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The available data on neutron scattering were reviewed to constrain a hypothetical new short-range
interaction. We show that these constraints are several orders of magnitude better than those usually cited
in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider
searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasize
the reliability of the neutron constraints insofar as they provide several independent strategies. We have
identified a promising way to improve them.
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I. INTRODUCTION

The existence of other forces in nature, mediated by new
bosons, has been extensively discussed in the literature,
given their possibility in many of the extensions to the
standard model of particle physics [1]. New bosons, for
example, are predicted by most of the grand unified theo-
ries embedding the standard model, with a coupling con-
stant of � 10�1. These strongly coupled bosons would
have to be heavier than � 1 TeV if they were not to
conflict with present observations; heavier bosons will be
searched for at the Large Hadron Collider. Lighter bosons
could however have remained unnoticed, provided they
interact weakly with matter. Such bosons would mediate
a finite range force between two fermions:

 V�r� � Q1Q2
g2

4�
@c
r
e�r=� (1)

where g is the coupling constant, Q1 and Q2 the charges of
the fermions under the new interaction, and the range of
this Yukawa-like potential � � @

Mc is inversely proportional
to the boson mass M. In the following we consider the
interactions of neutrons with nuclei of atomic number A:
the charge of the atom under the new interaction is equal
Q1 � A; the neutron charge is equal unity Q2 � 1. A new
boson could even be massless, as has been suggested by
Lee and Yang [2] well before the birth of the standard
model, to explain the conservation of the baryon number.
This additional massless boson would mediate a new
infinite-range force, and could be seen in searches for
violation of the equivalence principle at large distances.
The presence of very light bosons (M� 1 eV) would be
shown by deviations from the gravitational inverse square
law. Gravity has been probed down to distances of 0.1 mm

[3]; new bosons lighter than 2� 10�3 eV must thus have a
coupling constant lower than the gravity strength between
nucleons, g2 < 10�37.

Theories with extra large spatial dimensions [4–9] pro-
vide strong motivation to search for such forces. If a boson
is allowed to travel in large extra dimensions, with a strong
coupling constant in the bulk, it behaves in our 4D world as
a very weakly coupled new boson, the coupling being
diluted in the extra dimensions. The light dark matter
hypothesis also argues in favor of the existence of new
short range interactions [10].

While gravity experiments are most competitive in the
distance range >10 �m, the measurements of the Casimir
or Van der Waals forces (for a review, see e.g. [11]) give the
best constraints in the nanometer range (10 nm< �<
10 �m), and antiprotonic atoms constrain the domain
below 1 pm [12,13], it has been suggested that experiments
with neutrons could be competitive in the intermediate
range [13–18]. Neutrons could also probe spin-dependent
interactions in a wider distance range [19], or spin-
independent interactions in the range of several micro-
meters [18,20,21].

In this article we review the existing data on neutron
scattering at nuclei and give the quantitative constraints on
the parameters of the additional interaction, � and g. In
Sec. II we analyze the influence of a new short-range
interaction on the scattering of neutrons at nuclei. In
Sec. III, we use the fact that the nuclear radius, as well
as the scattering lengths, are expected to be proportional to
A1=3, where A is the number of nucleons, while the con-
tribution of an additional interaction would result in an
additional linear term in the mass dependence of the scat-
tering lengths. In Secs. IV and V, we use the different
sensitivities of different types of neutron scattering experi-
ments to extra interactions (forward and backward scatter-
ing) in order to constrain them. In Sec. VI we propose a
new way to improve these constraints [18].
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II. SLOW NEUTRON/NUCLEI INTERACTION
WITH EXTRA-SHORT-RANGE INTERACTIONS

The scattering of slow neutrons on atoms is described by
the scattering amplitude f�q�; this can be represented by a
sum of a few terms [22]:

 f�q� � fnucl�q� � fne�q� � fV�q�: (2)

The first and the most important term represents the scat-
tering due to the nuclear neutron-nucleus interaction. At
low energies discussed in this article, it is isotropic and
energy independent, because the nuclear radius is much
smaller than the wavelength of slow neutrons:

 fnucl�q� � �b: (3)

The coherent scattering length b is the fundamental pa-
rameter describing the interaction of slow neutrons with a
nucleus [23].

The second term is the amplitude of so-called electron-
neutron scattering due to the interaction of the neutron
charge distribution with the nucleus charge and the elec-
tron cloud. This amplitude can be written as

 fne�q� � �bne�Z� f�Z;q��; (4)

where f�Z;q� is the atomic form-factor measured in the X-
rays experiments and bne is a constant called the electron-
neutron scattering length, which is directly related to the
neutron charge radius [22] and to the neutron electromag-
netic form-factor GE�q2� by

 bne � �
2

a0

m
me

dGE�q2�

dq2

��������q2�0
; (5)

m and me being the neutron and electron masses, a0 the
Bohr radius. This contribution to the total scattering am-
plitude is as small as a per cent for heavy nuclei.

In the presence of a new interaction (1), the scattering
for a center-of-mass momentum @k due to the extra inter-
action, within the Born approximation, is given by

 fV��� � �A
g2

4�
@c

2m�2=@2

1� �q��2
(6)

where q � 2k sin��=2�, � is the scattering angle.
Any other possible contributions to the scattering am-

plitude f�q�, due to nonzero nuclear radius, nucleon polar-
izability, etc. are very small in the energy range discussed
here [22] and have therefore been omitted in (2).

The nuclear scattering lengths are measured for almost
all stable nuclei, using a variety of methods. A review of
the different methods and a complete table of the measured
scattering lengths can be found in [24]. We can distinguish
two classes of methods, with different sensitivities to a new
interaction.

The first class—including the interference method, the
total reflection method, the gravity refractometer
method—measures the forward scattering amplitude

f�q � 0�. These methods actually measure the mean opti-
cal potential of a given material, called the Fermi potential,
due to the coherent scattering of neutrons at many nuclei.
The Fermi potential is related to the forward scattering
amplitude.

In the presence of the new force, the measured scattering
length can be separated into a nuclear and an additional
term [25]:

 bopt � �f�q � 0� � b� A
mc2

2�@c
g2�2: (7)

The second class of method—including the Bragg diffrac-
tion method and the transmission method—uses nonzero
transferred momentum. In the Bragg diffraction method,
the scattering amplitude for a momentum transfer of
qBD � 10 nm�1 is measured. One actually extracts, be-
sides the nuclear term, an extra contribution according to
(6)

 bBD � b� A
mc2

2�@c
g2 �2

1� �qBD��
2 : (8)

In the case of the transmission method, the total cross-
section is measured. Generally, neutrons with energies of
about 1 eV are used; they are much faster than slow
neutrons, and no coherent scattering can be observed. An
additional interaction would manifest itself by an energy
dependence of the extracted scattering length

 bTR�k2� �

��������
�tot

4�

r
� b� A

mc2

2�@c
g2�2 ln�1� 4�k��2�

4�k��2
:

(9)

Finally, we should also mention the very popular
Christiansen filter technique; this measures relative scat-
tering lengths, so we do not consider this data.

III. RANDOM POTENTIAL NUCLEAR MODEL

A simple and robust limit on the additional Yukawa
forces can be easily obtained by neglecting the small
term due to the neutron-electron scattering and by studying
the general A-dependence of the scattering amplitude. In
the domain of � 	 1=qBD, the optical and Bragg diffrac-
tion methods are sensitive to the same amplitude

 bMeas � �f�q � 0� � b� A
mc2

2�@c
g2�2 (10)

as is clear from (7) and (8). The presence of additional
forces would be apparent from the linear increase of the
measured scattering length as a function of A. This depen-
dence is not observed in the experimental data presented in
Fig. 1. Strong variations with A of the measured scattering
length are mostly due to the shell effects in neutron-
nucleus nuclear amplitude b.

To establish a quantitative upper limit on this additional
term, the A dependence of the nuclear scattering length
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b � b�A� needs to be taken into account. The complete ab
initio calculation of these shell effects for b is particularly
complicated and has never been reported in the literature.
Fortunately, there exists a very simple and elegant semi-
phenomenological approach that describes these variations
[26]. It assumes that a nucleus can be presented as an
attractive ‘‘square well’’ potential, with radius RA1=3 and
depth V0 for slow neutrons. The scattering length would
then be equal to

 b�A� � RA1=3

�
1�

tan�X�
X

�
; (11)

where X � RA1=3

@

������������
2mV0

p
is supposed to be a random vari-

able distributed uniformly over the range 
�=2; 5�=2�; the
lower value corresponds to the appearance of a bound state
and the upper limit is set sufficiently large not to influence
the results of the present analysis; more details can be
found in [26].

Since 1970 [26], the number of nuclei with measured
scattering lengths has doubled and the level of precision
has been improved. We include here the new interaction
analysis.

Without any additional interaction, this analysis pro-
vides the results presented in Fig. 2. One may conclude
that the model describes well the distribution of all experi-
mental data well; the value of the only free parameter in
this model is estimated to be R � 1:44� 0:05 fm at the
68% C.L. The likelihood function at its maximum satisfies
ln�L� � �254 for 216 degrees of freedom.

With a short-range new interaction included in the
analysis we have to consider the random variable

 bMeas � RA1=3

�
1�

tan�X�
X

�
� bExtraA: (12)

where the effect of the extra interaction is the slope
bExtra �

mc2

2�@c g
2�2 of the linear term. The estimation of

the two parameters R and bExtra from the experimental
data, again using the maximum likelihood method, is
presented in Fig. 3. The linear term is compatible with
zero, as expected. We thus obtain a quantitative constraint
for the coupling g���:
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FIG. 2 (color online). This histogram shows the distribution of
measured scattering lengths normalized to the radius of the
nuclei. The curve corresponds to the random potential model.
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FIG. 3 (color online). Maximum likelihood analysis of the two
parameters R and bExtra of (12).
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FIG. 1 (color online). Measured scattering lengths as a func-
tion of nucleus atomic number.
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 g2�2 	 0:016 fm2 at 95%C:L: (13)

This result is presented in Fig. 7 for the distance range of
interest, 10�12–10�10 m.

IV. CONSTRAINT FROM COMPARISON OF
FORWARD AND BACKWARD SCATTERING OF

NEUTRONS

Another way to constrain on additional Yukawa forces
consists in comparing the scattering lengths measured by
different methods.

As explained above, the scattering lengths measured
using the Bragg diffraction method bBD and the interfer-
ence method bopt do not show the same sensitivity to a new
short-range interaction. According to (7) and (8), the ratio
of the two values should deviate from unity in the presence
of an additional interaction

 

bopt

bBD
� 1�

A
b
mc2

2�@c
g2�2 �q��2

1� �q��2
: (14)

We found a set of 13 nuclei for which both measurements
exist.

The different measurements quoted in the literature are
sometimes incompatible, even for the same measurement
method, because of additional systematics not included in
the quoted errors. To compensate for this we estimated a
methodological error � for each method. By selecting all
the nuclei for which several measurements with a given
method are available, we obtained the values bA;i � �bA;i,
where A is the nucleus index and 1 < i < nA lists the
experiments using the given method. The methodological
error is then calculated so that

 

X
A;i

�bA;i � �bA�2

�2
A;i � �

2 �
X
A

nA: (15)

That is, we force the �2 deviation from the weighted
average �bA to be equal to the number of degrees of freedomP
AnA. For the Bragg diffraction method, we have 72

degrees of freedom, and a methodological error of
0.16 fm; this can be compared to the average of the
published errors of 0.23 fm. For the interference method,
we have 22 degrees of freedom; we found a methodologi-
cal error of 0.05 fm, while the average of published errors
is 0.05 fm. Table I summarizes.

With the enlarged errors, a �2 fit of Eq. (14) using the 13
set of data for bI and bBD, we obtain the constraint:

 g2�2 �q��2

1� �q��2
	 0:0013 fm2 at 95%C:L: (16)

corresponding to the bold limit in Fig. 7.

V. ELECTROMAGNETIC EFFECTS

Up to now, the amplitude due to a new additional inter-
action fV�q� has been compared to the nuclear one fnucl�q�
[see (2)]. One could improve the limit obtained by compar-
ing the amplitude due to a new additional interaction to a
smaller amplitude due to an electromagnetic interaction
(fne�q�). This idea was first proposed in Ref. [14].

To achieve this, three independent measurements are
required [roughly speaking, to determine independently
the three contributions to (2)].

One could repeat the previous analysis using measure-
ments of the total cross-section instead of the Bragg dif-
fraction. As can be seen from (9), the scattering length
extracted at energies of � 1 eV (k � 200 nm�1 �
1=5 pm) contains an extra force contribution that is differ-
ent from that in optical methods. In particular, if the range
of a new interaction is larger than 1 pm, the scattering
length extracted from the total cross-section at 1 eV can be
considered free of any extra contribution. The sensitivity is
so high, however, that the residual electromagnetic effects
due to the neutron square charge radius can mimic an extra
force contribution in the quantity b�1 eV� � bopt, as this
contribution is energy dependent and proportional to the
charge number of the atoms. This problem is known as the
determination of the neutron-electron scattering length bne.
The extracted difference b�1 eV� � bopt therefore contains
the two contributions:
 

b�1 eV� � b�0� � Zbne � A
mc2

2�@c
g2�2

�

�
1�

ln�1� 4� �
5 pm�

2�

4� �
5 pm�

2

�
(17)

Unfortunately, there is very clear disagreement between
the two groups of values for bexp

ne �
b�1 eV��b�0�

Z known as
the Garching-Argonne and Dubna values [27]
 

bexp
ne � ��1:31� 0:03� � 10�3 fm 
Gartching-Argonne�

bexp
ne � ��1:59� 0:04� � 10�3 fm 
Dubna�: (18)

The discrepancy is much greater than the quoted uncer-
tainties of the experiments and there evidently an unac-
counted for systematic error in at least one of the
experiments.

In order to overcome this difficulty we could determine
bne from the experimental data on the neutron form factor
(5). The simplest way to do this consists in using a com-
monly accepted general parametrization of the neutron
form factor [28]:

TABLE I. Existing data on neutron scattering lengths.

Method Bragg Diffraction Interference

Number of measurements 141 41
Number of measured nuclei 98 28
Mean relative accuracy 3% 0.4%
Methodological error [fm] 0.16 0.05
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 GE�q2� � �a�n
�

1� b�
GD; (19)

where �n � �1:91�B is the neutron anomalous magnetic
moment, � � q2=4m2 and

 GD�q2� �
1

�1� q2=0:71 �GeV=c�2�2
; (20)

is a so-called dipole form factor; a and b being fitting
parameters.

A fit of an existing set of the neutron form factor
experimental data [29] yields the following values for the
parameters:

 a � �0:77� 0:06� b � �2:18� 0:58�

with �2=NDF � 15:3=27. The results of the fit are pre-
sented in Fig. 4.

Let us note that the momentum transferred q2 in these
experiments is very large and a contribution from the term
fV�q� is negligible. The bne determined in this way is

 bne � ��1:13� 0:08� � 10�3 fm: (21)

It does not agree with the value of bne, obtained in Dubna
experiments.

Our principal conclusion consists of the observation of
(underestimated) systematical uncertainties in the pre-
sented experiments. Therefore a single experiment/method
cannot be used for any reliable constraint. A conservative
estimate of the precision of the bne value could be obtained
from analyzing the discrepancies in the results obtained by
different methods; it is equal to �bne < 6� 10�4 fm. The
corresponding constraint at the 2� level

 

mc2

2�@c
g2�2

�
1�

ln�1� 4� �
5 pm�

2�

4� �
5 pm�

2

�
< �bne (22)

is represented by the dot-dashed line in Figs. 7 and 8.

VI. ASYMMETRY OF SCATTERING

As is clear from Fig. 7, the best constraint was obtained
from the analysis of the energy dependence of the neutron
scattering lengths in the bne measurements in spite of
systematic errors in these experiments. However, the pre-
cision here is limited by the correction for the bne value
itself. An obvious proposal for improving this constraint
would be to set up experimental conditions free of the bne
contribution. This is indeed possible, because neutron-
electron scattering is essential for fast neutrons only, and
is absent for slow neutrons.

We propose improving the experiment [30] and measur-
ing the forward-backward asymmetry of the scattering of
neutrons at atoms of noble gases in the following way: the
initial velocity of the neutrons should correspond to the
range of very cold neutrons (VCN); the double differential
measurement of neutron velocity before/after scattering
should be used to calculate the transferred momentum for
every collision.

Figure 5 shows the asymmetry of neutron scattering at
an atom in the center-of-mass reference system, as a func-
tion of various characteristic ranges of the additional in-
teraction. It is clear from Fig. 5 that neutrons with
velocities of 1–1000 m/s need to be used in order to cover
the distance range of interest shown in Fig. 7. This low
neutron velocity means that the thermal motion of atoms
cannot be neglected, and that the neutron velocity in the
laboratory fixed reference system is not equal to that in the
center-of-mass reference system. Even totally isotropic
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FIG. 4 (color online). The neutron form factor GE�q2� as a
function of the momentum transferred q2. The experimental data
are taken from [29]; the solid curve is a two parameter fit using
formula (19).
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FIG. 5 (color online). The asymmetry of neutron scattering at
an atom in the center-of-mass reference system is shown as a
function of various characteristic ranges of the additional inter-
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scattering in the center-of-mass reference system would be
highly anisotropic in the laboratory system. Never-
theless, the kinematics of the scattering process can be
reconstructed precisely if both the initial and the final
neutron velocity in the laboratory reference system are
measured as shown in Fig. 6.

The measurement described above could provide an
accuracy of at least 10�3 for the ratio of forward to back-
ward scattering probabilities and a corresponding con-
straint for the additional short-range interaction shown in
Fig. 7. The relative drop in sensitivity at a few times
10�11 m is due to the appearance of neutron-electron
scattering; the range of interest for this possible constraint
is 10�11–10�8 m.

Such statistical accuracy could be achieved with ther-
mal, cold, very cold, and probably even ultracold neutrons

using available beams. Systematic errors would be essen-
tially the same as those in the experiment [30] carried out
40 years ago.

As mentioned in the introduction, other methods have
been proposed in order to set constraints for additional
short-range interactions using neutron experiments [14–
17]. We do not compare them in the present article since a
complete analysis of statistical sensitivity and systematical
errors is not yet available for these proposals.

VII. CONCLUSION

We analyzed the constraints for extra short-range inter-
actions on the basis of the existing data on neutron scat-
tering. These constraints are several orders of magnitude
better than those usually cited in the range between 1 pm
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FIG. 6 (color online). The bottom two graphs show the ratio of neutron flux scattered at an argon atom at an angle of 45 degrees
(forward) to that scattered at an angle of 135 
 (backward), as a function of the final neutron velocity for the following cases: no
additional interactions, additional interactions with characteristic ranges of 0, 1; 1; 10 nm. The thermal motion of gas is taken into
account. The top two graphs indicate the rate of collision with argon atoms (in thermal motion) of neutrons with a fixed initial neutron
velocity. The initial neutron velocity for the two graphs on the left is equal to 20 m/s; the initial neutron velocity for the two graphs on
the right is equal to 200 m/s.
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and 5 nm. The reliability of these constraints was sup-
ported by the application of several independent methods
with comparable accuracy, as well as by the use of a major
fraction of known neutron scattering lengths and treatment
of the data in a most conservative way. One constraint
obtained within the random potential nuclear model was
based on the absence of an additional linear term in the
mass dependence of the neutron scattering lengths. It
would be difficult to improve this constraint in either
experimental or theoretical terms. Another constraint was
derived by comparing two types of neutron scattering
experiments with different sensitivities to the extra short-
range interactions. These are interference experiments
measuring forward neutron scattering and the Bragg dif-
fraction. The accuracy here is limited by the relatively poor
precision of the Bragg scattering technique. Significant
improvements in the accuracy of such experiments would
be particularly interesting. Further constraints were esti-

mated using the energy-dependence of the neutron scatter-
ing lengths at heavy nuclei. They are limited by the
precision of our knowledge of the neutron-electron scat-
tering length. An elegant method for further improving
such constraints would consist of achieving experimental
conditions free of bne contribution. This is indeed possible,
given that neutron-electron scattering is essential for fast
neutrons only. The experiment would consist of scattering
very cold neutrons at rare noble gases and measuring
precisely the differential asymmetry of such scattering as
a function of the transferred momentum.
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(bold line). Two theoretical regions of interest are shown: a
new boson with mass induced by electroweak symmetry break-
ing [10], and a new boson in extra large dimensions [4].
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