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The electromagnetic bremsstrahlung produced by a quark interacting with nucleons or nuclei is
azimuthally asymmetric. In the light-cone dipole approach this effect is related to the orientation
dependent dipole cross section. Such a radiation anisotropy is expected to contribute to the azimuthal
asymmetry of direct photons in pA and AA collisions, as well as in deep-inelastic scattering and in the
production of dileptons.
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I. INTRODUCTION

Direct photons, i.e. photons not from hadronic decay, are
of particular interest, since they do not participate in the
strong interaction and therefore carry undisturbed infor-
mation about the dynamics of the primary hard collision.

Here we present the basic color-dipole formalism for
calculating the azimuthal distribution of direct photons
radiated by a quark interacting either with a nucleon or
nuclear targets. For this purpose we further develop the
dipole approach proposed in [1,2] for electromagnetic
bremsstrahlung by a quark interacting with nucleons and
nuclei. This technique can be applied to dilepton [3–5] and
prompt photon [6,7] production in pp, pA and heavy ion
collisions. It can be also used for calculating the azimuthal
angle dependence in the radiation of dileptons, or in deep-
inelastic scattering.

An azimuthal asymmetry appears due to dependence of
the interaction of a dipole on its orientation. Indeed, a
colorless �qq dipole is able to interact only due to the
difference between the impact parameters of q and �q
relative to the scattering center. If ~b is the impact parameter
of the center of gravity of the dipole, and ~r is the transverse
separation of the q and �q, then the dipole interaction should
vanish if ~r ? ~b, but should be maximal if ~r k ~b. One can
see this on a simple example of a dipole interacting with a
quark in Born approximation. The partial elastic amplitude
reads
 

Imfq�qq� ~b; ~r� �
2

9�2

Z d2qd2q0�s�q2��s�q02�

�q2 ��2��q02 ��2�

� �ei ~q�� ~b�~r=2� � ei ~q�� ~b�~r=2�	

� �ei ~q
0�� ~b�~r=2� � ei ~q

0�� ~b�~r=2�	: (1)

Here we assume for the sake of simplicity that q and �q have
equal longitudinal momenta, i.e. they are equally distant
from the dipole center of gravity. The general case of
unequal sharing of the dipole momentum is considered
later in (23). We introduced in (1) an effective gluon

mass � which takes into account confinement and other
possible nonperturbative effects.

Integrating in (1) with a fixed �s we arrive at
 

Imfq�qq� ~b; ~r� �
8�2

s

9

�
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��������
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�������� ~b� ~r
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��������
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2
; (2)

where K0�x� is the modified Bessel function. This expres-
sion explicitly exposes a correlation between ~r and ~b: the
two terms cancel each other if ~b � ~r � 0.

II. DIRECT PHOTONS: DIPOLE
REPRESENTATION

The radiation of direct photons, which in the parton
model looks like a Compton process gq! �q, in the
target rest frame should be treated as electromagnetic
bremsstrahlung by a quark interacting with the target. In
the light-cone dipole approach the transverse momentum
distribution of photon bremsstrahlung by a quark propagat-
ing interacting with a target t (nucleon, t � N, or nucleus,
t � A) at impact parameter ~b, can be written in the factor-
ized form [2]
 

d�qT!�X�b; p; ��

d�ln��d2pd2b
�

1

�2��2
X
in;f

Z
d2r1d2r2ei

~p��~r1�~r2�

��?
�q��; ~r1���q��; ~r2�

� Ft� ~b; �~r1; �~r2; x�: (3)

Here ~p and � � p�� =p�q are the transverse and fractional
light-cone momenta of the radiated photon, ��q��; ~r� is
the light-cone distribution amplitude for the q� Fock com-
ponent with transverse separation ~r, and Ft� ~b; �~r1; �~r2; x�
is an effective partial amplitude to be discussed below. The
product of the distribution amplitudes, summed in (3) over
initial and final polarizations of the quark and photon,
reads [2]
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Here mq is the effective quark mass, which is in fact an
infrared cutoff parameter, and can be adjusted to photo-
production data [8], or shadowing [9], and whose value is
mq 
 0:2 GeV.

In Eq. (3) the effective partial amplitude
Ft� ~b; �~r1; �~r2; x� is a linear combination of �qq dipole
partial amplitudes at impact parameter b,
 

Ft� ~b; �~r1; �~r2; x� � Im�ftq �q� ~b; �~r1; x� � ftq �q� ~b; �~r2; x�

� ftq �q� ~b; �� ~r1 � ~r2�; x�	; (5)

where x is the Bjorken variable of the target gluons.

III. AZIMUTHAL ASYMMETRY IN
QUARK-NUCLEON COLLISIONS

In the case of a nucleon target (t � N), the partial elastic
amplitude fN�qq� ~b; ~r� of interaction of the �qq dipole with a

proton at impact parameter ~b is related to the dipole cross
section as

 �N�qq�r� � 2
Z
d2b ImfN�qq� ~b; ~r�; (6)

where �Nq �q�r� is the total cross section of a �qq-proton
collision. Here and further on, unless specified otherwise,
the dipole cross section and partial amplitudes implicitly
depend on the Bjorken variable x of the target gluons.

The cross section �N�qq�r� has been rather well deter-
mined by data on deep-inelastic scattering [10]. With this
input, and using Eq. (3), one can calculate the inclusive
differential cross section of direct photon emission. This
was done in [7] for pp collisions, with results in good
agreement with data.

Using the partial elastic amplitude fN�qq� ~b; ~r� one can also
calculate the differential elastic cross section of dipole-
nucleon scattering. Neglecting the real part, the amplitude
reads

 

d�� �qq�Nel �r�

dq2
T

�
1

4�

��������
Z
d2bei ~qT � ~b ImfN�qq� ~b; ~r�

��������
2



��N�qq�r�	

2

16�
exp��B� �qq�Nel �r�q2

T	: (7)

In the second line of this equation we rely on the small-qT
approximation. This defines the forward slope of the dif-
ferential cross section, which can be calculated as

 B� �qq�Nel �r� �
1

2
hs2i �

1

�N�qq�r�

Z
d2ss2 ImfN�qq� ~s; ~r�: (8)

The slope for small-dipole-proton elastic scattering was
measured in diffractive electroproduction of �-mesons at

high Q2 at HERA [11]. The measured slope, B� �qq�Nel �r� 

5 GeV�2, agrees with the expected value B� �qq�Nel �r� 

Bppel =2.

The objective of this paper is the azimuthal asymmetry
of photon radiation. First of all, we calculate the asymme-
try of the cross section Eq. (3) for quark-nucleon collisions.
The only vector available for such asymmetry is the impact
parameter ~b, and therefore we should trace a correlation
between the vectors ~p and ~b. The popular correlation
function is defined as

 vqN2 �b; p; �� � hv̂2i�p
� 2

��
~p � ~b
pb

�
2
	
�p

� 1

�

R
2�
0 d�pv̂2

d�qT!�X�b;p;��
d�ln��d2pd2bR

2�
0 d�p

d�qT!�X�b;p;��
d�ln��d2pd2b

; (9)

where the averaging is performed integrating in (3) over
the azimuthal angle �p of the transverse momentum ~p.

IV. RADIATION PRODUCED BY A QUARK
PROPAGATING THROUGH A NUCLEUS

In this case the partial amplitude to be used in (5), for a
�qq dipole colliding with a nucleus at impact parameter b,
reads,

 Im fAq �q� ~b; ~r� � 1�
�

1�
1

2A
�Nq �q�r� ~TA� ~b; ~r�

�
A


 1� exp
�
�

1

2
�Nq �q�r� ~TA� ~b; ~r�

�
: (10)

The effective nuclear thickness ~TA is defined as [12]

 

~T A� ~b; ~r� �
2

�N�qq�r�

Z
d2s ImfN�qq�~s; ~r�TA� ~b� ~s�; (11)

where the nuclear thickness function is defined as an
integral of the nuclear density along the particle trajectory,
TA�b� �

R
1
�1 dz�A�b; z�.

Calculating vqA2 �b; p; ��, we can average over �p,

 

��
~p � ~b
pb

�
2
	
�p

/
Z 2�

0
d�p

�
~p � ~b
pb

�
2 d�qA!�X�b; p; ��

d�ln��d2pd2b
;

(12)

analytically. Instead of integration over the direction of ~p
at fixed ~b, one can integrate over the direction of ~b at fixed
~p. The advantage of such a replacement is obvious: all the
b-dependence in (3) is located in the effective amplitude
FA and it has an explicit and simple form.
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Indeed, the mean value of s2 is according to (8) hs2i 

0:4 fm2, which is much smaller than the heavy nucleus
radius squared, R2

A. Therefore we can expand TA� ~b� ~s� as

 TA� ~b� ~s� � TA�b� �
~s � ~b
b

T0A�b� �
1

2

�
~s � ~b
b

�
2
T00A�b� � . . . :

(13)

Correspondingly, the partial amplitude (10) can be ex-
panded as
 

ImfAq �q� ~b; ~r� 
 1� exp
�
�

1

2
�Nq �q�r�TA�b�

�

�

�
1�

1

b
T0A�b��1� ~b; ~r�

�
1

2b2 �T
00
A�b��2� ~b; ~r� � T

02

A �b��
2
1�
~b; ~r�

��
;

(14)

where

 �n� ~b; ~r� �
Z
d2s ImfNq �q�~s; ~r��~s � ~b�

n: (15)

Integrating the amplitude (14) together with v̂2 over �b
we find that the first two terms in the curly brackets in (14)
give zero, and the rest is
 

Im~fAq �q�b; ~r� �
1

2�

Z 2�

0
d�b ImfAq �q� ~b; ~r�v̂2��b�

� e��1=2��Nq �q�r�TA�b�
1

4
�T00A�b�g�r� � T

02

A �b�h�r�	:

(16)

Here

 g�r� �
Z
d2s ImfN�qq�~s; ~r�

�
2
� ~p � ~s�2

p2 � s2

�
; (17)

 h�r� �
Z
d2s1d2s2 ImfN�qq� ~s1; ~r� Imf

N
�qq�~s2; ~r�

�

�
2
�~s1 � ~p��~s2 � ~p�

p2 � � ~s1 � ~s2�

�
: (18)

Equation (16) shows that the azimuthal asymmetry is
strongly enhanced at the nuclear periphery. Indeed, at
small impact parameters the amplitude Eq. (16) is sup-
pressed by the factor exp�� 1

2�
N
q �q�r�TA�b�	, and, moreover,

T0A�b� 
 �2�0b=



















R2
A � b

2
q

and T00A�b� 
 2�0R2
A=�R

2
A �

b2�3=2 are vanishingly small and peak at the periphery
(�0 
 0:16 fm�3 is the central nuclear density). The small-
ness of both the amplitude and azimuthal asymmetry jus-
tifies also the expansion made in (14).

As far as the partial amplitudes fN�qq�~s; ~r� and their asym-
metric part Eq. (16) are known, one can calculate the
azimuthal asymmetry of photons radiated in quark-nucleus

collisions,

 

vqA2 �b; p; ��
d�qA!�X�b; p; ��

d�ln��d2pd2b

�
X
in;f

Z
d2r1d2r2ei

~p��~r1�~r2��?
�q��; ~r1���q��; ~r2�

� ~FA�b; �~r1; �~r2�; (19)

where

 

~F A�b; �~r1; �~r2� � Im~fAq �q�b; �r1� � Im~fAq �q�b; �r2�

� Im~fAq �q�b; �j ~r1 � ~r2j�: (20)

Notice that the cross section in the left-hand side of
Eq. (19) can also be calculated without using the expansion
(13), relying on the eikonal approximation, ~TA� ~b; ~r� 

TA�b�, which is known to be quite accurate for heavy
nuclei.

V. PARTIAL DIPOLE AMPLITUDE fN�qq� ~b; ~r�

The next step is to model the partial dipole amplitude
fN�qq� ~b; ~r�. An azimuthal asymmetry can only emerge if the

amplitude fN�qq� ~b; ~r� contains a correlation between the

vectors ~b and ~r. If such a correlation is lacking, the
function Eqs. (17) and (18) are equal to zero. A model
for fN�qq� ~b; ~r� having no ~b� ~r correlation was proposed in
[13].

It is rather straightforward to calculate the partial am-
plitude within the two-gluon exchange model [14],

 

ImfN�qq� ~b; ~r� �
2

3�2

Z d2qd2q0�s�q2��s�q02�

�q2 ��2��q02 ��2�

� ei ~b�� ~q� ~q
0��1� ei ~q� ~r��1� e�i ~q

0� ~r�

� �FN� ~q� ~q0� � F�2q�N � ~q; ~q
0�	; (21)

where FN�k� � h�Nj exp�i ~k � ~�1�j�Ni is the nucleon form
factor, and F�2q�N � ~q; ~q

0� � h�Nj exp�i ~q � ~�1 � i ~q
0 � ~�2	j�Ni

is the so-called two-quark-nucleon form factor. Both can
be calculated using the three-valence quark-nucleon wave
function �N� ~�1; ~�2; ~�3�.

An effective gluon mass � is introduced in (21) in order
to imitate confinement. We fix its value at� � m� in order
to reproduce the large hadronic cross sections.

The Born amplitude is unrealistic since it leads to an
energy independent dipole cross section � �qq�r; x�. This
dipole cross section has been well probed by measurements
of the proton structure function at small Bjorken x at
HERA, and was found to rise towards small x, with an x
dependent steepness. In fact, it can be expressed via the
unintegrated gluon density F �x; q2�,
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 ��r; x� �
4�
3

Z d2q

q4 �1� e
�i ~q� ~r��s�q

2�F �x; q2�: (22)

Analogously, the partial amplitude for dipole-nucleon
elastic scattering at impact parameter ~b between the cen-
ters of gravity of the dipole and nucleon reads

 

ImfN�qq� ~b; ~r; �� �
1

12�

Z d2qd2q0

q2q02
�sF �x; ~q; ~q0�

� ei ~b�� ~q� ~q
0��e�i ~q� ~r� � ei ~q� ~r�1����

� �ei ~q
0�~r� � e�i ~q

0� ~r�1����: (23)

Here the dipole has transverse separation ~r, fractional
light-cone momenta of the quark and antiquark, 1� �
and � respectively. Since the radiated photon takes away
fraction � of the quark momentum, the corresponding
dipole has � � 1=�2� ��. The impact parameter ~b of
the dipole is the transverse distance from the target to the
dipole center of gravity, which is shifted towards the fastest
q or �q in accordance with (23).

In (23) �s �





























�s�q

2��s�q
02�

p
, and we introduced the off-

diagonal unintegrated gluon density F �x; ~q; ~q0�, which in
the Born approximation limit takes the form

 F �x; ~q; ~q0� ) F Born� ~q; ~q
0�

�
4�s
�
�FN� ~q� ~q0� � F�2q�N � ~q; ~q

0�	: (24)

Besides, the partial elastic amplitude Eq. (23) should
satisfy the conditions Eqs. (6) and (8). For the dipole cross
section we rely on the popular saturated shape [10] fitted to
HERA data for Fp2 �x;Q

2�, and we choose the following
form of F �x; ~q; ~q0�,

 

F �x; ~q; ~q0� �
3�0

16�2�s
q2q02R2

0�x�

� exp
�
�

1

8
R2

0�x��q
2 � q02�

�

� exp��R2
N� ~q� ~q0�2=2	; (25)

where �0 � 23:03 mb, R0�x� � 0:4 fm� �x=x0�
0:144 with

x0 � 3:04� 10�4 [10] and x � p=




s
p

[7]. We assume here
that the Pomeron-proton form factor has the Gaussian
form, FpIP�k

2
T� � exp��k2

TR
2
N=2�, so the slope of the pp

elastic differential cross section is Bppel � 2R2
N �

2�0IP ln�s=s0�, where �0IP 
 0:25 GeV�2 is the slope of
the Pomeron trajectory, s0 � 1 GeV2. R2

N 
 hr
2
chi=3 is the

part of the slope of the elastic cross section related to the
Pomeron-proton form factor.

With this unintegrated gluon density the partial ampli-
tude Eq. (23) can be calculated explicitly,

 

ImfN�qq� ~b; ~r; x; �� �
�0

8�Bel

�
exp

�
�
� ~b� ~r�1� ��	2

2Bel

�

� exp
�
�
� ~b� ~r��2

2Bel

�

� 2 exp
�
�
r2

R2
0

�
� ~b� �1=2� �� ~r	2

2Bel

��
;

(26)

where Bel�x� � R2
N � R

2
0�x�=8. This amplitude satisfies the

conditions Eqs. (6) and (8). This expression also goes
beyond the usual assumption that the dipole cross section
is independent of the light-cone momentum sharing �. The
partial amplitude Eq. (26) does depend on �, but this
dependence disappears after integration over impact pa-
rameter ~b.

VI. NUMERICAL RESULTS

Now we are in a position to calculate vqN2 �b; p; ��.
Examples of quark-nucleon collisions radiating a photon,
with � � 1 and at different impact parameters and ener-
gies, are depicted in Fig. 1. The results show that the
anisotropy of the dipole interaction rises with impact pa-
rameter, reaching rather large values. As a function of the
transverse momentum of the radiated photons, vqN2 �b; p; ��
vanishes at large pT . Such a behavior could be anticipated,
since the interaction of vanishingly small dipoles respon-
sible for large p is not sensitive to the dipole orientation.

0 0.5 1 1.5 2 2.5 3
p

T
 (GeV)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

v
2

q
N

Solid: √s = 200 GeV
Dashed: √s = 5.5 TeV

b = 1 fm

b = 0.6 fm

b = 0.4 fm

b = 0.2 fm

FIG. 1 (color online). The anisotropy parameter vqN2 �b; p; ��
as a function of p calculated at � � 1 for different impact
parameters b and energies:





s
p
� 200 GeV (solid, b � 0:2,

0.4, 0.6, 1 fm), and




s
p
� 5500 GeV (dashed, b � 0:6, 1 fm).
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The next step is calculating the azimuthal asymmetry in
quark-nucleus collisions. The results are plotted in Fig. 2 as
a function of transverse momentum, at different impact
parameters and at the energies of the Relativistic Heavy
Ion Collider (RHIC) and LHC.

The first observation is the smallness of vqA2 , which is
suppressed an order of magnitude compared to vqN2 . At first
glance this might look strange, since the quark interacts
with nucleons anyway. However, a quark propagating
through a nucleus interacts with different nucleons located
at different azimuthal angles relative to the quark trajec-
tory. Their contributions to vqA2 tend to cancel each other,
restoring the azimuthal symmetry. Such cancellation
would be exact if the nuclear profile function TA�b� were
constant. We have a nonzero, but small vqA2 only due to the
variation of TA with b, i.e. the presence of finite first and
second derivatives, as was derived in Eq. (16).

The results of a numerical integration (without expan-
sion (14)), depicted in Figs. 1 and 2, also confirm the
anticipation based on Eq. (16) that the azimuthal asymme-
try is enhanced on the nuclear periphery.

We used the Woods-Saxon parametrization for nuclear
density [15]. The anisotropy of electromagnetic radiation
appears only on the nuclear periphery and according to
(16) is extremely sensitive to the behavior of the nuclear
thickness function at the very edge of the nucleus. Electron
scattering data, which is the main source of information
about the electric charge distribution in nuclei, is not sensitive to the neutron distribution, which is known to

be enlarged on the periphery. Therefore the details of the
shape of the density distribution on the nuclear surface are
poorly known. As a simple estimate of the theoretical
uncertainty related to this problem one can use an alter-
native parametrization of the nuclear density, such as the
simple and popular hard sphere form, ��r� � �0��RA �
r�. We compare in Fig. 3 the anisotropy parameters
vqA2 �p; b; �� calculated with hard sphere (dashed) and
Woods-Saxon (solid) parametrizations. As one could ex-
pect, the hard sphere density leads to a quite larger anisot-
ropy, since the derivatives of the nuclear profile function
are much sharper.

VII. SUMMARY

Summarizing, we extended the dipole description of
electromagnetic radiation [1,2] in quark-nucleon and nu-
cleus collisions to calculation of the azimuthal angle dis-
tribution. This problem involves more detailed features of
the dipole amplitude, namely, its dependence on dipole
size and impact parameter, as well as on their correlation.
We propose a simple model generalizing the unintegrated
gluon density fitted to HERA data for the proton structure
function to an off-diagonal gluon distribution. The latter
satisfies all the imposed boundary conditions.

The developed theoretical tools can be applied to the
calculation of the azimuthal asymmetry in deep-inelastic

0 1 2 3 4
p

T
 (GeV)

-0.06

-0.04

-0.02

0

0.02

0.04

v
2

q
A

b=9.5 fm

b=6 fm

b=7 fm

b=8 fm Solid: √s = 200 GeV
Dashed: √s = 5.5 TeV

b=5 fm

FIG. 2 (color online). Azimuthal anisotropy of direct photons
with � � 1 from quark-lead collisions at different impact pa-
rameters as is labeled in the plot. Solid and dashed curves
correspond to the energies of RHIC (b � 5, 6, 7, 8, 9.5 fm),
and LHC (b � 6, 8 fm), respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
p

T
 (GeV)

-0.1

-0.05

0

0.05

0.1

0.15

v
2

q
A

HS Profile
WS Profile

b = 7 fm

b = 5 fm

FIG. 3 (color online). Azimuthal anisotropy of direct photons
with � � 1 from quark-lead collisions at b � 5 and 7 fm. Solid
and dashed curves are calculated with Woods-Saxon (WS) and
hard sphere (HS) parametrizations of nuclear density, respec-
tively.
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scattering and in Drell-Yan reactions on a proton, as well as
to the production of direct photons and Drell-Yan pairs in
proton-nucleus and heavy ion collisions.
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