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We evaluate the radiative decay into a pseudoscalar meson and a photon of the whole set of the axial-
vector mesons dynamically generated from the vector-pseudoscalar meson interaction. We take into
account tree level and loop diagrams coming from the axial-vector decay into a vector and a pseudoscalar
meson. We find a large span for the values of the radiative widths of the different axial-vector mesons. In
particular, we evaluate the radiative decay into K� of the two K1�1270� states, recently claimed
theoretically, and discuss the experimental values quoted so far on the assumption of only one state.
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I. INTRODUCTION

The radiative decay of resonances has always been one
of the basic observables providing insight into the nature of
the states. Within quark models it has been thoroughly
investigated, concerning mostly the radiative decay of
baryon resonances [1– 4]. Regarding axial-vector mesons,
the a�1 radiative decay has been studied within different
contexts, for instance vector meson dominance is used in
[5,6], relating the radiative decay with the �� decay of the
a�1 . Chiral Lagrangians with vector meson dominance are
also used in [7] to obtain the radiative width of a�1 ! ���.
The rates of a�1 ! ��� and b�1 ! ��� are also evaluated
in [8] using quark models, or effective Lagrangians [9], for
the a1 ! �� and b1 ! �! and vector meson dominance
to relate these amplitudes with the radiative decay.

A new approach is required for the resonances which
qualify as dynamically generated from the meson-meson
or meson-baryon interaction. This is so because, being the
meson or baryon components the basic building blocks, the
decay into meson photon or baryon photon is obtained by
coupling the photons to the meson or baryon components
of the resonance. In this direction the radiative decay of the
��1520� has been recently studied [10], as well as that of
the ��1700� [11]. Concerning the radiative decay of axial-
vector mesons, work in this direction has also been done in
[12] evaluating the radiative widths of the a�1 �1260� and
b�1 �1235�. The a1 and b1 axial-vector mesons are part of
the two SU(3) octets and one singlet states which are
dynamically generated from the interaction of vector me-
sons with pseudoscalar mesons. By using chiral
Lagrangians and techniques of chiral unitary theory, one
constructs the s-wave scattering amplitudes for vector-
pseudoscalar in coupled channels and looks for resonances
either using the speed plot [13] or searching for poles in the
second Riemann sheet [14]. Several states appear which
can be associated with the h1�1170�, h1�1380�, f1�1285�,
a1�1260�, b1�1235�, and K1�1270� resonances. In [14] two
poles for the K1�1270� resonance were found, in analogy
with the two poles found for the ��1405� [15–17], for

which experimental evidence has been found in [18]
from the analysis of the K�p! �0�0�0 reaction of
[19]. In a similar way, experimental support for the two
K1�1270� states has been recently shown in [20].

From this perspective we consider all the low lying
axial-vector meson states mentioned above and evaluate
their radiative decay width for the different charge states.
Among others, we look now at the radiative decay of the
neutral a1 and b1 states to complement the evaluations
done before in [12] for the charged states.

The experimental situation is not very rich, something
that should be reversed now that we are finding new
motivations for more data. Apart from the information on
the charged a1 and b1 decay widths, there is only informa-
tion on the radiative decay width of the neutral K1�1270�
state obtained with Primakoff scattering of KL with nuclei
at high energies [21]. We argue that the existence of the
two K1�1270� states blurs the conclusions obtained for this
width in [21], since some of the assumptions made to
extract this number would require a revision after the
findings of [14,20]. We make predictions in the paper for
the decay widths of all these resonances and make sugges-
tions of experiments to further support the existence of the
two K1�1270� states.

II. SUMMARY OF THE FORMALISM

In this section we briefly summarize the formalism
described in Ref. [12] for the evaluation of the b�1 !
��� and a�1 ! ��� decays and generalize the model to
the other axial-vector mesons mentioned above.

FIG. 1. Feynman diagrams needed in the evaluation of the
radiative axial-vector meson (A) decay.
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In Ref. [14] it was shown that, with the implementation
of unitary techniques in the evaluation of the s-wave
scattering amplitude for the interaction of the octet of
vector (V) mesons and the octet of pseudoscalar (P) me-
sons, many of the low lying axial-vector resonances show
up as poles in unphysical Riemann sheets of the unitarized
VP amplitudes. Therefore, these resonances qualify as
dynamically generated. In view of the dominant contribu-
tion of the VP channels in the building up and decay of the
axial-vector resonances, the philosophy to calculate the
radiative decay is to consider the transition of these reso-
nances to the allowed VP channels, either at tree level or
one loop, and attach the photon to the allowed meson lines
and vertices, see Fig. 1.

In Ref. [12] it was shown that, by invoking gauge
invariance, only these diagrams need to be evaluated. In
the next paragraph we elaborate further on this point. Let
us look at the loop diagrams of Fig. 1. Keeping in mind the
dynamical origin of the resonance from the Bethe-Salpeter
resummation of loops containing the kernel of the VP!
VP interaction, the series implicit in those loops is given in
Fig. 2, where we have also added the second raw of
diagrams to be discussed later on.

The photon coupled to the vector in the loop should be
understood in the discussion, but is omitted to save dia-
grams. The requirement of gauge invariance would de-
mand that the photon couples to all lines in the loops and
vertices. This has been done in several works [22–24]
dealing with photonuclear processes which involve dy-
namically generated resonances. An explicit proof of
gauge invariance of this kind of diagrams can be seen in
[23]. Thus, in addition to the diagrams of Fig. 2 we would
have diagrams like those in Fig. 3.

Note that the VP! VP vertex is of the type �V � �0V [14],
with �V and �0V the polarization vectors of the vector
mesons, and thus has no photon contact term associated
with the type VVPP�. Diagrams (a) and (b) of Fig. 3 are
proportional to the last loop function with intermediate P
and V, which has the structure J�Q2�Q�, with Q the
momentum of the produced pseudoscalar. However, as
shown in the appendix of [12], this loop function satisfies
J�Q2 � m2

P� � 0, where mP is the mass of the produced

pseudoscalar in the decay (see also Ref. [25] for an alter-
native derivation with standard vector mesons, not dynami-
cally generated). This is due to the requirement that the
longitudinal part of the axial-vector propagator must not
develop a pole of the pseudoscalar [26]. Radiation from the
final pseudoscalar (see Fig. 5) also leads to a null contri-
bution, as discussed later. Thus, we are left with the dia-
grams of Fig. 2 where the photon couples to the last loop,
from where the pseudoscalar is emitted. The sum of loops
before the last one generates the VP T-matrix that contains
the pole for the axial vector [14]. The sum of diagrams is
thus equivalent to the diagrams of Fig. 4.

The sum of diagrams of Fig. 2 leads to a VP! �P
amplitude, in a simplified way omitting polarization vec-
tors for simplicity,

 � it � �itVP!VPL; (1)

where L stands for the last loop function. Since tVP!VP

contains the axial-vector pole, close to the pole position,
sp ’ M2

A � iMA�, we have

 � itVP!VP � �i
g2

AVP

s� sP
: (2)

Alternatively, from Fig. 4 we would have

 � itVP!P� � �igAVP
i

s� sP
��i�gAP�; (3)

from where

 gAP� � gAVPL; (4)

which is what we would directly obtain from the evalu-

+ + + . . .

V

P
+ + + . . .

FIG. 2. Series implicit in the type-b loop of Fig. 1 in the dynamically generated picture of the axial-vector resonances.

+ + . . .

a) b)

FIG. 3. Extra allowed diagrams required by gauge invariance.

A +

FIG. 4. Equivalent representation of Fig. 2 close to the axial-
vector meson pole position.

+ +
a) b) c)

d) e)

+ +

FIG. 5. Set of diagrams needed a priori in the evaluation of the
axial-vector meson radiative decays.
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ations of diagrams of Fig. 1 and what is done in [12], and
which is the formalism followed in the present paper. The
former slightly simplified derivation can be followed with
more detail in [10] in the study of the radiative decay of the
��1520� resonance. Once the equivalence of these formal-
isms is established, we can go back and reconsider the
terms that one would have, which are shown in Fig. 5, the
last two diagrams contributing in principle for charged
axial-vector states. An explicit proof of the gauge invari-
ance and finiteness of the set of diagrams of Fig. 5, for the
analogous case of P! V� in the charm sector, is provided
in [27]. Furthermore, in the appendices of [12,25] it is
shown that diagram (e) of Fig. 5 vanishes due to the
Lorenz condition of the axial-vector meson (�A � PA � 0)
(also noted in [27]) and diagram (d) of Fig. 5 vanishes due
to the condition J�Q2 � m2

P� � 0, required to avoid a pole
of the pseudoscalar in the longitudinal part of the axial-
vector propagator [26], as stated above when discussing
Fig. 3.

After the above discussion we briefly recall the proce-
dure followed in [12] to evaluate the radiative width, mak-
ing explicit use of gauge invariance which simplifies
considerably the calculation. Since the only external mo-
menta available are P (the axial-vector meson momentum)
and k (the photon momentum), the general expression of
the amplitude can be written as

 T � �A���T�� (5)

with

 T�� � ag�� � bP�P� � cP�k� � dk�P� � ek�k�:

(6)

In Eq. (5), �A and � are the axial-vector meson and photon
polarization vectors, respectively. Note that, due to the
Lorentz condition, �A�P� � 0, ��k� � 0, all the terms in
Eq. (5) vanish except for the a and d terms. On the other
hand, gauge invariance implies that T��k� � 0, from
where one gets

 a � �dP � k: (7)

This is obviously valid in any reference frame, however, in
the axial-vector meson rest frame and taking the Coulomb
gauge for the photon, only the a term survives in Eq. (5)
since ~P � 0 and �0 � 0. This means that, in the end, we
will only need the a coefficient for the evaluation of the
process. However, the a coefficient can be evaluated from
the d term thanks to Eq. (7). The advantage to evaluate only
the d coefficient is that the contact term of Fig. 5(c) does
not contribute to the d coefficient, only the loop diagrams
of Fig. 1 contribute, and from dimensional reasons (per-
forming explicitly the Feynman integrals) one can see that
the d coefficients are finite for the diagrams of type-b in
Fig. 1. For the type-c diagrams, as discussed in [12] [after
Eq. (25)], there was formally a logarithmic divergence
coming from the 1=M2

V term of the vector meson propa-

gator, which required some tadpole from higher order
terms for cancellation (see also Ref. [28] in the analogous
problem of e�e� ! �f0�980�). In order to evaluate it we
must use some regularization procedure. The most appro-
priate way to regularize the 1=M2

V terms is to connect the
divergences with those appearing in the basic problem of
VP! VP scattering [14]. These divergencies already ap-
pear in the loop containing one pseudoscalar and one
vector meson, which was regularized in [14] making use
of the N/D method of [29] and dispersion relations. These
allowed one to factorize on shell terms appearing in the
numerator of the loop functions like the q2=M2

V terms, with
q the vector meson momentum of the VP loop [14]. In the
present case one can estimate the contribution of the
q2=M2

V or the type-c loop by realizing that if one looks
for sources of imaginary part by cutting diagram (c) of
Fig. 1 by vertical lines, the cut to the left of the photon line
can place two mesons on shell, for instance � and � for the
a1 resonance. The cut to the right of the photon, which
would correspond to the energetically forbidden �! ��
decay, does not provide an imaginary part. Thus, the only
source of the imaginary part comes from the cut at the left
of the photon line, which is the same as that for the basic
pseudoscalar-vector meson loop of the scattering problem.
This allows us to replace momentum factors appearing in
the numerator of the loop function, i.e. factors q2=M2

V , by
its on shell value. The substitution is done in [14] after the
q0 integration is performed and one replaces q2=M2

V by
~q2

on=M
2
V . Hence, the effects here are also of the order of

~q2
on=M

2
V (there was an extra factor 1=3 for symmetry

reasons in [14], which we ignore here to give a conserva-
tive estimate of the effects). Hence, we have checked that,
for the most relevant cases, the estimate gives an upper
limit of the order of 20% of the rest of the (c) diagram. This
value is of the same size as the finite results found in the
diagrams of type-b, where the effect of the 1=M2

V terms
was of the order of 10% or less. In the final results we will
add in quadrature to the theoretical uncertainty a very
conservative 10% of the total radiative decay width from
this neglect of the 1=M2

V terms in the type-c loops.
The Lagrangians needed in the evaluation of the dia-

grams in Fig. 1 are given in Ref. [12]. From these
Lagrangians the tree level amplitude, type-a in Fig. 1, takes
the form

 ta � �g
0
AVPe�VFV

1

MV
�A � � (8)

with �V � 1, 1=3, �
���
2
p
=3 for �, !, and �, respectively,

FV � 156� 5 MeV [30], MV is the vector meson mass
and e is taken positive. In Eq. (8), g0AVP is the axial-vector-
pseudoscalar (AVP) coupling in the charge base. These
coefficients are related to the gAVP in isospin base, ob-
tained in Ref. [14], through the transformation

 g0AVP � C� gAVP; (9)
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where C are coefficients dependent on the different AVP
channels summarized in Tables I, II, III, IV, V, and VI. In
the present work we use the values of gAVP obtained in
Refs. [12,14] by evaluating the residua at the pole position
of the different VP! VP scattering amplitudes.

Equation (8) is formally not gauge invariant. An alter-
native derivation using tensor formalism is given in
Ref. [9] and replaces �A � � by ��A � �� �A � k� � P=k �
P� with P and k the axial-vector meson and photon mo-
menta, respectively. Then the amplitude becomes mani-
festly gauge invariant and reduces to Eq. (8) in the
Coulomb gauge (�0 � 0) which we use to evaluate the
amplitudes.

In Ref. [12], the contribution to the total amplitude from
type-b loops is shown to be convergent by invoking gauge
invariance. This amplitude is given by

 tb � �g0AVPQcVPP
MVGV���

2
p
f2

2P � k�A � �
Z 1

0
dx
Z x

0
dy

1

32�2

�
1

s� i"

�
�4�1� x�

�
1�

y�xP� yk� � �k� P�

M2
V

��
;

(10)

whereQ is the charge of the meson in the loop emitting the
photon and cVPP are numerical coefficients coming from
the VPP Lagrangian [12] and are given in Tables I, II, III,
IV, V, and VI. In Eq. (10) GV is the VPP coupling in the
notation of [7] and for the numerical value we take
GV � 55� 5 MeV from Ref. [30], f is the pion decay
constant (f � 93 MeV), �A��� is the axial-vector (photon)
polarization vector. The coefficients shown in these tables

TABLE II. Coefficients in Eqs. (8)–(11) for h1�1170=1380� !
	� decay.

h1�1170=1380� ! 	� C Q cVPP

tree � 1 . . . . . .
! 1 . . . . . .

type-b K	�K� 1=2 e
��������
3=2

p
K	�K� 1=2 �e �

��������
3=2

p
type-c K	�K� 1=2 �e

��������
3=2

p
K	�K� 1=2 e �

��������
3=2

p
TABLE VI. The coefficients in Eqs. (8), (10), and (11) for
K0

1 ! K0� decay.

K0
1�1270� ! K0� C Q cVPP

tree � 1 . . . . . .
! 1 . . . . . .
� 1=

���
3
p

. . . . . .

type-b ��K� �
��������
2=3

p
e �1

K	���
��������
2=3

p
�e 1

type-c ��K� �
��������
2=3

p
�e �1

K	���
��������
2=3

p
e 1

TABLE IV. The coefficients for b0
1�1235� ! 	� decay.

b0
1�1235� ! 	� C Q cVPP

tree � 1 . . . . . .

type-b K	�K� �1=2 e
��������
3=2

p
K	�K� �1=2 �e �

��������
3=2

p
type-c K	�K� �1=2 �e

��������
3=2

p
K	�K� �1=2 e �

��������
3=2

p

TABLE III. The coefficients for b0
1�1235� ! �0� decay.

b0
1�1235� ! �0� C Q cVPP

tree � 1 . . . . . .
! 1 . . . . . .

type-b K	�K� �1=2 e 1=
���
2
p

K	�K� �1=2 �e �1=
���
2
p

type-c K	�K� �1=2 �e 1=
���
2
p

K	�K� �1=2 e �1=
���
2
p

TABLE I. Coefficients in Eqs. (8)–(11) for h1�1170=1380� !
�0� decay.

h1�1170=1380� ! �0� C Q cVPP

tree � �1=
���
3
p

. . . . . .

type-b ���� �1=
���
3
p

e
���
2
p

���� �1=
���
3
p

�e �
���
2
p

K	�K� 1=2 e 1=
���
2
p

K	�K� 1=2 �e �1=
���
2
p

type-c ���� �1=
���
3
p

�e
���
2
p

���� �1=
���
3
p

e �
���
2
p

K	�K� 1=2 �e 1=
���
2
p

K	�K� 1=2 e �1=
���
2
p

TABLE V. The coefficients in Eqs. (8), (10), and (11) for
K�1 ! K�� decay.

K�1 �1270� ! K�� C Q cVPP

tree � 1 . . . . . .
! 1 . . . . . .
� �1=

���
3
p

. . . . . .

type-b �K� 1 e 1
!K� 1 e �1=

���
2
p

�0K� �1=
���
3
p

e �1=
���
2
p

K	0��
��������
2=3

p
e 1

type-c ��K0 �
��������
2=3

p
e �1

K	�	 1 e
��������
3=2

p
K	��0 1=

���
3
p

e 1=
���
2
p
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for the channels with an 	 meson in the final state are for
the decay into 	8. Hence, in order to obtain the appropriate
width of the channels decaying into 	� we have to multi-
ply the decay width for these channels by 8=9, from the
consideration of the mixing 	 � 	1=3� 2

���
2
p
=3	8.

The amplitude from the type-c loop, neglecting the
formally logarithmically divergent but very small 1=M2

V
terms [12], is given by
 

tc � g0AVPQcVPP
MVGV���

2
p
f2

2P � k�A � �
Z 1

0
dx
Z x

0
dy

1

32�2

�
1

s0 � i"
�1� 3x� 2y� y�1� x��: (11)

With these amplitudes, the decay width for the axial-
vector mesons into one pseudoscalar meson and one pho-
ton is given by

 ��MA� �
j ~kj

12�M2
A

jTj2; (12)

where MA stands for the mass of the decaying axial-vector
meson and T is the sum of the amplitudes from the tree
level and loop mechanisms removing the �A � � factor. The
former expression is valid in the limit of narrow axial-
vector resonance. In order to take into account the finite
width of the axial-vector meson we fold the previous
expression with the mass distribution:
 

�A!P� � �
1

�

Z �MA�2�A�
2

�MA�2�A�
2
dsA Im

�
1

sA �M
2
A � iMA�A

�

� ��
�����
sA
p
���

�����
sA
p
�

������
sth
A

q
�; (13)

where � is the step function, �A is the total axial-vector
meson width and sth

A is the threshold for the dominant A
decay channels.

Similarly, since the � and K	 mesons have relatively
large widths, we have also taken into account the mass
distribution of these states in the loop functions leading to
the tb and tc amplitudes. This is done by folding tb, tc, with
the spectral function of the � and K	:
 

tb;c ! tb;c � �
1

�

Z �MV�2�V �
2

�MV�2�V �
2
dsV

� Im
�

1

sV �M
2
V � iMV�V

�
tb;c�

�����
sV
p
�: (14)

The corrections from this source are small; they change the
radiative widths at the level of 2% or below, although the
contribution of some intermediate states, which are par-
ticularly suppressed, experiences larger changes.

III. RESULTS FOR THE DIFFERENT CHANNELS

In what follows we discuss in detail the results for the
radiative decays of the different axial-vector resonances.
We will refer to the results shown in Tables VII, VIII, IX,
X, XI, and XII where we show the contributions of the

different mechanisms to the radiative decay widths. The
theoretical errors quoted have been obtained by doing a
Monte-Carlo sampling of the parameters of the model
within their uncertainties, as explained in Ref. [12]. Note
that in Ref. [14] all the pole positions, and hence the
couplings to the different channels, were obtained with
the same value for the only free parameter of the model,
the subtraction constant, of a � �1:85 (see Ref. [14] for
details). But we can use different subtraction constants for
different (S, I, G-parity) channels. Therefore, in order to
get a more accurate result, we have fine-tuned the sub-
traction constants such that the real part of the pole posi-
tions agrees better with the experimental axial-vector
masses. On the other hand, one can also assign an uncer-
tainty to the f constant appearing in the Lagrangians since
it could range from f� to f	, averaging 1:15� 92 MeV.
We have also considered this uncertainty in our calcula-

TABLE VII. h1�1170�=h1�1380� ! �0� decay widths in units
of keV.

h1�1170� h1�1380�

tree � 294.8 9.1
total 294.8 9.1

type-b ���� 51.8 2.2
���� same as ����

K	�K� 0.43 15.2
K	�K� same as K	�K�

total 226.0 37.0

type-c ���� 0.30 1:5� 10�2

���� same as ����

K	�K� 2:2� 10�3 6:5� 10�2

K	�K� same as K	�K�

total 1.34 0.51

loop total 218.0 45.8

Total 837� 134 81� 18

TABLE VIII. h1�1170�=h1�1380� ! 	� decay widths in units
of keV.

h1�1170� h1�1380�

tree � 2:0� 10�2 36.3
! 3:5� 10�3 21.3

total 1:24� 10�2 113.3

type-b K	�K� 0.75 28.5
K	�K� same as K	�K�

total 3.01 113.9

type-c K	�K� 2:71� 10�3 0.085
K	�K� same as K	�K�

total 1:08� 10�2 0.34

loop total 3.37 126.6

Total 3:1� 0:9 438� 80
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tions. The central values in the tables are obtained using
f � 1:08� f� and the central values for the rest of the
parameters (except for the K1 case where the more refined
values of Ref. [20] for the couplings and a different central
value for f are used). On the other hand, an extra con-
servative 10% has been added in quadrature to the error in
order to consider the uncertainty from the neglect of the
1=M2

V terms in the evaluation of the type-c loop contribu-
tion, as explained in the previous section.

A. S � 0, I � 0 channel

1. h1�1170�=h1�1380� ! �0�

The S � 0, I � 0 and negative G-parity axial-vector
mesons couple to �	, !	, �� and the combination
1=

���
2
p
� �K	K � K	 �K� in our model. However, the first two

channels lead to b- and c-type diagrams with neutral
intermediate mesons and do not contribute. Hence, only
the diagrams shown in Fig. 6, with �� and K	K in the
loops, contribute to the process. For the tree level diagram
only the � meson exchange is possible. In our model, the
h1�1170� resonance has a coupling to the �� channel that
is about 5 times the one of h1�1380�. Altogether this makes
the tree level and the �� loop contributions much larger for

TABLE XII. K0
1�1270� ! K0� widths for two poles in units of

keV.

K1�1270�
pole A pole B

1195� 123i 1284� 73i

tree � 24.7 8.3
! 17.4 5.3
�0 58.4 253.8

total 274.3 148.7

type-b ��K� 3.6 15.5
K	��� 41.8 2.7

total 61.5 6.7

type-c ��K� 3:0� 10�2 0.13
K	��� 0.47 3:0� 10�2

total 0.48 0.28

loop total 57.6 9.7

Total 512� 73 227� 79

TABLE IX. b0
1�1235� ! �0� decay width in units of keV.

b0
1�1235�

tree � 19.7
! 14.1

total 66.9

type-b K	�K� 6.6
K	�K� same as K	�K�

total 26.3

type-c K	�K� 3:3� 10�2

K	�K� same as K	�K�

total 0.13

loop total 30.1

Total 180� 28

TABLE X. b0
1�1235� ! 	� decay width in units of keV.

b0
1�1235�

tree � 244.0
total 244.0

type-b K	�K� 10.8
K	�K� same as K	�K�

total 43.2

type-c K	�K� 3:8� 10�2

K	�K� same as K	�K�

total 0.15

loop total 48.5

Total 488� 70

TABLE XI. K�1 �1270� ! K�� widths for two poles in units of
keV.

K1�1270�
pole A pole B

1195� 123i 1284� 73i

tree � 24.7 8.3
! 17.4 5.3
�0 58.4 253.8

total 8.58 412.5

type-b �K� 2.4 0.80
!K� 3.3 1.0
�0K� 0.9 3.9
K	0�� 41.9 2.7

total 68.4 25.7

type-c ��K0 3:0� 10�2 0.13
K	�	 2:3� 10�4 6:4� 10�2

K	��0 0.12 7:5� 10�3

total 0.15 0.26

loop total 75.3 20.9

Total 34� 13 251� 56 FIG. 6. Feynman diagrams contributing to h1�1170� ! �0�
decay and h1�1380� ! �0� decay.
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the h1�1170� decay than for the h1�1380� one, as seen in
Table VII. This implies at the end, after the coherent sum of
all the contributions, that the radiative decay width of the
h1�1170� into �� is much larger than that of the h1�1380�
and, hopefully, it could be measured experimentally given
its large value 863� 134 keV. Note the important role of
the loop contribution which makes that the final result
obtained for the h1�1170� is about a factor 3 larger than
considering only the tree level mechanism and about a
factor 9 for the h1�1380� case.

2. h1�1170�=h1�1380� ! 	�

The diagrams needed in the evaluation of this process
are shown in Fig. 7. The couplings of the h1�1170� to the
!	 and �	 channels are very small. This makes the tree
level almost negligible. This is not the case for the
h1�1380� resonance since its couplings to these channels
are much larger. On the other hand, the loop contributions
are also smaller for the h1�1170� since its coupling to
1=

���
2
p
� �K	K � K	 �K� is about a factor four smaller than

that of the h1�1380� resonance. All these facts, together
with the constructive interference between the loops and
the tree level in the h1�1380� case, make the radiative
decay width of the h1�1380� 2 orders of magnitude larger
than the h1�1170�.

3. f1�1285� ! �0�

This channel is zero by C-parity conservation.

B. S � 0, I � 1 channel

The radiative decays into �� of the charged a1�1260�
and b1�1235� resonances were thoroughly discussed in
Ref. [12], and hence we only consider in the present paper
the neutral S � 0, I � 1, axial-vector radiative decay
modes.

1. a0
1�1260� ! �0�

This channel is zero by C-parity conservation. However,
as seen in Ref. [12], the charged decay channel,
a�1 �1260� ! ���, was allowed and had a large decay
width.

2. b0
1�1235� ! �0�

The b1�1235� couples to the positive G-parity VP states
1=

���
2
p
� �K	K � K	 �K�, ��, !�, and �	. The allowed

Feynman diagrams are shown in Fig. 8. One can see
from Table IX that the tree level only accounts for 
1=3

of the final result. This illustrates the important role of the
loops considered in the present formalism. It is worth
stressing that the result obtained for the b0

1�1235� ! �0�
decay is the same1 as for the b�1 �1235� ! ��� decay
obtained in [12], unlike the a1�1260� case, as explained
above.

3. b0
1�1235� ! 	�

The allowed Feynman diagrams are shown in Fig. 9. As
can be seen in Table X, the tree level contribution to the
decay width for this channel is much larger than in the
b0

1�1235� ! �0� (despite the phase space available) since
the coupling to �	 is larger than to !� and ��. This size
of the tree level, together with the constructive interference
with the loop contributions, makes the final radiative width
for this channel very large, about a factor 
3 larger than
the b0

1�1235� ! �0� decay rate.

C. Consideration of higher mass intermediate states

In principle we could consider in our approach the
contribution of additional channels involving vector-
pseudoscalar states of higher masses. The contributions
of such channels in the chiral unitary approach leading to
the axial-vector mesons [14] was omitted, as is usually
done in this approach. The idea is that they, being far off
shell in the loops, provide a small contribution, but more
important, they can be reabsorbed into the subtraction
constant of the dispersion relation which provides the
loop function, because their contribution is very weakly
energy dependent. In the present work, where the loops are
finite, the contribution from these channels would be addi-
tive. We make here an estimation of the contribution of
these heavy states.

FIG. 7. Feynman diagrams contributing to h1�1170� ! 	�
decay and h1�1380� ! 	� decay.

FIG. 8. Feynman diagrams contributing to b0
1�1235� ! �0�

decay.

FIG. 9. Feynman diagrams contributing to b0
1�1235� ! 	�

decay.

1The numerical difference with the result in Ref. [12] is the
different central value used for f and hence the different central
values for the couplings, as explained above. The differences are
within the theoretical uncertainties estimated in each case.
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The first consideration is that when one has many chan-
nels in the chiral unitary approach, the coupling of the
resonance to the channels with mass far from the resonance
mass is very weak as a general rule. For instance, the
coupling of the 
�600� to 		 is about 4% of the one to
�� [29]. The coupling of the ��1405� to K� is of the
order of 1=4 of the dominant �� and �KN channels. We
should keep this fact in mind. To make the estimates of the
high mass states contribution in the present case, we take
intermediate states where the � is replaced by the ��1300�
and other states where the � is substituted by the ��1450�,
the next pseudoscalar and vector excited states. We assume
first the loops changing � to��1300�. We take in a first run
the couplings in the loop the same as for � and investigate
only the effect of the change in the mass. We get contri-
butions of the order of 2% of the contribution of the loops
of �� in the h1 decays and in theK	� of theK1 decay from
the type-b loops. In type-c loops, for some intermediate
states the relative contribution of the ��1300� with respect
to the � case is larger but these terms have very small
weight. Next we should consider the difference between
the ��� and ����1300� couplings. By looking at �!
�� and ��1300� ! �� decays, assuming ���1300� 


400 MeV from the PDG [31] and all strength of ��1300�
going to ��, we obtain a ratio of couplings g��0�=g��� �
1:8, which should be compensated from the smaller cou-
pling of the axial-vector resonances to the ���1300� state.
The effect at the end in the total radiative width of the
resonance is smaller than the one quoted above from some
particular channels and is far smaller than the uncertainties
in the results from the other sources considered here.

Next we do the same exercise by changing the � to the
��1450�. The change of the mass without changing cou-
pling constants is in general very small with the exception
of the contribution of the intermediate state ��1450�� for
the two h1 decays. In this case the contribution of the new
loop to tb is 17% of the contribution of the ��770��.
However, we should now take into account the ratio
g��1450���=g��� � 0:5 following the same steps as before,
assuming in the worse of the cases that all the ��1450�
width comes from ��. This changes in a maximum of 8%
the contributions to tb from this intermediate state. With a
conservative estimate of a factor of 2 reduction from the
coupling of the axial-vector resonance to this new channel,
this results in a 4% change of the contribution to tb from
the �� channel. When this new contribution is added to all
other terms it has a repercussion of a maximum 4% change
in the total decay rate for the h1�1170� and much smaller
for the h1�1380�. Once again this uncertainty is smaller
than the one obtained before from other sources.

IV. CONSEQUENCES OF THE TWO K1�1270�
POLES

We have singled out the S � 1, I � 1=2 sector into this
different section since it deserves particular attention for

the following reasons. In the first place, in the work of
Ref. [14], two poles were found in the S � 1, I � 1=2 VP
scattering amplitude which were assigned there to two
K1�1270� resonances instead of the usual K1�1270� and
K1�1400�. In Table XIII we show the two pole positions
and the couplings to the different VP channels of the two
K1�1270� resonances obtained in [20]. In the following, we
call pole A the lowest mass pole and pole B the highest
mass one. Some possible experimental consequences of
this double pole structure of the K1�1270� resonance were
already discussed in Ref. [20]. If this double pole reflects
the real nature of these resonances, it would have signifi-
cant relevance in the study of the radiative decays both
from the theoretical and experimental points of view.
Indeed, there is experimental information [21] on the decay
width of the process K0

1�1270� ! K0� which relies in an
experimental analysis that does not consider the two pole
structure. Had the two pole nature of the K1�1270� been
considered, the result for the radiative width would change,
as we will discuss in this section.

First of all let us present our theoretical results for the
radiative decay widths of K�1 and K0 for both poles A and
B.
K�1 �1270� ! K��.—The possible intermediate chan-

nels in the tree level and type-b and -c loops for the
K�1 �1270� radiative decay are shown in Fig. 10. The results
for the different contributions for both poles A and B are
shown in Table XI. In this table one can see that the tree
level contribution for the pole B is about a factor 50 larger
than for the pole A. This is due to the fact that the coupling
of the pole B to the �K channel is about a factor two larger
than for the pole A (see Table XIII) and to the different sign
of the �K couplings for both poles (see Table XIII), what

TABLE XIII. The coupling constants of the two K0
1�1270� to

K0�, K	0�0 and �0K0 in the charge base.

pole A pole B

gA jgAj gB jgBj

K0� 217� 96i 237 �166� 66i 179
K	0�0 �2740� 1659i 3203 �444� 676i 809
�0K0 �965� 923i 1335 2774� 228i 2783

FIG. 10. Feynman diagrams contributing to K�1 �1270� ! K��
decay.
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makes the interference with the � and ! contributions
different. The difference in the couplings to the VP chan-
nels for the pole A and B, both in sign and absolute value, is
also responsible for the different value of the loop contri-
butions and the sign of the interference, leading to a final
result for the radiative width which is about an order of
magnitude larger for the B pole.
K0

1�1270� ! K0�.—For the K0
1�1270� radiative decay,

the allowed mechanisms are shown in Fig. 11. Note the
different allowed particles in the loops with respect to the
K�1 �1270� case (Fig. 10), like for instance the presence of �
instead of � and ! in the type-b loop.

Unlike the K�1 �1270� case, we obtain similar values of
the tree level contributions for both poles, while the indi-
vidual contributions to the tree level are the same as in the
K�1 case (see Tables XI and XII). This is due to the differ-
ent sign of K0

1 to the �K channel in the charge base from
that of K�1 , as can be seen in Tables Vand VI. Note that the
K	� loop contribution for the pole A is larger than the �K,
while for the pole B the �K contribution is larger than
K	�. This is a consequence of the fact that the largest
coupling for the pole A is to K	� while for the pole B is to
the �K channel.

A. Discussion on the experimental result

Unlike the other channels, there is experimental infor-
mation about the K0

1�1270� ! K0� decay width. This ra-
diative decay width has already been measured at Fermilab
[21]. In the analysis of this experiment [21] it was
concluded that the radiative decay width of K1�1270� is
73:2� 6:1�stat� � 8:2�int syst� � 27:0�ext syst� keV and
that of K1�1400� is 280:8� 23:2�stat� � 31:4�int stat� �
25:4�ext stat� keV. This is in remarkable disagreement
with our results mentioned above and in Table XII.
However this discrepancy can be explained in view of the
two pole structure of the K1�1270� resonance, not consid-
ered in the experimental analysis:

The experiment [21] did not measure the K1�1270�
radiative decay directly. Since direct observation of radia-
tive decays such asK1 ! K � � is difficult, they measured
the K1 radiative decay using the inverse reaction K � �!
K1, which can be performed experimentally using the K �
nucleus! K1 � nucleus reaction with Primakoff effect
[32]. The experiment obtained 147 events for strange
axial-vector mesons reconstructed from K	� final state
and used them to estimate the radiative widths for
K1�1270� and K1�1400�. But in the experimental analysis

it is assumed that there is only one K1�1270� and a
K1�1400� resonance contributing to the events. The tradi-
tional approach to the K1�1270� and K1�1400� resonances,
and the one assumed in the experiment, is that they are a
mixture of a singlet and triplet component

 K1�1400� � 3P1 cos�� 1P1 sin�; (15)

 K1�1270� � �3P1 sin�� 1P1 cos�: (16)

The value for the mixing angle used in the experimental
analysis [21] is � � 56� � 3� [33] but there is controversy
about this value (see the discussion in the introduction of
Ref. [9]) and very different mixing angles are quoted from
the study of J=� decay [34]. As quoted in [20] this could
be a problem related to the existence of two K1�1270�
resonances. Coming back to the experimental analysis of
Ref. [21], since the triplet component is not excited by the
Coulomb field [35], the K1 production rates would be
proportional to cos2� for the K1�1400� and sin2� for the
K1�1270� from where the rate of 72.2 keV for the K1�1270�
and 280.8 keV for the K1�1400� was deduced in the ex-
perimental analysis. However, in our approach this mixing
scheme would be different since the mixing would be
between two K1�1270� resonances, and possibly a
K1�1400�, rather than between only one K1�1270� and a
K1�1400�. If there are actually two K1�1270� poles, instead
of just one, this invalidates the different weights assigned
to the K1�1270� and the K1�1400� in Ref. [21].

Let us hence make an alternative guess. The experiment
[21] observed the K	0�892��0 channel in the final state,
hence as a subprocess of the experimental reaction we have
the mechanisms shown in Fig. 12.

In our model, we have two poles for the K1�1270�
resonance. In this case, the contributions of these two poles
should interfere. We can estimate the effect of this inter-
ference in the experiment as follows. The amplitude of the
subreaction process in the experiment, shown in Fig. 12,
for the two different poles can be written approximately as

 TA � gAK	0�0gAK0�

1

sK1
�MA 2

K1
� iMA

K1
�AK1

;

TB � gB
K	0�0gBK0�

1

sK1
�MB 2

K1
� iMB

K1
�BK1

;

(17)

where gA�B�
K	0�0 is the coupling of the K0

1�1270� pole A(B) to
K	0�0 channel in the charge base as

 gA�B�
K	0�0 � �

1���
3
p gA�B�K	�

FIG. 11. Feynman diagrams contributing to K0
1�1270� ! K0�

decay.

FIG. 12. Subprocess in the experimental mechanism producing
the K1 with K	� in the final state.
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with gA�B�K	� being the coupling of the pole A(B) to K	� in

the isospin base. In Eq. (17) gA�B�
K0�

is the coupling constant

of the K0
1�1270� pole A(B) to the K0� which can be

evaluated from the radiative decay amplitudes obtained
in this paper at �������sK1

p
� MK1

if we define tK0
1!K

0� �

gK0
1K

0��A � �. In Eq. (17) the masses and widths used in
the propagators are the ones given by the poles of
Table XIII. The couplings that we found for the different
poles are shown in Table XIII.

As we can see from Table XIII, the coupling of the
pole A to the K	� channel is about 4 times larger than
the pole B. Hence, this process is dominated by the pole A
contribution. In Fig. 13(a) we show the modulus squared of
TA, TB of Eq. (17) and the coherent addition of both
amplitudes. Since the sign of the two K1 couplings to K�
are different for both poles, the interference between TA
and TB is destructive for the K	� case. This means that the
amplitude observed in such an experiment should be
smaller than the one obtained with the dominant ampli-
tude. The ratio jTA � TBj2=jTAj2 is 
0:7, and hence the
corresponding radiative decay width observed in such an
experiment from our model would be 512 keV� 0:7 �
360 keV. This value is similar to the addition of the
experimental values of the radiative decay width of the
K1�1270� and K1�1400� of Ref. [21], 353� 55 keV. In
other words, the experiment sees the addition of the decay
widths of the different K1 resonances. Of course, the peak
seen in Ref. [21] seems to have an appreciable contribution
from the K1�1400� resonance and a model independent
way of separating it would be most welcome. Note, how-
ever, that because the K1�1400� shares the same quantum
numbers as the K1�1270�, one should sum coherently the
resonant amplitudes instead of assuming an incoherent
sum of decay rates as done in Ref. [21]. On the other
hand, the analysis in Ref. [21] relies on a coupling of the
K1�1270� resonance toK	� extracted from the information
of the PDG [31] which is also questioned in Ref. [20] in the
base of the existence of the two K1�1270� resonances,
which have very different couplings to K	�. Certainly,
the study of a reaction where the K1�1400� production

would be suppressed would be a most suitable reaction to
measure theK1�1270� properties. In the next subsection we
address such a reaction.

B. Primakoff reaction with �K final state

The same reaction as in Ref. [21] but looking at �K in
the final state (see Fig. 14) would have the advantage that
the K1�1400� has a negligible decay rate to �K [31].
Hence, the K1�1270� resonance would stand clean in the
reaction. A similar analysis as done in Ref. [21] could now
be done in order to obtain the K1�1270� ! K0� decay
width and would serve as a test of consistency of the result
obtained in Ref. [21]. However, from the perspective of the
two pole scenario, this consistency is unlikely as we show
below. Indeed, in Fig. 13(b) we show the analogous to
Fig. 13(a) for the �K case. As we can see in the figure,
the situation is reversed with respect to Fig. 13(a), since
now the dominant contribution comes from the pole B,
instead of the pole A in the former case and the interference
is now constructive. We think that the study of this reaction
should in any case bring some additional information to the
one done in Ref. [21] and could shed some light on the
issue of the two K1�1270� resonances.

V. CONCLUSIONS

We have evaluated the radiative decays of the low lying
axial-vector resonances into a pseudoscalar meson and a
photon. For that purpose, we have extended a previous
model originally devoted to the charged a1 and b1 radiative
decay. In our model, the axial-vector resonances appear as
dynamically generated through the interaction of a vector
and a pseudoscalar meson, in the sense that they appear as
poles in unphysical Riemann sheets of the scattering am-
plitudes without the need to include them as explicit de-
grees of freedom. Within this model the couplings of the
axial-vector mesons to the different VP channels can be
easily obtained, even the relative signs which are crucial in
the interferences of the present work. We evaluate the
radiative decay widths by allowing the photon to be emit-
ted from the decaying VP product both at tree and one loop
level contribution.

We make predictions for all of these radiative decay
widths and show that the final results are strongly affected
by nontrivial interferences between different mechanisms,
which are under control thanks to the knowledge of the
couplings provided by the underlying unitary theory that
generates dynamically the axial-vector resonances. This
makes the final results span a wide range of radiative
widths from 0 to 
1 MeV.

FIG. 13. The squared amplitudes corresponding to Eqs. (17)
and their coherent sums for (a) K	� and (b) �K in final states, as
functions of the K1 invariant mass.

FIG. 14. The same process as in Fig. 12 but �K in final state.
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We have devoted special attention to the K0
1�1270� !

K0� decay for which there is only one experimental datum.
In the underlying model of the present work this resonance
has a double pole structure. We have discussed that, should
this be the actual case in nature, it would have deep
consequences in the experimental result since, in the ex-
perimental analysis, the usual one pole structure of the
K1�1270� was considered. We have also proposed a related
experiment using the Primakoff method with �K in the
final state instead of the K	� of Ref. [21] in order to bring
extra information on the issue of the two pole structure of
the K1�1270� resonance. We argue that the result obtained
for the radiative decay in both Primakoff experiments
should be the same if there is only one pole. Yet, if there
are two poles, the single pole analysis is inappropriate and
would most probably lead to different results for the
K1�1270� radiative width in the two experiments.

Further experimental measurements of the radiative de-
cay widths of the axial-vector resonances would be wel-
come to shed more light on the nature of these resonances.
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