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Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the
feasibility of reliably extracting multiple excited states using a variational method. The study is performed
on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge
of the continuum limit of a lattice interpolating field can give additional spin-assignment information,
even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses
are systematically high with respect to quark-potential model predictions and, where they exist,
experimental states. We conclude that this is most likely a result of the quenched approximation.
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I. INTRODUCTION

In this paper we discuss an application of the variational
method for the extraction of spectroscopic information
from lattice QCD two-point functions. We focus on the
use of a large set of interpolating fields allowing access to
all JPC with sufficient redundancy to consider several
excited states in each channel. As well as the usual extrac-
tion of mass information, we are also interested in the
overlaps of interpolating fields on to states in the spectrum.
This information is required if one wishes to extract matrix
elements between hadron states from three-point or higher
correlators, an example being the radiative transitions con-
sidered in [1]. We find in this paper that these overlaps are
also useful in aiding the spin identification of states pro-
vided one has established the continuum behavior of the
interpolating fields.

Our application of the variational method utilizes the
orthogonality of states to extract excited state information.
This is particularly powerful when a number of excited
states are close to being degenerate—conventional multi-
exponential fitting methods are not good at resolving such
states. We are able to collect high statistics by the use of a
small spatial volume ��1:2 fm�3 and by confining our
study to a large pseudoscalar mass mps � 3 GeV, corre-
sponding to charmonium. This volume is known to be
sufficient to house the ground state for most JPC, as illus-
trated by the ‘‘charge’’ radii extracted in [1], but we might
expect it to be insufficient for radially excited states and
those of high spin. We will study the volume dependence of
a number of correlators and find, somewhat surprisingly,
that there seems to be no meaningful difference between a
1.2 fm box and a 2.4 fm box.

A resurgence of interest in charmonium physics is
underway, spurred by new results from BABAR, Belle,
and CLEO. This is reflected in increased theoretical effort,
in particular, there have been recent efforts to apply lattice
QCD techniques to the computation of quantities previ-
ously the preserve of potential models and sum rules, such
as radiative transitions [1] and two-photon decays [2]. In
this paper we extract information about the excited state
and high spin spectrum, which is both interesting in its own
right, and vital for concurrent attempts to extract excited
state radiative transitions.

We begin in Sec. II with a discussion of the lattice action
and other computational details before in Sec. III outlining
our choice of a broad set of interpolating fields constructed
to be irreducible representations of the lattice symmetry
group at zero momentum and to have simple, known con-
tinuum properties. The variational method used to describe
the data is explained in Sec. IV with the focus on ensuring
that the solution accurately describes the input data.
Spectrum results are then shown in Sec. V, with some
discussion of how continuum spin assignments can be
aided by considering overlap factors. In three appendices
we display properties of our interpolating fields and show
an application of the variational method to toy data.

II. COMPUTATIONAL DETAILS

The computations were performed in the quenched ap-
proximation to QCD, using the Chroma software system
[3]. We employed 1000 configurations on a 123 � 48
lattice generated using an anisotropic Wilson gauge action
[4]

 S � ��
�

1

�0

X
x;i>j

Pij�x� � �0

X
x;i

P0i�x�
�
;

defined in terms of simple plaquettes P���x�. Here,� is the
bare coupling, the time component is labeled by 0, the
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spatial indices i, j run from 1 to 3, and �0 is the bare
anisotropy. We tune �0 to the desired renormalized anisot-
ropy � � as=at � 3 where as and at are the spatial and
temporal lattice spacings, respectively, and find �0 �
2:464. The temporal lattice spacing obtained from the
static quark-antiquark potential is a�1

t � 6:05�1� GeV.
This gauge action is expected to have O�a2

s ; a
2
t � discretiza-

tion errors. A smaller set of 807 configurations on a 243 �
48 lattice were used to study finite-volume effects.

Anisotropic lattices as applied to charmonium exploit
the fact that while the quark mass scale demands a cutoff
above �1:5 GeV, the internal three-momentum scale is
typically much lower, �500 MeV. On our lattice, we can
have both mcat and j ~pjas reasonably small and a spatial
length * 1 fm without requiring very many spatial lattice
sites. Most of the work presented uses one volume, Ls 	
1:2 fm while a limited comparison is made with a large
volume Ls 	 2:4 fm; previous charmonium spectrum
studies indicate that there are no significant finite-volume
effects for lattices of this size or larger [5,6].

The quark propagators were computed using an aniso-
tropic version of the O�a� tadpole-improved Clover action
[7–9]. The Clover action we used has the ‘‘mass’’ form
with spatial fermion tuning. Defining a lattice spacing a�
where ak � as and a0 � at, we can express this fermion
action in terms of dimensionless variables  ̂ � a3=2

s  ,
Ŵ� � a�W�, and F̂�� � a�a�F�� as

 

atQ � atm0 � Ŵ0�0 �
�
�0

X
k

Ŵk�k

�
1

2

�
ct
X
k

�0kF̂0k �
cs
�0

X
k<l

�klF̂kl

�
: (1)

The factor � is the bare value of the fermion anisotropy. For
the field-strength tensor F��, we adopt the standard
O�a2

s ; a2
t � clover leaf definition. Here, the ‘‘Wilson’’ op-

erator has the projector property

 W� � r� �
a�
2
����;

where

 

r�f�x� �
1

2a�

U��x�f�x� �̂a��

�Uy��x� �̂a��f�x� �̂a���;

��f�x� �
1

a2
�

U��x�f�x� �̂a��

�Uy��x� �̂a��f�x� �̂a�� � 2f�x��:

The projector property ensures that no doubler states are
present in the determined mass spectrum. We have tuned
�m0; �� so as to yield the desired quark mass and such that

the speed of light obtained from the meson dispersion
relations be one, as discussed later.

We have used the tree-level conditions on cs and ct as
described in Ref. [9]. In particular, we will choose

 cs �
�

u3
s
; ct �

1

2

�
��

at
as

�
1

utu
2
s
;

where the ratio at=as � 1=� is set to the desired renor-
malized gauge anisotropy. The tadpole factors us and ut
come from the fourth-root of the spatial and temporal
plaquettes, respectively, and take the values 0.814 and
0.980.

The charm mass is determined by tuning the bare quark
massm0 nonperturbatively such that the spin average of the
lowest S-wave mesons coincides with its experimental
value, i.e. �3mJ=� �m�c�=4 � 3:067 GeV, such that
m0 � 0:0401. We tune � nonperturbatively to satisfy the
dispersion relation

 c�p�2 �
E�p�2 � E�0�2

p2 � �2 a
2
t E�p�

2 � a2
t E�0�

2

a2
sp

2 � 1:

Keeping all other parameters fixed, we tune � to satisfy the
above relation to within �1% and find � � 0:867.

We have used Dirichlet boundary conditions in the
temporal direction placing the source five time slices
from the wall. All subsequent time-slice plots are with
respect to this source position.

For comparison purposes, we have also used an aniso-
tropic version of the domain-wall fermion (DWF) action
[1,10] with a domain-wall height atM � 1:7, a fifth di-
mensional extent L5 � 16, and a quark mass atmq. The
kernel of the domain action is the same as in Eq. (1) except
without the clover terms, i.e., ct and cs set to 0. As in the
clover case, the domain-wall quark mass and fermion
anisotropy �mq; �� are chosen to yield the desired S-wave
mass and such that the speed of light obtained from the
meson dispersion relations is one.

We have computed smeared-local correlators on a subset
of the same quenched lattices using both tadpole Clover
and domain-wall fermion quark actions. The effective
masses are shown in Fig. 1 where we see that apart from
the domain-wall fermion oscillations at small times there is
essentially perfect agreement between the two actions.
Since the domain-wall action should be O�a� improved
automatically we infer that, at least for the ground state
spectrum, the tadpole Clover is also O�a� improved to a
good approximation.

In this study we used quenched lattices. In the spectrum
of heavy quark states, where unitarity violation due to the
absence of closed charm quark loops can be neglected,
there are likely to be two main effects of this approxima-
tion. First there are no virtual D mesons in this theory and
hence no thresholds for Okubo-Zweig-Iizuka (OZI)-
allowed decay and second there is the known issue of the
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incorrect running of the coupling and an associated ambi-
guity in the setting of the lattice scale. In all cases we
compute only the connected contributions to correlators—
the effects of disconnected contributions in charmonium
are believed to be small [11,12].

III. INTERPOLATING FIELDS

It is common in meson spectroscopy calculations to
focus on the simplest meson interpolating fields, namely
the local fermion bilinears, � �x�� �x�. By appropriately
smearing the operator over space, a large overlap on to the
ground state of a given quantum number can be obtained.
These operators are, however, limited in the JPC � 0��,
1��, 1�� with which they have overlap. In addition, with
only these operators, while one might try various different
smearings [13], it is not possible to explore higher spin
states. For these reasons we opt to extend the operator basis
by including nonlocal operators, in particular, ones con-
structed from a number of covariant derivatives acting on
the quark fields. On a discretized lattice covariant deriva-
tives become finite displacements of quark fields con-
nected by links.

In the continuum one can construct operators which
transform in a particular way under the rotation group,
giving overlap only on to certain spins. On a discretized
lattice the full rotation group is broken down to a smaller
group of cubic rotations with a limited number of irreduc-
ible representations (irreps). The operators used in this
paper are constructed to be both irreps of the lattice rota-
tion group (at zero momentum) and to have definite, simple
forms in the continuum limit. In this way we have some
information about how these operators will behave in the
continuum limit—we will see that this potentially aides in
the interpretation of the lattice data if we are close enough
to restoring rotational symmetry.

Our operators are based upon those in [14]. The princi-
pal differences are that we extend the basis to include all
possible zero, one, and two-derivative operators,1 general-
ize the derivatives so that the operators have definite
charge-conjugation at finite momentum and correct a pro-
jection operator to ensure orthogonality within a lattice
irrep. Finally we develop the continuum overlap formalism
expressed in Appendix A.

A. Derivative-based operators

In [14] single derivative operators of the type � 2�i ~Dj 1

were utilized where 1 and 2 signify the flavor. The right-
facing arrow indicates that the covariant derivative acts
only on  1. For the case of a single flavor we would like the
operators to be of definite charge-conjugation—it is easy
to see using an integration by parts that the above operators
do not achieve this at finite momentum:

 

Z
d3 ~xei ~p
 ~x � �x��i ~Dj �x� � �

Z
d3 ~xei ~p
 ~x � �x��iD

 

j �x�

� ipj
Z
d3 ~xei ~p
 ~x � �x��i �x�:

The first term on the right-hand side has the same charge-
conjugation as the left-hand side but the second term,
lacking the derivative, has the opposite C. This can be
fixed by replacing the derivative ~D by the quark-antiquark

symmetrized D
$

� D
 

� ~D. The same integration by parts
as above will now not yield a term proportional to the
three-momentum.

At the two-derivative level, Ref. [14] constructs two
combinations, Bi � �ijk ~Dj

~Dk and Di � j�ijkj ~Dj
~Dk. In

the D-type case we ensure definite charge-conjugation at

nonzero momentum by redefining Di � j�ijkjD
$

jD
$

k. The
B-type case does not actually require this extension as one
can easily see by expressing the pair of derivatives as the
sum of a commutator and an anticommutator:

 �ijk ~Dj
~Dk � �ijk

1
2�


~Dj; ~Dk� � f ~Dj; ~Dkg� � �ijk
1
2

~Dj; ~Dk�

� �i
2�ijkF

jk:

Clearly the B-type operator is so named because it corre-
sponds to the chromomagnetic component of the field-
strength tensor. We complete the two-derivative set by

adding Ei � QijkD
$

jD
$

k (Qijk is a Clebsch-Gordan coeffi-
cient as defined in the next section) and the Laplacian

r2 �
P
iD
$

iD
$

i.
In the continuum, Lorentz symmetry along with parity

and charge-conjugation specify the form of the overlap of
an operator with a state of given JPC. In Appendix A we
tabulate the forms, valid for all three-momenta in

0 4 8 12 16 20 24 28 32
t

χc0

χc1

c

ψ

ηc

FIG. 1 (color online). Effective masses for tadpole clover (red)
and domain-wall fermions (shades of blue/purple) on same
lattices. Note masses are shifted for clarity. Relative mass scale
is shown.

1Although not all of these are actually used in this calculation
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Minkowski space-time, for the operators we use in this
paper.

We approximate covariant derivatives using finite dis-
placements, including the appropriate links. In the results
presented below we displaced only by one site; displacing
by two sites was found to give correlators that did not differ
considerably. Our implementation takes the form:

 

~r jf�x� �
1

2as
�Uj�x�f�x� ĵas� �U

y
j �x� ĵas�f�x� ĵas��

! ~Djf�x� �O�a2
s�:

B. Projection onto lattice irreducible representations

Our method will be much aided by having a basis of
operators that transforms irreducibly under the cubic group
O. The irreducible representations ofO, together with their
continuum spin contents, are shown in Table I [15]. The
operators are constructed as products of gamma matrices
and derivatives as outlined above, and therefore we need to
project these products to their irreducible components. For
operators K and L transforming according to the irreps �K
and �L, respectively, the product M transforms under an
element R of the cubic group as

 Mij � KiLJ ! ��K �R�ii0��L�R�jj0Ki0Lj0 ; (2)

where ���R� is the representation matrix for the element R
in the irrep � of dimension d�. The essential tool in
constructing the irreps is the projection formula

 O
�	�

i �
d�

gO

X
R2O

��
	��R�U�R�ijOj; (3)

where fOjg is a basis of operators that is reducible under
the cubic group, U�R� is the representation of the rotation
R on that basis, and fO�

i g are a set of operators trans-
forming irreducibly under the cubic group. The indices 	
and � refer to the rows of the irreducible representation,
and the final step in the procedure is to identify a set of
linearly independent operators fO�

i : i � 1; . . . ; d�g as a
basis for the irreducible representation.

Applying the projection formula 3 to the operator prod-
uct of Eq. (2), we obtain

 M
�	�

ij �
d�

gO

X
R2O

��
	��R��

�K �R�ii0Ki0�
�L�R�jj0Lj0 :

Identifying a set of d� linearly independent operators from
the set M�

ij , we obtain the Clebsch-Gordon coefficients for
obtaining the irreducible representation � in the product of
operators transforming according to the irreps �K and 
L:

 M�
i � QijkK

�K
j L�L

k :

In Ref. [14], the D and B operators are constructed via
Clebsch-Gordan coefficients of T1�r� � T1�r� to trans-
form as T2, T1 irreps, respectively. The complete decom-
position of T1 � T1 is A1 � T1 � T2 � E with the missing
A1 being the Laplacian and the E being the E operator
defined in the previous section. The Clebsch-Gordan co-
efficients in this case are Qijk where all elements are zero
except

 Q 111 �
1��
2
p ; Q122 � �

1��
2
p ; Q211 � �

1��
6
p ;

Q222 � �
1��
6
p ; Q233 �

2��
6
p :

Examining the zero three-momentum lattice irrep pro-
jections of the continuum overlaps in Appendix A, we can
see that certain operators of, say, T1 type can have overlap
with higher spins only at finite a with that overlap vanish-
ing as a! 0. The simplest example is the local fermion
bilinear � �i which, transforming as T1 can have overlap
with continuum spins 1; 3; 4 . . . at finite a but can only
have overlap with spin-1 in the continuum. Several of
our operators do retain overlap on to higher spins as

a! 0, e.g. the T2 projection of ��D: ���D�
T2
i �

�ijk � �jj�klmjD
$

lD
$

m . The nonzero overlaps in the contin-

uum at rest are h0j���D�
T2
i j2

���~0; r�i / j�ijkj 2jk �~0; r�

and h0j���D�
T2
i j3

���~0; r�i / �ijkj�klmj 2
jlm �~0; r� which

are linear in the spin-2 and spin-3 Minkowski polarization
vectors 2�� � ~p; r�, 2��� � ~p; r�. None of our operators
retain overlap on to spin 4 or higher in the continuum.
The full set of lattice irrep projections is displayed in
Appendix B.

C. Quark and link field smearing

Constructing covariant derivatives using finite displace-
ments with link fields can potentially produce rather noisy
correlators. Any individual link is subject to large UV
fluctuations over the ensemble of gauge fields. A suitable
average over links neighboring a given link can help to
reduce this fluctuation and providing one does this in a
gauge-invariant and rotationally symmetric way, the quan-
tum numbers of the operator will not be changed. This
subject is discussed in detail in [16]. In Fig. 2 we show the
reduction in correlator noise we were able to obtain by
judicious choice (� � 0:15, N� � 12) of stout-link smear-
ing parameters.

TABLE I. The table shows the single-valued irreducible rep-
resentations � of the cubic group O, together with their dimen-
sions d� and continuum spin content J. Additional superscripts
are employed to denote charge conjugation C and parity P.

� d� J

A1 1 0; 4; 6; . . .
A2 1 3; 6; 7; . . .
E 2 2; 4; 5; . . .
T1 3 1; 3; 4; . . .
T2 3 2; 3; 4; . . .
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Quark bilinear operators that are local or almost local
(e.g. single site displacements) tend to have considerable
overlap with a tower of states. While this can be helpful in
a study like this one attempting to consider excited states, it
is also useful to be able to emphasize the lower states in the
spectrum. This can be achieved by smearing the quark
fields over space with a gauge-invariant cubic approxima-
tion to a rotationally symmetric Gaussian with any deriva-
tives applied subsequently,
 �

1� 3�2

2N

�
N
�
1� �2=4N

1�3�2=2N

X3

i�1


Ux;i�x;x�î �U
y

x�î;i
�x;x�î�

�
N

!
N!1

e�
2r2=4:

As well as producing improved plateaus, optimizing the
quark smearing parameters does in some cases reduce

noise. We show in Fig. 3 two representative cases. Our
final parameter selection was � � 4:2, N � 50 for the
local, r and D operators and � � 5:0, N � 75 for the B
operators.

IV. VARIATIONAL METHOD

Our spectrum results follow from the application of a
variational method to matrices of correlators. This method
takes advantage of the orthogonality of state vectors on a
basis of interpolating operators. The basic numerical prob-
lem to be solved is of generalized eigenvalue type

 C�t�v	 � 
	�t�C�t0�v	:

In this expression C�t� is the matrix of correlators at time
slice t, i.e. Cij�t� � hOi�t�Oj�0�i. We transform all our
operators to Minkowski space (but retain imaginary time)
and in doing so ensure that this matrix is Hermitian (more
detailed discussion of this point can be found in
Appendix B). The generalized eigenvectors are orthonor-
mal on the metric C�t0�, v

y
	C�t0�v� � �	�. The principal

correlators 
	�t� are the generalized eigenvalues on a given
time slice—they can be shown to behave at large times like
[17,18]

 
	�t� � e�m	�t�t0��1�O�e�j�mj�t�t0���;

where m	 is the mass of a state labeled by 	 and �m is the
mass gap to the nearest state to 	.

Performing a Cholesky decomposition on the Hermitian
matrix C�t0� � LLy, where L is lower diagonal, one can
cast this as a conventional eigenvalue problem

 �L�1C�t�Ly�1��Lyv�	 � 
	�t��Lyv�	; (4)

where the eigenvectors are u	 � �Lyv�	. These eigenvec-
tors form a dim�C� � dim�C� unitary matrix that trans-
forms our ‘‘trial’’ operators into the optimum linear
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m
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m
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FIG. 3 (color online). Effective masses (on 300 configurations) for the correlators ���r�T2
� ���r�T2

and ��� B�T1
� ���

B�T1
. Stout-link smearing is applied with � � 0:15, N� � 12 and the data are labeled by the parameters of the quark smearing (�, N)

which is applied only at the source.

0 2 4 6 8 10 12 14 16 18
t

0

1

2

3
m

ef
f

0.0, 0
0.1, 10
0.15, 12
0.15, 15
0.2, 20

FIG. 2 (color online). Effective mass (on 300 configurations)
for the correlator ��� B�T1

� ��� B�T1
with link smearing at

source and sink. Data are labeled by the stout-link smearing
parameters, �, N�.
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combinations to overlap with the dim�C� lightest states
accessible to them. The eigenvectors should be time inde-
pendent to the extent that the correlator is saturated by
dim�C� states; in practice we solve the eigenvalue problem
on each time slice and obtain eigenvectors that can vary
with t.

Clearly from the principal correlators one can extract
information about the mass spectrum. There is also useful
information in the eigenvectors. The conventional spectral
decomposition of a two-point correlator (at zero momen-
tum) has the form

 Cij�t� � hOi�t�Oj�0�i �
X
	

Z	�i Z
	
j

2m	
e�m	t; (5)

where the overlap factor, Z	i � h0jOij	i. Examining the
form of the generalized eigenvalue equation with substitu-
tion of the spectral decomposition one finds that

 Z	i � �V
�1�	i

����������
2m	

p
em	t0=2:

The inverse of the eigenvector matrix is trivial to compute
owing to the orthonormality property VyC�t0�V � I )
V�1 � VyC�t0�.

In practice we work with a finite space of operators and
in this case the parameter t0 plays an important role. The
eigenvectors are forced by the solution procedure to be
orthogonal on the metric C�t0�—this will only be a good
approximation to the true orthogonality (which in the con-
tinuum is defined with an infinite number of states and
operators) if the correlator at t0 is dominated by the lightest
dim�C� states. As such one should choose t0 large enough
that you believe the above statement to be true. We dem-
onstrate this using toy data in Appendix C.

In choosing a t0 value for a given C�t� there are two
factors to take into account—the above discussion sug-
gests we should push t0 out to larger values, where the
contributions of higher excited states have decayed expo-
nentially; however, as we do so we get into a region where
the correlator data are typically noisier. As we can see from
Eq. (4), the noise on C�t0�will enter into the solution of the
eigenvalue problem at all time slices and as such we do not
want to make t0 too large. We need a criterion to decide
upon an optimum value of t0 —our choice was to define a

2-like quantity gauging how well the generalized eigen-
value solution (with time-independent Z values) describes
the correlators. At a given t0 we solve the eigenvalue
problem to yield masses (from fits to the principal corre-
lators—details of the fitting follow later) and Z’s. With
these in hand we can reconstruct any correlator matrix
element using Eq. (5). A suitable 
2-like quantity can be
defined as

 


2 �
1

1
2N�N � 1��tmax � t0� �

1
2N�N � 3�

�
X
i;j�i

Xtmax

t;t0�t0�1

�Cij�t� � Crec:
ij �t��C

�1
ij �t; t

0�

� �Cij�t0� � Crec:
ij �t

0��; (6)

where N � dim�C� and where C is the data correlation
matrix for the correlator Cij computed with jackknife
statistics.

The optimum value of t0 is chosen to be that which
minimizes the 
2-like quantity. In fact, since we solve the
eigenvalue problem on each time slice we actually get Z�t�;
we choose to take the Z values (for a given t0) from a fixed
time slice tZ > t0 such that the 
2-like quantity is mini-
mized at this t0. Since the Z�t� are reasonably flat the 
2

variation with tZ is fairly mild. Insisting that the Z’s are
time independent for t > t0 is a reflection of the fact that
the only time-dependence in the spectral representation (5)
is in the exponentials.

There are some subtleties that arise because we are
numerically solving the generalized eigenvalue problem
multiple times. One is that the phase of the eigenvector for
a given state is not a quantity that can be determined with
only two-point correlator information. From Eq. (5), it is
clear that one could multiply all Z	i for a fixed 	 by the
same phase and Eq. (5) would be unchanged. We solve the
eigenvalue problem once for each single-elimination jack-
knife sample of our ensemble. In general the eigenproblem
solver we used does not always obtain the same phase for
each jackknife sample, the net effect of which is to make
the configuration averages of the Z’s appear to be much
noisier than they really are. Our fix for this is to apply a
phase convention that the largest element of the eigenvec-
tor u � Lyv for a given state should be positive and real.

Another subtlety can arise in the case that two (or more)
states are degenerate within the level of the configuration

FIG. 4 (color online). 
2-like parameter as a function of t0 for
the A��1 channel.
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FIG. 5 (color online). Diagonal correlators and variational solution reconstructions (ground state exponential divided out) in the case
t0 � 7. Top to bottom operators are �5, �0�5, �b1 �r�A1

, ��� B�A1
. Left column smeared, right column unsmeared. Cumulative state

contributions are shown by the dashed lines.
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fluctuations. In that case the solver may misassign a state
label on any given jackknife sample (it orders according to
the size of the principal correlators). This is not a serious
problem for the masses since they are, in this case, equal
within the error bar anyway, but for the eigenvectors it can
be troublesome. On different jackknife samples one might
see the eigenvector flip between two orthogonal choices
with the result that the configuration average appears to be
noisy. We have examined the data in this study and found
that this effect does not occur at any meaningful level on
our ensemble of 1000 configurations. We do, on occasion,
see a flip of the eigenvector between neighboring time
slices, as we show in an example below. It is for this reason
that we do not choose to average over time slices in the
determination of Z from Z�t�.

The principal correlators are fitted using either a single
exponential or a sum of two exponentials with the con-
straint that 
�t � t0� � 1. The final time slice used in the
fit is chosen by the requirement that the fractional error be
below 10% and the first is selected by maximizing a fit
criterion. This fit criterion also decides between the one or
two exponential hypotheses.

As a concrete example of our solution scheme, consider
the A��1 channel in which we use the following operator
basis: (�5jsm;us; �

0�5jsm;us; b1 �rA1
jsm;us; �� BA1

jsm;us).
2

We solve the generalized eigenvalue problem for all t0
between 1 and 10—the 
2-like parameter so determined
is shown in Fig. 4, with a clear minimum being observed at
t0 � 7. We show in Fig. 5 the reconstructed diagonal (Cii)
correlators obtained using the solution at t0 � 7 (and tZ �
11). For comparison in Fig. 6 we show a reconstructed
diagonal correlator from the solution with t0 � 2. This
variational method is only reliable if the eigenvectors of
C�t� are orthogonal on the metric of C�t0�, which only
occurs if C�t0� is saturated by dim�C� states. In the t0 �
2 case C�t0� is not saturated by the eight states available,3

and we subsequently force the eigenvectors of C�t� to be
orthogonal on the ‘‘wrong’’ metric, a truncated metric
belonging to a larger Hilbert space—this shows up at
larger times as a poor description of the data. See also
Appendix C where this effect is investigated using toy data.

Returning to the reconstructed correlators with t0 � 7,
we can see the power of this variational method over more
conventional multiexponential fits. Considering, for ex-
ample, the final correlator plotted, we see that even at
time slice 7 there are at least 6 states contributing consid-
erably to the correlator. It is unlikely that a multiexponen-
tial fitter would converge to a solution with a sum of 6
exponentials fitting over the range 7–32. There are ap-
proximate degeneracies in the extracted spectrum and in

this case the only distinguishing feature of the states are the
Z’s or equivalently the eigenvectors. Without enforcing
orthogonality it is hard to see how one would extract
meaningful information on these degenerate states.

In Fig. 7 we display the fits to the principal correlators of
the lightest 6 states. Shown is the effective mass although
we remind the reader that the correlator itself is fitted.

In Fig. 8 we display the extracted Z�t� values for the
lightest four states for the smeared � �5 operator (points
with very large noise have been removed). The 
2-like
parameter is minimized at the point tZ � 11 which is seen
to be consistent with the general trend of the data. Between
time slices 19 and 20 we see a possible example of the
effect mentioned earlier that the eigenvalues for two near-
degenerate states (2nd and 3rd) can flip assignment.

We note that there is not significant curvature for t < t0
even though in general there can be, corresponding to
higher mass states having their time dependence placed
in Z�t� by the variational solver.

V. SPECTRUM RESULTS

In this study at zero three-momentum we opt to average
correlators over diagonal spatial directions,

 

�CT1 � 1
3

X3

i�1

CT1
ii ; �CT2 � 1

3

X3

i�1

CT2
ii ; �CE � 1

2

X2

i�1

CEii:

It is easy to show that for the orthogonalized lattice irreps
constructed these are the only nonzero entries. In general if
one does not average in this way one will extract approxi-
mately degenerate states corresponding to different spin-
projections (r in Appendix A) of a single state.

In the following we will discuss each PC combination
separately.
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FIG. 6 (color online). Example reconstructed diagonal corre-
lator in the case t0 � 2.

2Where sm and us indicate quark smeared and unsmeared,
respectively.

3Which can also be seen in the shortfall at t < 7 in the t0 � 7
solution, indicating the need for additional states to fully de-
scribe the data at all t values.

DUDEK, EDWARDS, MATHUR, AND RICHARDS PHYSICAL REVIEW D 77, 034501 (2008)

034501-8



A. J��

In Fig. 9 we display the states extracted. The lowest band
of states, at around 3500 MeV, can be identified with the
near-degenerate 
c0;1;2 states. In a potential model inter-
pretation these states have an internal P-wave and are split
by a small spin-orbit interaction. In principle, given the
continuum spin content of the A1, T1, T2, E lattice irreps,
these states could all belong to a single 4�� state. There are
a number of reasons for disfavoring such an assignment. In

the A1 channel we use only the smeared and unsmeared
versions of the �  operator. In the continuum, the lowest
dimension operator that has overlap with a spin-4 meson
has three covariant derivatives—at finite lattice spacing
such an operator can mix with �  , but must be suppressed
by three powers of the lattice spacing. We expect that this is
sufficient suppression relative to O�a0� overlaps on to spin-
0 states that we can neglect it. In fact none of the operators
used in the A��1 , T��1 , T��2 , E�� channels have any
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FIG. 7 (color online). Principal correlators (
	�t�) are fitted using the more successful of a single or two exponential hypothesis.
Plotted here are the effective masses � log
�t�1�


�t� of both the principal correlator data and the fits for the lightest six states in the A��1

channel using an eight dimensional basis of operators.
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overlap with 4�� in the continuum limit (see Appendix A),
but the finite a overlap is not always as suppressed as in the
pointlike case.

Support beyond simply mass degeneracy for the com-
mon 2�� assignment of the lightest state in T2 andE comes
from the extracted Z values. Consider, for example, the
operator ��r—this has overlap in the continuum limit,
at zero three-momentum, on to a 2�� state as follows:

 h0j �iDj j2���~0; r�i � Z 2ij �~0; r�:

Now, while we might think of the T2 and E irreps as being
independent on a discrete lattice, their particle content is
clearly related in the continuum limit, e.g. they share a
common Z value:
 

h0j���r�iT2
j2���~0; r�i � j�ijkjh0j �jDk j2���~0; r�i

� Zj�ijkj 2
jk �~0; r�;

h0j���r�iEj2
���~0; r�i � Qijkh0j �jDk j2���~0; r�i

� ZQijk 2
jk �~0; r�:

We might reasonably expect that if our simulation can be
considered to be ‘‘close’’ to the continuum limit, the Z
values extracted from the T2 and E channels would be
related as above, up to hopefully small corrections in
powers of a. This is in fact what we find to a high accuracy.
As a result of the correlator direction averaging described
above, the relation of the extracted Z’s to the Z defined
above is ZT2

�
���
2
p
Z; ZE � Z. For the lightest state in T2, E

we find for the smeared operator that
ZT2��
2
p
ZE
� 1:00�1�. We

take this as evidence that these states are rather close to
being components of the same 2�� state.

In addition, for the unsmeared ��r operators we find
ZT2��
2
p
ZE
� 1:00�3�. An equivalent analysis can be applied to

the a1 �D operator yielding
ZT2��
2
p
ZE
� 0:99�3� for smeared

and
ZT2��
2
p
ZE
� 1:12�5� for unsmeared, all of which appear to

be compatible with a common 2�� state assignment.
The second band of states (around 4100 MeV) features a

state in the A2 irrep, which we associate with a spin-3 state
in the continuum (neglecting spin-6 or higher possibilities).
This state should be partnered by nearby states in the T1

and T2 irreps for which there are candidates being either
the first or second excited states in each channel. We can
use the fact that in the continuum, the T2 and A2 projections
of the operator a1 �D share a common Z overlap onto the
spin-3 state:

 

h0j�a1 �D�A2
j3���~0; r�i � j�ijkjh0j �j�5Dk j3���~0; r�i

� Zj�ijkj 2ijk �~0; r�;

h0j�a1 �D�iT2
j3���~0; r�i � �ijkh0j �

j�5Dk j3���~0; r�i

� Z�ijkj�klmj 2jlm �~0; r�:

With the direction averaging used we find that ZA2
�

���
6
p
Z

and ZT2
�

��
8
3

q
Z. The extracted Z values for the smeared

operator give

FIG. 8 (color online). Z values for the smeared �5 operator.
Lowest four levels shown. Phases not relevant.

FIG. 9 (color online). J��. Left pane: extracted state masses by zero-momentum lattice irrep. Color coding indicates estimated
continuum spin assignment. Right pane: Comparison with experimental masses and quark-potential model masses.
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2ZA2
�gnd:st:�

3ZT2
�1st ex:�

� 0:15�15�;
2ZA2

�gnd:st:�

3ZT2
�2nd ex:�

� 0:97�9�:

Hence it would appear that the 2nd excited state in the T2

channel should be partnered with the ground state in A2 as
components of a spin-3 meson. The remaining components
should reside in the T1 channel. In fact none of the opera-
tors used in that channel have overlap with 3�� in the
continuum, but overlap can occur at finite a through mix-
ing with continuum operators of equal or higher dimen-
sion. For example, we have included an operator
�a1 �D�T1

which can mix with the same-dimension op-
erator �a1 � E�T1

which does have overlap with 3�� in the
continuum. The degree of mixing is presumably related to
a power of g�a� with at most logarithmic divergence with
a. At this stage we will assume that one of the states around
4100 in T1 is a component of this spin-3 state.

The remaining states in this band then can either be
components of a spin-4 meson or a nearly degenerate
0��, 1��, 2�� set. As before an argument against the
4�� option is that none of the operators used has overlap
with spin-4 in the continuum—while this is likely to be a
strong constraint in the A1, �  case, it is less convincing in
the other channels where we include operators featuring
two derivatives. Here the spin-4 overlap may only be sup-
pressed by one power of a. Explicitly we find that the
overlap of the unsmeared �  operator onto the first excited
state in A1 is of the same magnitude as the overlap onto the
ground state.

We can take the alternate route of looking for support for
the 0��, 1��, 2�� hypothesis. We have already seen that
there should be a definite relation between the Z’s in E and
T2 if the state corresponds to components of a spin-2
meson. From the fact that we have already assigned the
2nd excited state in the T2 channel to a spin-3 meson, we
would expect that the 1st excited states in T2 and E would
have Z matching. In fact we find

 

ZT2���
2
p
ZE
���r; sm� � 0:69�28�;

ZT2���
2
p
ZE
���r; us� � 0:95�27�;

ZT2���
2
p
ZE
�a1 �D; sm� � 0:58�57�;

ZT2���
2
p
ZE
�a1 �D; us� � 0:60�24�:

While not as convincing as the ground state, we do at least
see that these numbers are not inconsistent with the spin-2
hypothesis.

Giving spin assignments to higher states becomes in-
creasingly difficult. It is no longer possible to find com-
plete sets of components of a given spin across lattice
irreps, since in certain channels we have insufficient op-
erators to extract further states (e.g. only two operators in
A1 and hence only two states). Additionally both masses
and Z’s get noisier as we go higher in the spectrum. We can
tentatively assign the states at around 4300 MeV in T2 and

E to a 2�� on the basis of their Z���r; us� where
ZT2��
2
p
ZE
�

0:98�17�.
We summarize our assignments in Fig. 9 where they are

compared to experimental charmonium states and the po-
tential model states of [19]. Discussion will follow in the
next section.

B. J��

Results are displayed in Fig. 10. The isolated lightest
state in the T1 channel can be identified as the J= . In this
channel, there is then a large gap to the first excited state
which is close to 2 nearly degenerate states. We anticipate
the explanation of these levels as being two 1�� states and
a 3�� state. In this case we believe that this is the first time

FIG. 10 (color online). J��. Left pane: extracted state masses by zero-momentum lattice irrep. Color coding indicates estimated
continuum spin assignment. Right pane: Comparison with experimental masses and quark-potential model masses.
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that a lattice QCD calculation has observed something like
the experimental  �3686�= �3770� pair. The extraction of
such nearly degenerate states is made possible by the
orthogonality properties of the variational method.

The band of states around 3800 MeV has a natural
explanation as a nearly degenerate set containing a 3��

state, a 2�� state, and two 1�� states. The first excited
state in the T2 channel is associated with the ground state in

E as a 2�� meson using the Z-relation since
ZT2��
2
p
ZE
�a1 �

r�; sm� � 1:03�13�.
The ground state in A2 can be associated with the ground

state in T2 on the basis of mass degeneracy. The Z relation

is at the three-sigma edge of validity,
2ZA2

3ZT2

� 0:76�8�. It is

quite possible that this discrepancy is a discretization
effect, after all the Z relations are only supposed to hold
precisely in the continuum limit. To complete the 3�� we
associate one of the levels in T1 —since none of the T1

operators we used have overlap with 3�� in the continuum
we cannot apply any Z analysis here, although we do
expect to get overlap through mixing with ��� E�T1

which
has overlap with 3�� in the continuum.

A small overlap onto the unsmeared � �j operator
might be taken as signal for spin-3 nature owing to the
suppression of such an overlap at O�a3�, however there are
also good continuum physics reasons why a spin-1 meson
might have a small value of this overlap. In the nonrela-
tivistic limit this overlap measures the wave function at the
origin of a quark-antiquark pair—while this can be con-
siderable for an S-wave state, it is zero for a 3D1 state.
Relativistic corrections convert this zero to a suppression
relative to S-wave states, see, for example, the experimen-
tal f �3686��2

3S1� � 279�8� MeV and f �3770��
3D1?� �

99�20� MeV.
We find that the ground state and first excited state in T1

have comparable decay constants (463(8) MeV and
416(73) MeV) while the second and third excited states
have decay constants consistent with zero (182(211) MeV
and 40(153) MeV). This could be explained if they are
dominantly 3D1 and 3D3 states. This could be investigated
with simulations at smaller awhere we would expect one f
to remain finite (but small) while the other went to zero.4

It is worth noting that these decay constants5 are larger
than the experimental values. A similar result was seen for
the ground state in the preliminary NF � 2� 1 results of
[20]. We are somewhat surprised that this value is so high
considering the relative experimental agreement using
domain-wall fermions on the same lattices in [1]. We might
propose that since we are not improving our vector current
operator we cannot expect the full O�a� Clover improve-

ment, however in the mas improvement scheme proposed
in [21] there is no improvement at ~p � �000�.

We have not been able to make spin assignments for the
higher states in the spectrum for the reasons outlined in the
J�� section above. The only A��1 state we were able to
extract is rather close to our temporal cutoff scale (and is
compatible with the mass reported in [22])—such a state
could be an exotic 0��, but could equally well be a
nonexotic 4��. We will not comment upon it further.

We summarize our assignments in Fig. 10 where they
are compared to experimental charmonium states and the
potential model states of [19]. Note that we only show
those states for which we are confident of the spin assign-
ment; the reader may assign the higher states are their own
risk.

C. J��

The J�� sector has the interesting property that all states
in with J-even are exotic in the sense of being inaccessible
to a fermion-antifermion bound state. Such states can be
constructed from higher Fock states and as such are often
described as being ‘‘multiquarks’’ (extra quark degrees of
freedom) or ‘‘hybrids’’ (extra gluonic degrees of freedom).
Adding an extra pair of charm quarks would take the state
mass up to around 6 GeV, which is at the scale of our cutoff
and where our quenched nonunitarity might be felt. In the
physical spectrum it may be possible for light-quarks to
play a nontrivial role, in this quenched study we can say
nothing about this possibility. If a nontrivial gluonic field
produces exotic quantum numbered states we have hope of
seeing it here.

Our results are displayed in Fig. 11. The lightest state in
T1 can be taken to be the 1�� hc since it has no obvious
partners in other lattice irreps. We assign the set of states
around 4000 MeV to a 1��, 3�� pair, support for the T2,
A2 pairing comes from the analysis of the overlaps where
2ZA2

3ZT2

�b1 �D; sm� � 1:07�7�. Possible support for the ligh-

ter of the T1 states being a 3�� component comes from the
overlap on the � �i�j operator which is consistent with
zero as might be expected for an O�a2� suppression. The
other state has an overlap which is rather similar to the
ground state and we propose that it is a 1��.

The states around 4500 MeV are rendered somewhat
nontrivial by our operator-limited knowledge of the A2

channel. There might be other spin-3 states in this channel,
but without more operators we cannot tell. If there were to
be another state near 4500 MeV in A2 we would have two
plausible explanations of the states, either 3��, 4�� or
3��, 2��, 1��, 0��. We prefer the second choice and
have some support for this from the overlaps. The pairing

in T2E at around 4750 MeV satisfies
ZT2��
2
p
ZE
�a1 � B; sm� �

1:03�10� and we identify it with a 2��. The higher state in
T1 have a large overlap onto � �i�j and we propose it is
1��, while the lower is consistent with zero so we tenta-
tively assign it to 3��, partnered by the lower state in T2

4Provided we included an operator with continuum overlap on
to 3��, otherwise the state would decouple altogether.

5See [1] for details of scale setting of such quantities on an
anisotropic lattice.
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and a missing state in A2. The remaining state in A1 is then
proposed to be a 0��.

Our spin-assigned spectrum is compared with experi-
ment and quark models in Fig. 11. The exotic 0��, 2��

states are somewhat lighter than the signals reported in
[14,22].

D. J��

The J�� sector again houses exotics, this time in J-odd
channels. We can safely assign the lowest two states in A1

to 0��. The lightest states in T2, E appear to make up a

2��, and Z comparison appears to confirm this:
ZT2��
2
p
ZE
�b1 �

r; sm� � 1:07�8�. Above this spin assignment becomes

FIG. 11 (color online). J��. Left pane: extracted state masses by zero-momentum lattice irrep. Color coding indicates estimated
continuum spin assignment. Right pane: Comparison with experimental masses and quark-potential model masses.

FIG. 12 (color online). J��. First pane: extracted state masses by zero-momentum lattice irrep. Color coding indicates estimated
continuum spin assignment. Second and third panes: Comparison with experimental masses and quark-potential model masses.
Hatching indicates that the spin assignment was not based upon a Z analysis. The two assignments have either exotic 1�� or nonexotic
4�� lightest in T1.
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treacherous. We will work under the assumption that the
unexplored A2 channel is in fact empty in our mass
range—3�� states are exotic and of high spin and might
reasonably be expected to be heavy. With this we are left
with two possible assignments of the states near 4300 MeV.
The first would be to have two nearly degenerate 0��

states, an exotic 1�� state, and a 2�� state. The second
possibility is to have a single 0�� and a 4��. Analysis of
the Z’s in T2, E indicates the spin-2 interpretation is at the

borderline three-sigma level:
ZT2��
2
p
ZE
��� B; sm� � 0:78�7�.

The overlap of A1 states onto � �5�0 is large for the
ground state, the first excited state, and the third excited
state, but is consistent with zero for the second excited
state. This might be evidence for a spin-4 nature for this
state, with the overlap suppressed at O�a3�.

We are not able with the information we have to deci-
sively state which of the two hypotheses above is correct,
and as such in Fig. 12 we show two possible spectrum
interpretations of our data.

In Fig. 13 we show the effective mass of our smeared
��� B�T1

correlator along with the correlator taken from
[14] computed on lattices with the same as but with differ-
ent anisotropy (� � 2). It is notable that the data are
consistent although the fits are not.

E. Discussion

In our results we see that the masses of many excited
states and states of higher spin are high with respect to the
quark-potential model and, where available, experimental
states. We can identify three possible reasons for the
systematic difference which are the three approximations
in our lattice study: finite volume, nonzero a, and the
quenched approximation.6

The effects of a finite volume of �1:2 fm�3 would seem to
be a likely culprit. Within potential models the wave
function of increasingly excited and higher spin states
gets support at larger and larger distances. Estimates
from the potential model of Barnes, Godfrey, and
Swanson [23] indicate that, for example, the root-mean-
square (rms) radius of the first excited 
c0 is already over
1 fm. In order to consider this possibility we computed a
limited set of correlators on a quenched 243 � 48 lattice
with all parameters identical to the simulation on 123 � 48.
In Fig. 14 we show the ratio of these correlators in several
typical cases where it is clear that there is no statistically
significant difference, particularly in the t > t0 region. To
be clear we are unable to see any relevant finite-volume
differences between the �1:2 fm�3 box and the �2:4 fm�3

box.
We did not study multiple lattice spacings but we can

consider results in the literature for the a dependence of
state masses. The studies in [14,24] use rather similar
actions to ours on quenched lattices and see a dependences
that are relatively mild if the action is truly improved so
that an extrapolation in a2

s can be performed. If a non-
negligible O�as� term remains the dependence may be
more significant. There typically appears to be a decrease
in state masses as the continuum is approached which may
explain part of our high masses.

In comparing to the quark-potential model the effect of
thresholds can be neglected since their effect does not
appear in this model. Hence we might expect that the
principal effect of the quenched approximation would be
in the incorrect running of the coupling and the associated
scale-setting ambiguity. The ambiguity in scale setting can
be clearly seen in the three graphs of Fig. 13 in [24]. Since
the wave functions of higher and higher excited states
sample larger distances we might expect to feel even larger
effects in our study. We suspect that quenching may be a
major contributor to our systematically high masses.
This could in principle be investigated in a potential model
by using the static potential extracted from quenched lat-
tice QCD (extrapolated to the continuum) rather than
setting the potential by fixing to experimental data. There
would still be need to determine the quark mass, and one
would have to investigate the sensitivity to a truly non-
relativistic framework, but this would admit an in-
teresting comparison with lattice data extrapolated to the
continuum.

VI. CONCLUSIONS

We have investigated the use of a large basis of inter-
polating fields on the extraction of excited charmonium
meson states in many JPC channels. We propose an appli-
cation of a variational method that systematically selects
the parameter t0 to ensure the best possible description of
the data at all times greater than t0. We use the eigenvalues

FIG. 13 (color online). Effective mass of ��� B�T1
� ���

B�T1
correlator from this analysis and from [14]. Upper horizon-

tal line is the result of the fit performed in [14].

6And, in principle, the effect of disconnected contributions to
the correlators.
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(principal correlators) to determine the mass spectrum
and the eigenvectors to determine the overlaps of our
interpolating fields on to the states extracted. These num-
bers are used herein to aid continuum spin assignment and
are required quantities for the study of three-point
functions with the aim of extracting transition matrix
elements.

The variational method has the important feature of
using the orthogonality in a space of interpolating fields
of different states—this is a powerful lever-arm in the
extraction of near-degenerate states. In principle the
method can miss states that appear in the spectrum if no
linear combination of the interpolating fields used has a
sufficient overlap on to the state in question; however, this
is equally true of any ‘‘fitting’’ method and simply suggests
the use of the broadest set of interpolating fields possible.
With perfect statistics this analysis method should not
produce any ‘‘false,’’ additional states in the spectrum as
can happen in simple nonlinear exponential fitting schemes
where one adds states to minimize a 
2. With finite statis-
tics and a simple ordering of eigenvalues there is the
possibility that configuration-by-configuration there is
state misassignment which can appear as several levels
appearing to be degenerate within large errors. We did
not observe effects like this on our sample of 1000 con-

figurations, but with a smaller ensemble and the conse-
quent larger fluctuations of the jackknife bins it might be
expected to occur. The effect would be partnered by large
fluctuations, configuration-by-configuration, of the eigen-
vectors, and a possible mechanism to control it would be to
order the levels not simply by the size of the eigenvalue but
by the similarity (via a dot product, say) to some estab-
lished basis of eigenvectors (for example comparing each
single-elimination bin to the eigenvectors on the entire
ensemble average).

Our interpolating fields are designed so that they have
relatively simple and known overlap structures in the con-
tinuum limit, this was used to aid in the continuum spin
identification of states. Supplemented with analysis at
more than one lattice spacing we believe this will remove
much of the possible spin ambiguity of working on a cubic
lattice.

We observe in our results that our excited state masses
are systematically high with respect to experiment (where
it is measured) and to the potential models of [19]. Our best
guess is that this is a combination of not having extrapo-
lated to the continuum limit and the effect of the quenched
approximation. Both these issues can be remedied with
further computation now that the efficacy of the fitting
model has been demonstrated.
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FIG. 14 (color online). Ratio of correlators for volumes 123, 243. Unsmeared �i, smeared-unsmeared ���r�T1
, smeared-

unsmeared ���r�T2
, smeared-unsmeared �a1 �r�T2

. Also shown are the optimum t0 found in the 123 analysis.
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Arguably the most intriguing channel considered in this
study is T��1 . The lowest spin contributing to this is the
exotic 1�� which has been the subject of several analyses
[22,25–28]. In this study we found that we could not
determine whether the lightest state in this channel (at
�4300 MeV) is exotic spin-1 or nonexotic spin-4. In the
potential models of [19], a nonexotic 4�� state is ex-
pected in this mass region. With the uncontrolled system-
atics related to quenching in this work we can have only
limited bearing on phenomenology, but we lay out here the
potential for misinterpretation in this channel and look
forward to a relevant discussion of these matters in a
future analysis with improved systematics. We note that
an analysis varying the lattice spacing using the same
operator set might shed light on the spin-assignment—no
operators are used which have overlap on to spin-4 in
the continuum, any overlap with such a state is sup-
pressed by powers of a that will reduce as a! 0. Thus a
rapidly reducing Z�a� would suggest a spin-4 inter-
pretation.
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APPENDIX A: CONTINUUM OVERLAPS

In this appendix we tabulate the Lorentz covariant kine-
matic structures corresponding to the overlap of fermion
bilinear interpolating fields with a limited number of
Lorentz indices and states of definite JPC. In all cases the
fermion fields should be considered to be evaluated at the
origin of Minkowski space-time.

1. No Lorentz Indices

 h0j �  j0��� ~p�i � Z; h0j � �5 j0��� ~p�i � Z:

2. One Lorentz index

 

h0j � O� j0PC� ~p�i � Zp�;

h0j � O� j1��P�C� ~p; r�i � Z 2� � ~p; r�;

O� �� D
$�

�5�� D
$�

PC �� �� �� ��

3. Two Lorentz indices

 

h0j � O�� j0PC� ~p�i � Z0g�� � Zpp�p�;

h0j � O�� j1PC� ~p; r�i � Z���	� 2	 � ~p; r�p�;

h0j � O�� j2PC� ~p; r�i � Z 2�� � ~p; r�;

h0j � O�� j1��P�C� ~p; r�i � Z��2� � ~p; r�p�� 2� � ~p; r�p�� � Z��2� � ~p; r�p�� 2� � ~p; r�p��;

O�� 
��; ��� ��D
$�

�5��D
$�

fD
$�
;D
$�
g �5fD

$�
;D
$�
g 
D

$�
;D
$�
� �5
D

$�
;D
$�
�

PC �� �� �� �� �� �� ��
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4. Three Lorentz indices

 

h0j � O��� j0PC� ~p�i � Z0g
��p� � Z��g

��p� � g��p�� � Z��g
��p� � g��p�� � Zpp

�p�p�;

h0j � O��� j0��P�C� ~p�i � Z����	p	;

h0j � O��� j1PC� ~p; r�i � Z0����	 2	 � ~p; r� � Zp0���	�p	 2� � ~p; r�p� � Z�����	�p	 2� � ~p; r�p�

� ���	�p	 2� � ~p; r�p
�� � Z���

��	�p	 2� � ~p; r�p
� � ���	�p	 2� � ~p; r�p

��;

h0j � O��� j1��P�C� ~p; r�i � Z0g�� 2� � ~p; r� � Z��g�� 2� � ~p; r� � g�� 2� � ~p; r�� � Z��g�� 2� � ~p; r�

� g�� 2� � ~p; r�� � Zp0p�p� 2� � ~p; r� � Zp��p�p� 2� � ~p; r� � p�p� 2� � ~p; r��

� Zp��p�p� 2� � ~p; r� � p�p� 2� � ~p; r��;

h0j � O��� j2PC� ~p; r�i � Z0 2
�� � ~p; r�p� � Z��2

�� � ~p; r�p�� 2�� � ~p; r�p�� � Z��2
�� � ~p; r�p�� 2�� � ~p; r�p��;

h0j � O��� j2��P�C� ~p; r�i � Z0���	� 2
�
	 � ~p; r�p� � Z�����	� 2�

	 � ~p; r�p� � ���	� 2
�
	 � ~p; r�p��

� Z�����	� 2�
	 � ~p; r�p� � ���	� 2

�
	 � ~p; r�p��;

h0j � O��� j3��P�C� ~p; r�i � Z 2��� � ~p; r�;

O��� ����D
$�

fD
$�
;D
$�
g�� fD

$�
;D
$�
g�5�� 
D

$�
;D
$�
��� 
D

$�
;D
$�
��5��

PC �� �� �� �� ��

5. Four Lorentz indices

Here we limit ourselves to the case where the first two indices are antisymmetric and the final two have definite
symmetry.
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h0j � O���� j0PC� ~p�i � Z0�g��g�� � g��g��� � Zp�
�g��p�p� � g��p�p�� � �g��p�p� � g��p�p���;

h0j � O���� j0��P�C� ~p�i � Z0�
���� � Zp��

���	p	p
� � ����	p	p

�� � Z���
���	p	p

� � ����	p	p
��;

h0j � O���� j1PC� ~p; r�i � Zp���
���	 2	 � ~p; r�p

� � ����	 2	 � ~p; r�p
��

� Z2������	p	 2� � ~p; r� � ����	p	 2� � ~p; r��

� Zp�����	 2	 � ~p; r�p� � ����	 2	 � ~p; r�p��

� Z2�����	p	 2� � ~p; r� � ����	p	 2� � ~p; r�� � Zgg�����	� 2	 � ~p; r�p�

� Zp2p�p����	� 2	 � ~p; r�p� � Zgp�
�g�����	� 2	 � ~p; r�p� � g�����	� 2	 � ~p; r�p��

� �g�����	� 2	 � ~p; r�p� � g�����	� 2	 � ~p; r�p���;

� Zp2�
�p
�p����	� 2	 � ~p; r�p� � p�p����	� 2	 � ~p; r�p��

� �p�p����	� 2	 � ~p; r�p� � p
�p����	� 2	 � ~p; r�p���;

h0j � O���� j1��P�C� ~p; r�i � Zgg���2� � ~p; r�p�� 2� � ~p; r�p�� � Zp2p�p��2� � ~p; r�p�� 2� � ~p; r�p��

� Z1�
�g�� 2� � ~p; r�p� � g�� 2� � ~p; r�p�� � �g�� 2� � ~p; r�p� � g�� 2� � ~p; r�p���

� Z2�
�g�� 2� � ~p; r�p� � g�� 2� � ~p; r�p�� � �g�� 2� � ~p; r�p� � g�� 2� � ~p; r�p���;

h0j � O���� j2PC� ~p; r�i � Zg�
�g
�� 2�� � ~p; r� � g�� 2�� � ~p; r�� � �g�� 2�� � ~p; r� � g�� 2�� � ~p; r���

� Zp2�
�p
�p� 2�� � ~p; r� � p�p� 2�� � ~p; r�� � �p�p� 2�� � ~p; r� � p�p� 2�� � ~p; r���;

h0j � O���� j2��P�C� ~p; r�i � Z������	 2�
	 � ~p; r� � ����	 2

�
	 � ~p; r�� � Z0�����	 2�

	 � ~p; r� � ����	 2
�
	 � ~p; r��

� Z1�����	�p	 2
�
� � ~p; r�p

� � ���	�p	 2�
� � ~p; r�p

�

� Z2�
��
��	�p	 2

�
� � ~p; r�p

� � ���	�p	 2
�
� � ~p; r�p

��

� ����	�p	 2
�
� � ~p; r�p

� � ���	�p	 2
�
� � ~p; r�p

���;

h0j � O���� j3PC� ~p; r�i � Z0���	�p	 2
��
� � ~p; r� � Z�
��

��	�p	 2��
� � ~p; r� � �

��	�p	 2
��
� � ~p; r��

� ����	�p	 2
��
� � ~p; r� � �

��	�p	 2
��
� � ~p; r���

h0j � O���� j3��P�C� ~p; r�i � Z0���	�p	�p� 2��� � ~p; r� � p� 2��� � ~p; r��;

h0j � O���� j4PC� ~p; r�i � 0;

O���� ����
D
$�
;D
$�
� ����fD

$�
; D
$�
g

PC �� ��

6. Minkowski Hermitian operators

The following operators are Hermitian in Minkowski space. Using these operators one is guaranteed a Hermitian
correlator matrix which is a requirement for the variational method.

 

�  � i�5 � �� � �5�� � i���� 
� iD
$

i � �5D
$

i � i��D
$

i � i�5��D
$

i � ����D
$

i 
� D
$

i � i�5D
$

i � ��D
$

i � �5��D
$

i � i����D
$

i 
� E
$

i � i�5E
$

i � ��E
$

i � �5��E
$

i � i����E
$

i 
� iBi � �5Bi � i��Bi � i�5��Bi � ����Bi 
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APPENDIX B: LATTICE IRREP OPERATORS AT ~p � �000�

The third column indicates the quantum numbers accessible in the continuum limit.

Op. Name Cont. Op. Name Cont.

ri �a0 �r�T1
1�� �4�5�iDi �b1 �D�A2

3��

�5ri ���r�T1
1�� j�ijkj�4�5�jDk �b1 �D�T1

1��

�4�5ri ���2� � r�T1
1�� �ijk�

4�5�jDk �b1 �D�T2
�2; 3���

�4ri �a0�2� � r�T1
1�� Qijk�

4�5�jDk �b1 �D�E 2��

�iri ���r�A1
0�� Bi �a0 � B�T1

1��

�ijk�
jrk ���r�T1

1�� �5Bi ��� B�T1
1��

j�ijkj�
jrk ���r�T2

2�� �4�5Bi ���2� � B�T1
1��

Qijk�
jrk ���r�E 2�� �4Bi �a0�2� � B�T1

1��

�4�iri ���2� � r�A1
0�� �iBi ��� B�A1

0��

�ijk�
4�jrk ���2� � r�T1

1�� �ijk�
jBk ��� B�T1

1��

j�ijkj�
4�jrk ���2� � r�T2

2�� j�ijkj�
jBk ��� B�T2

2��

Qijk�
4�jrk ���2� � r�E 2�� Qijk�

jBk ��� B�E 2��

�5�iri �a1 �r�A1
0�� �4�iBi ���2� � B�A1

0��

�ijk�
5�jrk �a1 �r�T1

1�� �ijk�
4�jBk ���2� � B�T1

1��

j�ijkj�
5�jrk �a1 �r�T2

2�� j�ijkj�
4�jBk ���2� � B�T2

2��

Qijk�
5�jrk �a1 �r�E 2�� Qijk�

4�jBk ���2� � B�E 2��

�4�5�iri �b1 �r�A1
0�� �5�iBi �a1 � B�A1

0��

�ijk�
4�5�jrk �b1 �r�T1

1�� �ijk�
5�jBk �a1 � B�T1

1��

j�ijkj�
4�5�jrk �b1 �r�T2

2�� j�ijkj�
5�jBk �a1 � B�T2

2��

Qijk�
4�5�jrk �b1 �r�E 2�� Qijk�

5�jBk �a1 � B�E 2��

Di �a0 �D�T2
2�� �4�5�iBi �b1 � B�A1

0��

�5Di ���D�T2
2�� �ijk�

4�5�jBk �b1 � B�T1
1��

�4�5Di ���2� �D�T2
2�� j�ijkj�4�5�jBk �b1 � B�T2

2��

�4Di �a0�2� �D�T2
2�� Qijk�4�5�jBk �b1 � B�E 2��

�iDi ���D�A2
3�� Ei �a0 � E�T2

2��

j�ijkj�jDk ���D�T1
1�� �5Ei ��� E�T2

2��

�ijk�jDk ���D�T2
�2; 3��� �4�5Ei ���2� � E�T2

2��

Qijk�
jDk ���D�E 2�� �4Ei �a0�2� � E�T2

2��

�4�iDi ���2� �D�A2
3�� Rijk�iEk ��� E�T1

�1; 3���

j�ijkj�
4�jDk ���2� �D�T1

1�� Tijk�
iEk ��� E�T2

�2; 3���

�ijk�
4�jDk ���2� �D�T2

�2; 3��� Rijk�
4�iEk ���2� � E�T1

�1; 3���

Qijk�
4�jDk ���2� �D�E 2�� Tijk�

4�iEk ���2� � E�T2
�2; 3���

�5�iDi �a1 �D�A2
3�� Rijk�

5�iEk �a1 � E�T1
�1; 3���

j�ijkj�
5�jDk �a1 �D�T1

1�� Tijk�
5�iEk �a1 � E�T2

�2; 3���

�ijk�
5�jDk �a1 �D�T2

�2; 3��� Rijk�
4�5�iEk �b1 � E�T1

�1; 3���

Qijk�
5�jDk �a1 �D�E 2�� Tijk�

4�5�iEk �b1 � E�T2
�2; 3���

Rijk, Tijk are the Clebsch-Gordan coefficients for T1 � E � T1 � T2. We find the nonzero values

 

R111 �
��
3
p

4 ; R112 � �
1
4; R221 � �

��
3
p

4 ; R222 � �
1
4; R332 �

1
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T111 �
1
4; T112 �

��
3
p

4 ; T221 �
1
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3
p
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1
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FIG. 15 (color online). Extracted meff 
�t� for t0 � 2 (red),
t0 � 10 (green), and t0 � 30 (blue). Horizontal black lines are
the input spectrum.
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FIG. 16 (color online). Extracted jZ�t�j for t0 � 2 (red), t0 � 10 (green), and t0 � 30 (blue). Horizontal black line is the input Z.
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APPENDIX C: VARIATIONAL ANALYSIS OF TOY
DATA

In this section we consider the variational method ap-
plied to a finite spectrum of ten states when using a set of
only five operators.

We use the mass spectrum m	 � �0:5; 0:6; 0:63; 0:7;
0:72; 0:8; 0:83; 0:9; 0:91; 1:04� proposing that there exist
ideal operators which have unit-normalized overlap on to
only one state, i.e. there are ~Z	i � �i	. We build a model
analogous to a set of ‘‘trial’’ operators (linear combinations
of the ideal operators) by multiplying ~Z by a random
orthogonal 10� 10 matrix, Z	i � ~Z	j M

j
i . We construct a

nondiagonal correlator matrix with elements

 Cij�t� �
X
	

Z	�i Z
	
j

2m	
e�m	t:

Application of the variational method to the full 10� 10
matrix of correlators solves the problem exactly for any
value of t0. The situation we deal with in practice is not like
this—we do not have anything like a ‘‘complete’’ basis of

operators, we can model this by truncating the correlator
matrix down to a 5� 5 submatrix.

With a selection of random orthogonal rotations (Mj
i ) we

observe a range of behaviors in the solution to the varia-
tional problem, here we show two such cases.

1. Case 1

In Fig. 15 we show the effective masses of the principal
correlators for the choices t0 � 2, 10, 30. We see that there
is relatively little sensitivity in this case to the value of t0.
On the other hand we see considerable sensitivity to t0 in
the Z�t� values shown in Fig. 16 and only approach accu-
rate determination of the Z for the largest t0 value.

2. Case 2

In Fig. 17 we show the effective masses of the principal
correlators for the choices t0 � 2, 10, 30, note the qualita-
tive differences with respect to the previous case including
a flip in level ordering and the lack of a plateau in the fourth
excited state. The plateaus of the first and second excited
states clearly improve as t0 is increased.
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