of Polyakov loops are ultraviolet diver-
gent. We will use the superscripts b or r for bare and
renormalized Polyakov loop, respectively.

A. Basic properties of renormalization

It was pointed out by Polyakov [31] that for smooth
loops, ultraviolet divergences can be absorbed in the
charge renormalization of gauge fields:

 LrD�T� � �ZD�g2��‘�C�LbD�g
2�; (4)

where ‘�C� is the length of the contour and the coupling,
g2 � 6=�, on the right is the bare coupling. The quantity
on the left is properly renormalized and depends on the
renormalized coupling or, through this running coupling,
on the temperature. Cusps and self-intersections of loops
give rise to logarithmic divergences which depend, e.g., on
the angle of the cusps [31–33]. Spatial averages of opera-
tors such as TrPn� ~x�, which wind n times around the
lattice, also need separate renormalization. Similarly, com-
posite operators such as powers of Polyakov loops, includ-
ing Polyakov loop susceptibilities, also require
independent renormalization.

We have written Eq. (4) for an arbitrary representation
D. The renormalization constants in different representa-
tions, ZD, can be related to each other if both the bare and
the renormalized loops satisfy the relation

 L1=C2�D�
D � L1=C2�D0�

D0 ; (5)

called Casimir scaling. Here C2�D� � Tr
P
a�

a�a is the
quadratic Casimir operator in the representation D. When
Casimir scaling holds, the quantities

 ZD�g2� � �ZD�g2��1=dD; (6)

where dD � C2�D�=C2�3�, are all equal.
In keeping with the general form in Eq. (4) we can write

 LrD�T� � �ZD�g
2��dDN�LbD�g

2; N��; (7)

where the renormalization constants ZD�g2� should only
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depend on the bare coupling. Such a multiplicative renor-
malization is expected to compensate entirely for the de-
pendence of the bare loop on the cutoff, i.e., the bare
coupling, so that the renormalized loop on the left is a
function only of the temperature. Furthermore, if Casimir
scaling is found to hold, then all the ZD collapse to a single
function Z3�g

2�; i.e., loops in all representations can be
simultaneously renormalized. Note that there is one re-
maining ambiguity: the function Z3�g

2� can be multiplied
by a single coupling independent constant without affect-
ing the renormalization. Thus, a one parameter family of
renormalization schemes for Polyakov loops is defined by
Eq. (7).

B. Direct renormalization of the Polyakov loop

In this subsection we present a complete renormalization
procedure which implements Eq. (7). We call this the direct
renormalization prescription. A similar procedure was dis-
cussed earlier in [34]. Denote by LD�g2; N�� the Polyakov
loop expectation value obtained after taking the thermody-
namic limit at a temperature T � 1=a�g2�N�, where a is
the lattice spacing at a bare coupling g2 and N� is the
temporal extent of the lattice. We will describe the proce-
dure for a fundamental loop first.

First choose the value of Lr3�Tref�, at a reference tem-
perature Tref . It is clear from Eq. (7) that this choice is
exactly equivalent to fixing the renormalization scheme. It
is convenient, but not necessary, to take Tref to be the
maximum temperature in the study: in our case Tref �
12Tc. We discuss our choice of scheme in Appendix C.
This sets the first step of the iterative procedure starting at
the initial temperature T1 � Tref . Next we need measure-
ments at (at least) two different temporal extents, N�

� and
N�
� , say, with N�

� > N�
� , both at the temperature Ti (we

begin with i � 1 and set up an iteration). Therefore these
measurements correspond to two different lattice cutoffs
a�g2

i;��N
�
� � a�g2

i;��N
�
� with ai;� < ai;�, where the sub-

scripts are self-explanatory. We obtain two different renor-
malization constants,

 �Z3�g2
i;���

N�
� Lb3�g

2
i;�; N

�
� � � Lr3�Ti�; (8)

 �Z3�g
2
i;���

N�
� Lb3�g

2
i;�; N

�
� � � Lr3�Ti�: (9)

The third step is to advance the iteration. We do this by
making a measurement of Lb3�g

2
i;�; N

�
� � on the lattice with

temporal extent N�
� at a temperature Ti	1 � 1=ai;�N

�
� �

�N�
� =N�

� �Ti. Since the renormalization constant is already
known from Eq. (9), one obtains the value of Lr3�Ti	1�:

 Lr3�Ti	1� � �Z3�g2
i;���

N�
� Lb3�g

2
i;�; N

�
� �: (10)

Since we have the value of the renormalized loop at a new
temperature, we can now iterate the procedure from the
second step on. The iteration gives the renormalized loops

and the renormalization constants at a decreasing series of
temperatures.

Four points about the prescription are worth noting
explicitly. First, the procedure extends without change to
any representation D. The test of Casimir scaling would be
to assume that the bare loops in different representations at
Tref are related by Eq. (5), and then check whether the
renormalized loops at all T are related in the same way. We
discuss this further in Sec. IV. Second, in the confined
phase of the pure gauge theory the bare Polyakov loop,
in any representation with nonvanishing triality, vanishes
in the thermodynamic limit; as a result the direct renor-
malization procedure can only be used above Tc for such
representations. Third, a reverse iteration can always be
performed by choosing Ti	1 � 1=ai;�N

�
� � �N

�
� =N

�
� �Ti >

Ti. Finally, although we discussed the procedure for two
values ofN�, it can be easily extended to a larger number of
values for the temporal extent. The renormalized Polyakov
loop in the fundamental representation obtained by the
direct procedure described here is shown in Fig. 1. Also
shown, for comparison, are the results obtained from a
completely different renormalization procedure [23] based
on a matching of the short distance behavior of heavy
quark-antiquark free energies to the zero temperature po-
tential (labeled as Q �Q renormalization). Both these proce-
dures allow a one parameter family of renormalization
schemes, and the schemes have been chosen so that the
values of L�r�3 �Tref�match. Figure 2 shows the results for the
renormalization constant. These figures indicate the func-
tional equivalence of the two renormalization procedures.

C. Fundamental Polyakov loops

We have extended previous measurements of the funda-
mental Polyakov loop [23] to temperatures as high as 24Tc.
The results for Lr3�T� are shown in Fig. 3 and listed in
Table I. The corresponding renormalization constants are
plotted in Fig. 4 and listed in Table II. The direct renor-
malization procedure for the fundamental Polyakov loop
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 2  4  6  8  10  12
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r

T/Tc
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direct renormalization

QQ renormalization

FIG. 1 (color online). Comparison of the renormalized
Polyakov loop in the fundamental representation, Lr3�T�, ob-
tained with the two different renormalization procedures.
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stops at g2 corresponding to Tc on the lattice with the
smallestN�. Since theQ �Q procedure gives identical results
up to this point, and can be continued to larger g2, the
tables contain results obtained using this procedure.

The Polyakov loop for SU�N� pure gauge theory in hard
thermal loop (HTL) perturbation theory [35] is
 

LD � 1	 2�2C2�D�
��

2

3
N
�

1=2
�
g2

8�2

�
3=2

	 N
�
g2

8�2

�
2
�
ln
�
g2

8�2

�
	 ln

�
2�2N

3

�
	

3

2

��
: (11)

With an appropriate running coupling, g�T�, this defines
the renormalized Polyakov loop up to O�g4�. We make the
specific choice of the two-loop formula,

 g�2�T� � 2�0 ln
�
�T
� �MS

�
	
�1

�0
ln
�

2 ln
�
�T
� �MS

��
; (12)

with �0 � 11=�16�2� and �1 � 102=�16�2�2, and
Tc=�MS � 1:14 [36–38]. These predictions are shown in

Fig. 3 for the choices � � �=2, �, and 2�. Because of the
phase transition, the Polyakov loop expectation value van-
ishes below Tc and rises beyond 5Tc. It starts to decrease
from about 10Tc and approaches the asymptotic high tem-
perature limit, Lr3 � 1 (indicated by the arrow in Fig. 3),
from above, in qualitative agreement with weak coupling
theory. The lattice measurements seem to fall a little slower
than the HTL prediction, up to the highest temperature
examined. Approximate qualitative agreement with HTL
perturbation theory, without exact quantitative agreement
up to very high temperature has been seen in many other
contexts in high temperature QCD, most notably for
screening masses [39,40] at high temperatures.

 0

0.5

 1

1.5

 0  5  10  15  20  25

Lr
3

T/Tc

Nτ=4
Nτ=8

FIG. 3. The renormalized fundamental Polyakov loop in SU(3)
pure gauge theory for two values of the temporal lattice extend
N�. The lines show the perturbative result Eq. (11) and are
explained in the text. The arrow represents the asymptotic high
temperature limit, Lr3 � 1.

TABLE I. The renormalized fundamental Polyakov loop
Lr3�T� obtained on lattices of size 323 � N� with N� � 4 and
8. T=Tc denotes the temperature in units of the critical tempera-
ture.

N� T=Tc Lr3 N� T=Tc Lr3

4 1.012 0.4070(11) 4 6.001 1.0897(4)
4 1.031 0.4600(7) 4 8.002 1.0986(5)
4 1.049 0.4927(22) 4 10.00 1.1011(7)
4 1.099 0.5649(14) 4 12.13 1.1014(6)
4 1.144 0.6049(3) 4 14.00 1.1000(3)
4 1.151 0.6114(16) 4 16.00 1.0988(6)
4 1.200 0.6494(12) 4 18.01 1.0966(5)
4 1.241 0.6759(15) 4 20.00 1.0954(8)
4 1.301 0.7095(13) 4 22.00 1.0939(10)
4 1.499 0.7953(13) 4 24.00 1.0924(12)
4 1.549 0.8115(8)
4 1.600 0.8288(9) 8 1.03 0.4818(99)
4 1.684 0.8523(2) 8 1.18 0.6330(125)
4 2.214 0.9475(3) 8 1.48 0.7763(116)
4 2.858 1.0087(1) 8 2.95 1.0149(68)
4 2.999 1.0169(1) 8 6.00 1.0961(33)
4 3.987 1.0591(2) 8 9.00 1.1049(27)
4 5.001 1.0791(2) 8 12.00 1.1060(26)

 1
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1.2

1.3

1.4

 0.6  0.8  1  1.2  1.4  1.6

Z3(g2)

g2=6/β

Nτ
4
8

FIG. 4. The renormalization constants Z3�g
2� as a function of

the bare coupling g2 � 6=� calculated on lattices of size 323 �
N� with N� � 4 and 8. The line comes from a fit to Eq. (13) as
explained in the text.
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FIG. 2 (color online). Comparison of the renormalization con-
stants for fundamental loops, Z3�g

2�, for the two different
renormalization procedures. g2 denotes the bare coupling and
the solid line is the same as in Fig. 4.
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The comparison of the renormalization constants Z3�g
2�

for different N�, shown in Fig. 4, demonstrates that Z3

depends only on the bare coupling and not on temperature.
The solid line in Fig. 4 shows the result of a fit with a (two-
loop) perturbation theory [41] inspired ansatz,

 Z3�g2� � exp
�
g2 N

2 � 1

N
Q�2� 	 g4Q�4�

�
; (13)

whereQ�2� andQ�4� are expected to be independent ofN� if
Eq. (7) is to be satisfied. Although we are in a coupling
range which is not small enough for the weak coupling
expansion to be numerically accurate, the fit works surpris-
ingly well. In fact the bare coupling becomes significantly
larger than unity before this ansatz begins to overestimate
the actual values of Z3. From the best fit analysis with a fit
range g2 & 1:2 we obtained the values Q�2� � 0:0591�21�
and Q�4� � 0:0605�54�. Interestingly, although our compu-
tations are done using a Symanzik-improved action, the
value ofQ�2� agrees reasonably well with result from lattice
perturbation theory,Q�2� � 0:057�2� [41], using the Wilson
action. The renormalization scheme dependence of these
results will be discussed in Appendix C.

D. Polyakov loops in other representations

The results for the measured bare Polyakov loops are
shown in Fig. 5 for the representations D � 3 to D � 15.
The renormalization of Polyakov loops in each represen-
tation D was obtained using the direct renormalization
procedure. For each D, the starting point was taken at
Tref � 12Tc. We fixed the scheme through the choice

 LrD�Tref� � �L
r
3�Tref��

dD : (14)

Except for this assumption at a single temperature, the
renormalization was performed independently at each D.

Since the loops were measured at arbitrary temperature
values, spline interpolations (solid lines) for the data sets
were used in the renormalization iteration. The errors on
renormalized Polyakov loops and renormalization con-
stants were obtained through a jackknife analysis. The
accumulation of errors during iteration, the exponential

TABLE II. The renormalization constants for the fundamental
Polyakov loop Z3�g

2� obtained on lattices of size 323 � N� with
N� � 4 and 8. g2 � 6=� denotes the bare coupling.

N� g2 Z3 N� g2 Z3

4 0.90294 1.2144(2) 4 1.477 83 1.3759(1)
4 0.91348 1.2183(3) 4 1.481 48 1.3754(1)
4 0.92531 1.2217(2) 4 1.485 15 1.3748(1)
4 0.93869 1.2245(3) 4 1.488 83 1.3742(1)
4 0.95426 1.2270(2) 4 1.492 54 1.3733(1)
4 0.97248 1.2312(1) 4 1.500 00 1.3711(1)
4 0.99282 1.2389(2)
4 1.02157 1.2525(1) 8 0.902 94 1.2145(2)
4 1.05684 1.2648(1) 8 0.938 82 1.2246(2)
4 1.10577 1.2829(2) 8 0.992 82 1.2391(2)
4 1.13889 1.2948(1) 8 1.001 17 1.2431(1)
4 1.18227 1.3102(2) 8 1.105 77 1.2833(2)
4 1.23993 1.3330(13) 8 1.226 47 1.3297(21)
4 1.25000 1.3331(2) 8 1.233 02 1.3319(23)
4 1.30435 1.3531(9) 8 1.239 85 1.3307(2)
4 1.36364 1.3646(1) 8 1.269 95 1.3441(36)
4 1.37457 1.3700(39) 8 1.280 03 1.3473(33)
4 1.38857 1.3717(47) 8 1.287 03 1.3459(1)
4 1.41878 1.3734(68) 8 1.287 42 1.3496(31)
4 1.42857 1.3731(2) 8 1.296 18 1.3523(29)
4 1.43575 1.3730(80) 8 1.305 74 1.3514(1)
4 1.44439 1.3724(87) 8 1.315 79 1.3585(26)
4 1.45384 1.3721(88) 8 1.316 02 1.3583(28)
4 1.46699 1.3681(8) 8 1.333 33 1.3614(2)
4 1.47059 1.3690(2) 8 1.337 43 1.3628(3)
4 1.47420 1.3757(2) 8 1.349 16 1.3659(3)
4 1.47601 1.3761(1) 8 1.385 30 1.3724(2)
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FIG. 5 (color online). The (bare) Polyakov loops for different
representations D measured on 323 � 4 lattices. The solid lines
are the splines used in our analysis to extract the renormalization
constants in the direct renormalization procedure.
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FIG. 6 (color online). The renormalized Polyakov loops for
different representations D obtained with the direct renormal-
ization procedure. Also shown are the results obtained from the
Q �Q method for fundamental and adjoint loops, labeled DQ �Q.
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dD in Eq. (7), and the larger statistical errors for higher
representations lead to large errors in the renormalization
procedure for representations higher than D � 8 as one
approaches Tc.

The results for LrD�T� are shown in Fig. 6. For compari-
son we have also included in the figure the results for the
fundamental and adjoint representation obtained with the
Q �Q procedure (see Appendix B). These agree within er-
rors, demonstrating again that the two renormalization
procedures give equivalent results.

IV. CASIMIR SCALING

In [41,42] it was shown that Casimir scaling is realized
in perturbation theory (at least) to two-loop order, O�g4�,
even for cusp anomalous dimensions [43,44]. This state-
ment even holds for QCD with (massless) dynamical
quarks as shown in lattice perturbation theory in [45].
Moreover, lattice calculations at finite temperature em-
ploying an effective action for the Polyakov loop in
SU(3) have found Casimir scaling to be realized for the
Polyakov loop as well [46]. Numerical calculations on the
lattice at T � 0 in SU(3) pure gauge theory show that
Casimir scaling is realized also in the nonperturbative
regime for distances smaller than the string breaking dis-
tance [47]. The very good agreement of the lattice data
with the Casimir scaling hypothesis at nonperturbative
distances in the vacuum has considerable ramifications
on models for nonperturbative QCD, especially for the
confinement mechanism [48].

We have noted before that if Casimir scaling holds, then
it holds for bare as well as renormalized loops. Since bare
loops have smaller statistical errors, we test Casimir scal-
ing through these. The most straightforward test is to note
that �LbD�

1=dD must be independent of D if Casimir scaling
holds. In Fig. 7 we show that deviations from Casimir
scaling are visible only very close to Tc. This has implica-

tions for weak coupling expansions. Beyond two-loop
order in a perturbative series of the Polyakov loop,
Casimir scaling violations can appear [42]. These must
be strongly suppressed compared to contributions which
scale with the quadratic Casimir operator.

An equivalent test is to note that the quantities ZD�g2�
which are obtained using the assumption in Eq. (14) are
equal within errors, as shown in Fig. 8. Note that this
agreement is an outcome of the renormalization procedure,
and not built into it.

A finer test of Casimir scaling is obtained using the
difference loops

 �LD � L3 � �LD�1=dD : (15)

The results for the renormalized difference loops for D �
6 and 8 are shown in Fig. 9. They are consistent with zero at
all temperatures. For the higher representations a statisti-
cally finer test is obtained with bare loops, since the errors
on the renormalized loops are large. The results are shown
in Fig. 10. Even here, Casimir scaling is a good approxi-
mation, which gets better the higher the temperature.
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FIG. 7 (color online). The Casimir-scaled bare Polyakov loops
for different representations D measured on 323 � 4 lattices.
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Two-flavor QCD

It is interesting to check whether Casimir scaling also
holds for QCD with quarks. Since dynamical quarks break
the center symmetry explicitly, and Nf � 2 QCD has a
finite temperature crossover rather than a true phase tran-
sition, the thermodynamic limit of the Polyakov loop
below Tc is nonvanishing.

In Fig. 11 we show �LbD�
1=dD for D � 3; 6; 8 at all

temperatures, and D � 10; 15 above Tc. The latter repre-
sentations are too noisy below Tc to add any information.
These scaled quantities are almost independent of D down
to 
1:5Tc. Below this temperature we observe deviations
to smaller values for the fundamental representation,
whereas the values for higherD still coincide within errors.
Therefore we see a violation of Casimir scaling, between
the fundamental and other representations, when entering
the transition region which continues to the smallest tem-
peratures analyzed. These violations are relatively mild.
Differences between �LbD�

1=dD for D � 6 and D � 8 re-

main statistically insignificant even at the smallest tem-
peratures, as shown in the inset of Fig. 11.

V. LARGE-N LIMIT

The relation between Polyakov loops in different repre-
sentations becomes rather simple in the limit of a large
numbers of colors N [8]. In this limit the expectation value
of a Polyakov loop in representation D can be expressed in
powers of the fundamental (LN) and antifundamental
[L �N � �LN�

�] loop,

 LD � Lp	N Lp��N 	O

�
1

N

�
; (16)

where the integers p	 and p� are determined from the
Young tableaux of the representationD. We investigate this
large-N factorization using our data obtained for N � 3.

Following [8] we analyze difference loops

 �l6 � Lr6 � L
r
3 (17)

 �l8 � Lr8 � jL
r
3j

2: (18)

Naively, the correction terms are expected to be of the
order of �Lr3�

2=3, i.e., about 33%. Results, shown in
Fig. 12, are clearly nonzero, except at around 2:5Tc where
all loops are one. Our results are comparable in magnitude
to those in [8] but show rather different temperature de-
pendence. Below 2Tc the corrections are relatively large,
and the usefulness of the large-N approximation seems
doubtful. However, above this temperature, the difference
loops are of order 5%–10% of the loop itself, and therefore
significantly smaller than the naive expectations. The
large-N approximation seems to fare better than expected.
This is similar to the conclusion reached for the equation of
state in [6].

VI. MATRIX MODELS

One could seek effective field theories for Polyakov
loops in the form of matrix models, i.e., models in which
each spatial site on the lattice ~x contains a matrix valued
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FIG. 10 (color online). Difference loops for all representa-
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Polyakov loops.
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‘‘spin’’ l� ~x�,

 Z �
Z Y

~x

dl� ~x� exp��SMM�; (19)

and the integration measure is the Haar measure. For
SU�N� gauge groups the matrix takes values in SU�N�.
The action for these models can be written in the form
 

SMM � �
N2

d

X
DD0

�
�D;D0�t�D�D0�;0

X
~x n̂

RelD� ~x�lD0 � ~x	 n̂�

	 	D�t�D�;0
X
~x

RelD� ~x�
�
; (20)

where ~x runs over every site in the lattice, n̂ over the 2d
nearest neighbors, lD is the Polyakov loop in the irreduc-
ible representation D, i.e., the trace of the matrix, and t�D�
is the triality of the irreducible representation D. In this
section we use the notation of Appendix A; i.e. traces are
normalized to the dimension of the corresponding repre-
sentation D. We also use the notation ‘D � hlDi. The
constraint of vanishing triality arises from the ZN center
invariance of the pure gauge theory.

For SU(3), the effective action with only the leading
term �3;�3 has been investigated extensively over the years.
However, when adding all irreducible representations up to
a certain D, as D varies, one needs the couplings

 

3 �3;�3

6 �3;6; �6;�6
8 �8;8; 	8

10 �8;10; �10;10; 	10

15 �3;15; �6;15

150 �
3;150

; �6;150 ; �15;150
;

(21)

and so on.
A matrix model would be used to obtain the loop ex-

pectation values

 hlrD�f�g�i �
1

Z

Z Y
~x

dl� ~x�lD exp��SMM�l; f�g��; (22)

where f�g denotes the whole set of couplings in the action.
Equating these expressions to a sufficient number of ob-
servations on ‘rD�T�, one would obtain the temperature
dependence of the couplings. Other predictions of matrix
models, which we do not explore here, are expectation
values of moments (for example, the Polyakov loop sus-
ceptibilities) and correlation functions of loops.

Note an intrinsic complication in the matching proce-
dure. Since ‘rD�T� is scheme dependent, the couplings that
one extracts by any matching procedure must also be
scheme dependent. Note also that, in order to make contact
with a matrix model, one has to choose a renormalization
scheme in which ‘rD�T�<D. To the best of our knowledge,
these points have not been noted in the literature.
Furthermore, as the number of irreducible representations

increases, the number of couplings in the effective theory
which need to be matched to data increases rapidly. A
determination of the effective action involves extraction
of the couplings through such matching at each tempera-
ture. This is an ill-conditioned problem unless the series
can be cut off, and the number of couplings required is less
than the number of pieces of data.

It is interesting to ask how one can bound the number of
couplings needed in the matrix model. If there are CN
couplings to be determined, then CN of the expectation
values can be traded for the couplings, and all other ex-
pectation values can be written in terms of these. For
example, for a one-coupling matrix model, CN � 1, one
could write ‘rD�‘

r
3�, for all D> 3. This relation is renor-

malization group invariant: in two different renormaliza-
tion schemes, if the values of lr3 at two different
temperatures are the same, then the values of lrD will be
equal, for each D. For the pure gauge theory the data in
Fig. 13 shows that the SU(3) pure gauge theory requires a
matrix model with only a single coupling. A single cou-
pling matrix model means that ratios such as �3;6=�8;8 are
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FIG. 13 (color online). Different renormalized Polyakov loops
shown as a function of the fundamental loop. The fact that the
data in several different renormalization schemes [‘r3�12Tc� �
0:5 in red (+), 0.75 in green (�), and 1 in blue (*)] collapse onto
a single universal curve in each case implies that there can be
only a single coupling matrix model which describes this data.
The line is the result of a fit using four terms in the action, as
described in the text, tuned to bracket the observed curve ‘6�‘3�.
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fixed, and only one coupling is dependent on the
temperature.

The temperature independent ratios of couplings define
the shape of the universal curves, ‘rD�‘

r
3�, and the single

tunable coupling says how the curve is traversed, in a given
renormalization scheme, as T changes. Therefore, one can
solve the problem in two steps: first use the universal
curves to fix the ratios of the couplings, and finally solve
the easier problem of finding the single leftover coupling.
Since exact solutions for the loop expectation values are
not known for matrix models with Nc � 3, one has to
either solve the problem through a Monte Carlo simulation
or in mean-field theory. Here we investigate the latter
option. Taking into account the irreducible representations
3 and 6 in the effective action, one has
 

S � �3
X
~x;n̂

��3;�3 Rel3� ~x�l
�
3� ~x	 n̂� 	 �3;6 Rel3� ~x�l6� ~x	 n̂�

	 �6;�6 Rel6� ~x�l�6� ~x	 n̂��; (23)

where l6 � �l3�2 � l�3. Using this SU(3) relation, and mak-
ing a mean-field approximation, we find that
 

S � �6dV
�
�3;�3‘3 Rel3 	

�3;6

2
f‘6 Rel3 	 ‘3 Re�l23 � l

�
3�g

	 �6;�6‘6 Re�l23 � l
�
3�

�
: (24)

It is also possible to extend such a mean-field treatment to
models which include the octet representations. Using the
invariance of the Haar measure, we can diagonalize the
matrix, so that l3 � exp�i
� 	 exp�i � 	 exp�i�
	  ��,
and perform the integration over the remaining variables to
give
 

dl3 �
1

3�2 f1� cos�
�  �gf1� cos�2
	  �g

� f1� cos�
	 2 �gd
d : (25)

Putting all this together, we find

 Z��3;�3; �3;6; �6;�6; ‘3; ‘6� �

�Z
dl3 exp��S=V�

�
V

� exp��VF�: (26)

In the mean-field theory the expectation values are com-
puted simply as

 ‘D �
1

Z

�Z
dl3 exp��S=V�

�
RelD; (27)

where the lD can be expressed in terms of the angles  and

 using the formulas in Eqs. (A12)–(A18) and the relation
Rel3 � cos 	 cos
	 cos� �
�.

Some of the results are shown in Fig. 13. The observed
Casimir scaling of loops implies a power-law dependence
of loops on each other. The matrix model which includes
only the coupling �3;�3 is in fair agreement with the uni-

versal curve ‘6�‘3� when ‘3 > 1=2. However, it disagrees
with the curve for ‘8�‘3� already when ‘3 � 0:9. By in-
cluding terms in �3;6 and �6;�6 (in a fixed T-independent
ratio to �3;�3) the curve for ‘6 can be improved, but this
leads to no perceptible change in the curve for ‘8.
However, by introducing the coupling �8;�8, and tuning
the T-independent ratio �8;�8=�3;�3, one can contrive to
improve the description of the two universal curves.
However the universal curves for higher representations
need further tuning.

The conclusion seems robust: the SU(3) pure gauge
theory data can be described within a single coupling
matrix model. However, it seems hard to construct a matrix
model with a small number of terms which reproduces the
power-law dependence of ‘D on ‘3. The second result has
been obtained within a mean-field theory, and needs veri-
fication in a more complete approach, such as the full
simulation of such matrix models.

VII. ADJOINT SOURCES AND GLUELUMPS

Polyakov loops in representations with nonzero triality
vanish in the confined phase of the pure gauge theory, since
the Z(3) symmetry of the action is realized on the states
with large contribution to the path integral. The behavior of
loops with vanishing triality can be different, because they
are blind to the Z(3) symmetry involved in the QCD phase
transition. This study is confined to the octet loop since all
other triality-zero loops that we constructed turned out to
have very large errors below Tc.

A dynamical picture has been advanced for the behavior
of adjoint Polyakov loops below Tc. An adjoint source can
couple to a gluon in the medium to form a colorless
composite called a gluelump. Correlations of triality-zero
loops can clearly be mediated by gluon exchange at any
temperature, leading to screening. Gluelumps provide a
summary of the main features of such screening [49]
through two parameters: the free energy of separated glue-
lumps determines the asymptotic value of an octet
Polyakov loop, the string breaking distance is the distance
at which the long-distance screening behavior sets in.

We found that the bare adjoint Polyakov loop Lb8 below
Tc assumes its thermodynamic limit, i.e., becomes inde-
pendent of the volume for N3

� � 4 lattices with N� � 24.
Lb8 could be renormalized using the Q �Q method for the
octet loop explained in Appendix B. However, we calcu-
lated Lb8 at more couplings than the adjoint correlator.
Since we found that Z8 agrees with Z3 (see Appendix B),
we used the Z3�g2� given in Table II to obtain Lr8�T�.

Table III lists the values found for the renormalized
adjoint Polyakov loop Lr8 and Fig. 14 compares these
results to those for the renormalized fundamental
Polyakov loop Lr3. Although Lr8 becomes rather small
below Tc, it is clearly nonzero for all temperatures ana-
lyzed by us. We observe that Lr8 rises from 0.0087(16) at
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T=Tc � 0:907 to 0.0219(48) just below Tc at T=Tc �
0:995. Crossing the critical temperature into the deconfined
phase, Lr8 jumps almost an order of magnitude to 0.154(37)
at T=Tc � 1:005. It is a little surprising to find the octet
loop, which is blind to the Z(3) symmetry, change discon-
tinuously at the symmetry-breaking transition. However,
other triality-zero operators also change discontinuously at
the phase transition, most notably the energy density. We
now address the issue of string breaking and determine the
binding energy of the gluelump. The specific situation at
T=Tc � 0:959, shown in Fig. 15, serves as an example. We
have shown F1

Q �Q;8
, and, since it becomes too noisy at large

distances, also the ‘‘color average’’ free energy FQ �Q;8,
which has the same value at long distances. These free
energies clearly show that adjoint sources are screened at
large distances, in clear contrast to the linearly rising free
energy FQ �Q;3 of sources in the fundamental representation.
We calculate the free energy at infinite separation between

the sources using the cluster property,

 F8;1�T� � �2T lnLr8�T� � 2mglump�T�: (28)

At zero temperature the energy stored in the field suffices
to put on shell two gluons from the medium and form two
disjoint gluelumps [52]. At finite temperature this free
energy can be identified with twice the gluelump screening
mass.

Results for F8;1 are collected in Table III. F8;1 is shown
in Fig. 16 (upper panel). It changes little with T, starting
from 2.331(88) GeV at T=Tc � 0:907 and subsequently
falling to 2.06(12) GeV just below Tc. At the lowest
temperatures discussed here, F8;1 indeed approaches the
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FIG. 14 (color online). The renormalized adjoint Polyakov
loops below and above the critical temperature compared to
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indicates the vanishing fundamental loops in the confined phase.
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TABLE III. Temperature dependence of F8;1, string breaking
distance rstring for the adjoint singlet free energy with respect to
V8 (see text) and the renormalized adjoint Polyakov loop Lr8. The
last line gives the values at T � 0 for twice the mass of the
gluelump [50] and for the string breaking distance [51].

T=Tc F8;1 [GeV] rstring�V8� [fm] Lr8

0.907 2.331(88) 1.180(61) 0.0087(16)
0.924 2.310(84) 1.170(58) 0.0099(17)
0.942 2.274(76) 1.153(53) 0.0116(17)
0.959 2.204(70) 1.121(48) 0.0143(19)
0.977 2.161(73) 1.101(50) 0.0168(23)
0.986 2.09(14) 1.069(97) 0.0198(53)
0.995 2.06(12) 1.053(81) 0.0219(48)

0.000 2.4–3.0 
1:2   
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T � 0 value of V8;1 � 2:4–3:0 GeV, which is twice the
mass of the gluelump obtained in [50].

We define the string breaking distance rstring�T� by com-
paring the Casimir-scaled free energy with fundamental
sources, d8F

1
Q �Q;3

, with the screened value of the free

energy with adjoint sources,

 d8F
1
Q �Q;3
�rstring�T�� � F8;1�T�: (29)

The results are collected in Table III. In Fig. 16 (lower
panel) we show the resulting values of rstring as a function
of the temperature. There is rather mild change in rstring

with T. It varies from 1.180(61) fm at T=Tc � 0:907 to
1.053(81) fm just below Tc. At the smallest temperature
rstring almost coincides with the T � 0 value of 1.2 fm [51].

VIII. CONCLUSIONS

We examined the renormalized Polyakov loop in many
different irreducible representations of the gauge group
SU(3) in the thermodynamic limit of pure gauge QCD. It
has been known for a long time that the ultraviolet diver-
gences of the Polyakov loop can be absorbed into a multi-
plicative renormalization ‘‘constant’’ Z�g2�, where g2 is
the bare coupling. Such a renormalization factor does not
depend on long-distance physics, such as the temperature T
[see Eq. (7)]. We implemented such a renormalization
procedure by explicitly constructing an iteration using
only explicitly gauge invariant quantities starting from a
reference temperature Tref incorporating this idea (see
Sec. III B for details). This so-called direct renormalization
procedure was then used to extract the renormalized
Polyakov loops in representations up to the 27 of SU(3)
for a wide range of temperatures (see Sec. II).

The technical part of our paper also consists of extend-
ing the Q �Q renormalization procedure of [23] to Polyakov
loops in arbitrary representations of the gauge group (see
Appendix B). This is done by matching (gauge variant)
correlation functions of sources in arbitrary representations
to zero temperature values at the ultraviolet cutoff.
Although one does not demand explicitly that the renor-
malization constant depends only on the bare coupling, the
matching to zero temperature in the ultraviolet makes sure
that this occurs. We checked that both renormalization
procedures have the same, one real parameter, freedom
of choice of scheme (see Appendix C). Having two dras-
tically different renormalization schemes which are func-
tionally equivalent allows us not only to use the most
convenient scheme in any situation, but also to cross-check
the results by using both schemes whenever possible. This
puts the results of the lattice measurements on very strong
footing. Furthermore, the equivalence of the two proce-
dures shows that the short distance as well as the large
distance parts of the heavy quark free energies obtained in
Coulomb gauge become gauge independent as proposed in
[53].

An interesting simplification occurs when Polyakov
loop expectation values satisfy a relation called Casimir
scaling [Eq. (5)]. Then the renormalization factors in all
the different representations essentially boil down to a
single factor. Furthermore, large-N factorization evolves
from the large-N limit of the quadratic Casimirs, and hence
Casimir scaling could provide an alternative route to
large-N scaling. We have presented tests of Casimir scaling
in Sec. IV and of direct large-N factorization in Sec. V.
Both turn out to be reasonably reliable away from Tc.
However, Casimir scaling is significantly more reliable
and may provide a good route to scale large-N predictions
down to N � 3.

One subject of abiding interest is whether the high
temperature phase of QCD can be described by a matrix
model. We test this question in Sec. VI. Casimir scaling
implies that there are universal (renormalization scheme
independent) relations between the renormalized Polyakov
loop expectation values such that all the loops we studied
depend only on the value of the fundamental loop. This
implies that a matrix model description could work well
away from Tc. A single parameter variation of all cou-
plings in the model would then reproduce the data on
Polyakov loops, the temperature dependence of the cou-
plings being, of course, renormalization scheme depen-
dent. However, it seems that a simple model with a small
number of parameters is not able to reproduce the power
laws in the lattice data, at least within the mean-field
analysis of the matrix model performed here.

Because of the Z(3) symmetry of the pure gauge theory,
all Polyakov loops with nonzero triality vanish in the
confined phase of the pure gauge theory. For the adjoint
representation we have observed small, but nonzero, values
below Tc for the first time in the thermodynamic limit (see
Sec. VII). Since static adjoint sources can form bound
states, called gluelumps, with dynamical gluons, correla-
tions of adjoint loops show screening (string breaking)
even in the confined phase. As a result, heavy quark free
energies have a finite asymptotic value while for zero-zero
triality they rise linearly with distance. Some aspects of the
free energy can be captured into the phenomenology of
gluelumps through a mass and radius parameter. We
present results for these quantities.

Our primary technical result is the systematic develop-
ment of two parallel renormalization procedures for
Polyakov loops in arbitrary representations of the gauge
group. This allows us to check that Casimir scaling of the
renormalized loops is satisfied to good accuracy away from
Tc. This is our main physical result, since it leads to the
discussion of large-N factorization and the matrix model
description of lattice data.

ACKNOWLEDGMENTS

We wish to thank J. Engels, F. Karsch, R. D. Pisarski, Y.
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APPENDIX A: POLYAKOV LOOPS IN
IRREDUCIBLE REPRESENTATIONS OF SU(3)

In order to obtain Polyakov loops in higher irreducible
representations of SU(3) than the fundamental, we may use
the theorem that the character in a direct product represen-
tation is the product of the corresponding characters,
�P�Q�g� � �P�g��Q�g�. Then the direct product can be
reduced using the Clebsh-Gordan series to yield the
Polyakov loop in various representations.

We use the following identities,
 

3� 3 � 6	 �3

�1; 0� � �1; 0� � �2; 0� 	 �0; 1� (A1)

 

3� �3 � 8	 1

�1; 0� � �0; 1� � �1; 1� 	 �0; 0� (A2)

 

6� 3 � 10	 8

�2; 0� � �1; 0� � �3; 0� 	 �1; 1� (A3)

 

6� �3 � 15	 3

�2; 0� � �0; 1� � �2; 1� 	 �1; 0� (A4)

 

8�3�15	 �6	3

�1;1���1;0���2;1�	�0;2�	�1;0� (A5)

 

10� 3 � 150 	 15

�3; 0� � �1; 0� � �4; 0� 	 �2; 1� (A6)

 

10� �3 � 24	 6

�3; 0� � �0; 1� � �3; 1� 	 �2; 0� (A7)

 

6� 6 � 150 	 15	 �6

�2; 0� � �2; 0� � �4; 0� 	 �2; 1� 	 �0; 2� (A8)

 

6� �6 � 27	 8	 1

�2; 0� � �0; 2� � �2; 2� 	 �1; 1� 	 �0; 0�; (A9)

where we have specified the irreducible representations
both in terms of its dimension and through the canonical
label �p; q� where p and q are integers. Recall that the
maximum weight in irreducible representation �p; q� is
m � f�p	 q�=2

			
3
p
; �p� q�=6g, and the dimension of

this irreducible representation is D � �p	 1��q	 1��p	

q	 2�=2 (see Table IV). The notation 150 stands for the
irreducible representation �4; 0�, and 15 denotes the irre-
ducible representation �2; 1�. Note that interchanging p and
q gives the complex conjugate irreducible representation.
The triality of an irreducible representation can be defined
to be t � �p� q�j3. In each expression above, the trialities
of all the irreducible representations on the right must be
equal, and must equal the sum of the trialities (mod 3) of
the irreducible representations on the left. This can be used
as a check.

More concretely, take the product over links and the
trace defining the Polyakov loop in the 3 of SU(3),

 l3�x� � Tr
YN�
n�1

Ut�x	 nt̂�; (A10)

where l3�x� is a complex number. Here the trace is nor-
malized such that the unit matrix traces to 3. The Polyakov
loop in an irreducible representation is the character in that
irreducible representation. Hence, given the loop in one
irreducible representation, that in the complex conjugate
irreducible representation is obtained by complex conju-
gation. One specific example is

 l�3�x� � l�3�x�; (A11)

where l� is the complex conjugate of l. The Polyakov loop
in the trivial irreducible representation 1 is unity (which
gives vanishing potential in this irreducible representa-
tion). Next we construct the series of other Polyakov loops,

 l6�x� � l3�x�2 � l�3�x�; (A12)

 l8�x� � jl3�x�j
2 � 1; (A13)

 l10�x� � l3�x�l6�x� � l8�x�; (A14)

 l15�x� � l�3�x�l6�x� � l3�x�; (A15)

 l150 �x� � l3�x�l10�x� � l15�x�; (A16)

TABLE IV. Quadratic Casimir C2�D� for the representation D
of SU(3), t � p� qmod 3 is the triality. dD is the ratio
C2�D�=C2�3�.

D �p; q� t C2�D� dD

3 �1; 0� 1 4=3 1
�3 �0; 1� 2 4=3 1
6 �2; 0� 2 10=3 5=2
8 �1; 1� 0 3 9=4 Im�L8� � 0
10 �3; 0� 0 6 9=2
15 �2; 1� 1 16=3 4
150 �4; 0� 1 28=3 7
24 �3; 1� 2 25=3 25=4
27 �2; 2� 0 8 6 Im�L27� � 0
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 l24�x� � l�3�x�l10�x� � l6�x�; (A17)

 l27�x� � jl6�x�j2 � l8�x� � 1: (A18)

Further irreducible representations can be obtained if
needed. Two of the reductions for the direct product have
not been used. The Polyakov loop values in normalization
used elsewhere in this paper are obtained by writing
LD�x� � lD�x�=D.

APPENDIX B: Q �Q RENORMALIZATION

The Q �Q renormalization procedure [23] can be ex-
tended to static sources in arbitrary representations of the
color group. For simplicity we will only discuss adjoint
sources here in detail, but the generalization to other
representations is straightforward.

Given an SU(3) matrix in the fundamental representa-
tion, U3, the corresponding adjoint matrix, U8, is

 U8
ij �

1
2 Tr��iU3�jU3y�; i; j � 1; . . . ; 8; (B1)

where �i are the Gell-Mann matrices. From the hermiticity
of �i and cyclicity of the trace all matrix elements U8

ij are
real. This formula can be used to convert all link elements
from the fundamental to the adjoint.

The thermal Wilson line in the adjoint representation is

 P8�x� �
YN��1

x4�0

U8
4� ~x; x4�: (B2)

Another way to define it is to take the fundamental Wilson
line of Eq. (1) and convert it to the adjoint using the
prescription of Eq. (B1). The adjoint Polyakov loop is
the trace

 L8� ~x� � TrP8� ~x�: (B3)

As before, we have normalized the trace such that the trace
of the unit matrix is 1.

Define the correlator of two adjoint thermal Wilson
lines,

 

~C 1
Q �Q;8
�r; T� � hTr�P8� ~x1�P

y
8 � ~x2��i; (B4)

and r � j ~x1 � ~x2j. This correlator is clearly gauge depen-
dent, and hence we define it through Coulomb gauge fixing
(see [53,54] for more on this point). The free energy with
two static adjoint sources a distance r apart is

 

~F 1
Q �Q;8
�r; T� � �T ln ~C1

Q �Q;8�r; T�: (B5)

Here ~C and ~F denote bare correlators and free energies; the
same notation without a tilde will denote renormalized
quantities.

Since the Polyakov loop is renormalized multiplica-
tively, the free energies are additively renormalizable. We
match the finite temperature free energy to the zero tem-
perature potential at the smallest attainable distance, a, on

a lattice

 F1
Q �Q;8
�a; T� � ~F1

Q �Q;8�a; T� �
2

a
d8 lnZ8 � d8V3�a�; (B6)

where V3�r� is the zero temperature potential in the funda-
mental representation. We use the potential derived in [55].
In the matching procedure we have used Casimir scaling of
the potential at short distances. This is seen in continuum
[42] and lattice [45] perturbation theory. In Fig. 17 we
show the renormalized quark-antiquark free energies for
static sources in the adjoint (D � 8) and fundamental
(D � 3) representations together with the Casimir-scaled
zero temperature potential V8�r� � d8V3�r�. The data
clearly validate the assumption of short distance Casimir
scaling on which the procedure rests.

Once the free energies have been renormalized at small
distances, their large distance behavior is fixed. The
asymptotic value can be used to the define the renormal-
ized Polyakov loop through the cluster property

 LrD�T� � lim
r!1

																							
C1
Q �Q;8�r; T�

q
� lim

r!1
exp

�
�
F1
Q �Q;D
�r; T�

2T

�
:

(B7)

This completes the Q �Q renormalization procedure for the
octet loop. The requirement that Z8 depend only on g2 is
not explicitly imposed in the Q �Q renormalization proce-
dure. However, the results, plotted in Fig. 18, show that this
is obtained. The figure also shows that Casimir scaling of
the renormalized Polyakov loop is obtained, since Z8 and
Z3 agree.

Any 3� 3 unitary matrix with unit determinant is
uniquely specified by eight real numbers, which are coor-
dinates in the abstract group SU(3). Given these coordi-
nates, there are canonical techniques for building matrices
in any representation D which generalize Eq. (B1). Hence,

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

F1
Q−Q,D (r,T)/C(D)/σ1/2

D=8 D=3

rσ1/2

T/Tc
0.907
0.959
0.977
1.013
1.031
1.149
1.682
2.995

FIG. 17 (color online). Comparison of the color singlet quark-
antiquark free energies for fundamental and adjoint sources
scaled by the corresponding Casimir factor. The solid line
represents the zero temperature potential, V8�r� � V3�r�=C2�8�.
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given the thermal Wilson line in the fundamental, one can
construct the equivalent for arbitrary D. From that one can
generalize every step of the procedure from Eq. (B4) on for
any D.

APPENDIX C: RENORMALIZATION SCHEMES

In the direct renormalization procedure the freedom of
scheme choice is the multiplicative ambiguity LrD�Tref� !
KDLrD�Tref�, for some constant KD. This implies that at
another temperature the renormalized Polyakov loop is
scaled by the factor KTref=T

D . In the Q �Q renormalization
procedure it is the freedom of defining the zero of the T �
0 potential

 V3�r� ! V3�r� 	 C: (C1)

Using Casimir scaling for the short distance potential, this
clearly leads to the scaling

 LrD�T� ! e�dDC=2TLrD�T� ZD�g
2� ! e�a�g

2�C=2ZD�g
2�;

(C2)

which incorporates Casimir scaling for the Polyakov loop.
Our standard scheme choice corresponds to choosing C
such that the triplet potential at T � 0 is given by the
results of [55].

In Fig. 19 we show examples of the change in renormal-
ization scheme using the two procedures. Despite the
scaling freedom, the dependence of Z�g2� on the bare
coupling is independent of this scale and the temperature
dependence of the renormalized Polyakov loops follow
from Eq. (C2).

APPENDIX D: COLOR AVERAGE FREE
ENERGIES

We now turn to color averaged Q �Q-free energies. Since
the corresponding correlators can be obtained without a
costly gauge fixing, we were able to calculate FQ �Q;D�r; T�
for representations D � 3; 6; 8 in the temperature range
0:9–3Tc on 323 � 4 lattices. The color average correlator
for a temperature T in representation D is defined by

 CQ �Q;D�r; T� � hL
r
D�x1�Lr�D �x2��i; (D1)

where the star denotes complex conjugation. The color
average free energy FQ �Q;D�r; T� � �T logCQ �Q;D�r; T�. If
Casimir scaling holds, then

 FQ �Q;D�r; T�=C2�D� � FQ �Q;D0 �r; T�=C2�D
0�: (D2)

We test this relation below and above Tc.
Below Tc we employ the renormalized average free

energies

 FQ �Q;D�r; T� � ~FQ �Q;D�r; T� �
2

a
dD lnZD�g2� (D3)

for the three lowest temperatures divided by their Casimir
in Fig. 20. The renormalization constants used are those
found by the renormalization procedure described in
Sec. III C. Thus for the smallest distances all curves coin-
cide as a consequence of the renormalization procedure.
However, for all T < Tc and representations D � 6; 8 de-
viations to smaller values start to show up quite early, i.e.,
for separations r

				
�
p

* 1 for D � 6 and r
				
�
p

* 0:8 for
D � 8, respectively. This effect is more pronounced for the
adjoint average free energy than for the sextet. The effect
of string breaking sets in at larger distances than shown
here and will be discussed in Sec. VII.

Above Tc we compare

 �FQ �Q;D�r; T� � FQ �Q;D�r; T� � FQ �Q;D�r! 1; T� (D4)

divided by their Casimir for the same representations D �
3; 6; 8 in Fig. 21. We observe screening to take place in
both higher representations. The curves for bothD � 6 and
D � 8 deviate to smaller values compared to the funda-

1.1

1.2

1.3

1.4

1.5

1.6

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

Z3(g2)

g2

-direct
QQ

FIG. 19 (color online). Renormalization constants for funda-
mental loops at different scales C � 0:0;�

				
�
p

(upper data
points) and

				
�
p

(lower data points) in Eq. (C1) from the direct
and Q �Q-renormalization method. The solid lines are the prop-
erly scaled fit from Fig. 4.

1.2

1.3

1.4

1.5

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ZD(g2)

g2 D=3
D=8

FIG. 18. The renormalization constants, ZD�g2�, for funda-
mental (D � 3) and adjoint (D � 8) sources on 323 � 4 (open
symbols) and 323 � 8 (filled symbols) plotted versus the bare
coupling g2 � 2N=�. The D � 3 data and the solid line are the
same as in Fig. 4.
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mental case. We find that the ordering

 

�FQ �Q;6�r; T�

C2�6�
<

�FQ �Q;8�r; T�

C2�8�
<

�FQ �Q;3�r; T�

C2�3�
< 0 (D5)

holds throughout the entire distance interval above Tc.

Thus, we conclude that Casimir scaling (D2) is clearly
violated for the average Q �Q free energies in the tempera-
ture range 0:9–3Tc for the fundamental, sextet, and adjoint
representations.
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