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The Bakamjian-Thomas relativistic quark model provides a Poincaré representation of bound states
with a fixed number of constituents and, in the heavy quark limit, form factors of currents satisfy
covariance and Isgur-Wise scaling. We compute the light cone distribution amplitudes (LCDA) of B
mesons ’B��!� as well as the shape function S�!�, that enters in the decay B! Xs�, that are also
covariant in this class of models. The LCDA and the shape function are related through the quark model
wave function. The former satisfy, in the limit of vanishing constituent light quark mass, the integral
relation given by QCD in the valence sector of Fock space. Using a Gaussian wave function, the obtained
S�!� is identical to the so-called roman shape function. From the parameters for the latter that fit the
B! Xs� spectrum we predict the behavior of ’B��!�. We discuss the important role played by the
constituent light quark mass. In particular, although ’B��0� � 0 for vanishing light quark mass, a
nonvanishing mass implies the unfamiliar result ’B��0� � 0. Moreover, we incorporate the short distance
behavior of QCD to ’B��!�, which has sizeable effects at large !. We obtain the values for the parameters
�� � 0:35 GeV and ��1

B � 1:43 GeV�1. We compare with other theoretical approaches and illustrate the
great variety of models found in the literature for the functions ’B��!�; hence the necessity of imposing
further constraints as in the present paper. We briefly review also the different phenomena that are
sensitive to the LCDA. The value that we find for ��1

B fulfills the upper bound recently measured by
BABAR.
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I. INTRODUCTION

The light cone distribution amplitudes (LCDA) of
heavy-light mesons �B

����, �B
���� [1] or, in the heavy

quark limit ’B��!� and ’B��!� [2], are fundamental func-
tions that enter in the large energy limit of amplitudes of
semileptonic decays [2] and in nonleptonic decays of B
mesons [3], in the determination of the form factor
FB!�� �0� [4] and, more directly, in the decay B� ! �‘ ��‘
[5–8].

On the theoretical side, these functions have been
studied in the perturbative regime at large ! [7,9], and a
number of very varied Ansätze have been proposed for the
dominant part of them at low � or !, where the function is
peaked at �� �QCD

mB
or !��QCD [2,7,8].

On the other hand, one can obtain model-independent
information on these functions from the measurement of
the spectrum in the decay B� ! �‘ ��‘, that is directly
related to one of the LCDA [5–8].

On the theoretical side, although rigorous results are
known in the perturbative regime !	 �QCD, the guesses
advanced for the main nonperturbative part of the LCDA
amplitudes come essentially from QCD sum rules, impos-
ing continuity between the perturbative and long distance
regimes [7,9].

The motivation of the present work is to compute the
LCDA in a class of relativistic quark models, namely, the
Bakamjian-Thomas (BT) quark models [10–14]. This is a
class of models with a fixed number of constituents where

the states are covariant under the Poincaré group. The
model relies on an appropriate Lorentz boost of eigenfunc-
tions of a Hamiltonian describing the spectrum at rest. On
the other hand, one has demonstrated that the matrix
elements of currents between hadrons are covariant in the
heavy quark limit and exhibit Isgur-Wise scaling [15] in
this limit [14]. Given a Hamiltonian describing the spec-
trum, the model provides an unambiguous result for the
elastic Isgur-Wise function ��w� [14,16]. On the other
hand, the sum rules (SR) in the heavy quark limit of
QCD, like Bjorken or Uraltsev SR are satisfied in the
model [17,18], as well as SR involving higher derivatives
of ��w� at zero recoil [19].

The interest of computing the LCDA functions’B��!� in
this framework is to directly relate them, in an unambig-
uous way, to the shape function S�!� [20–26] in B! Xs�,
that can also be computed in the BT class of models.

One could calculate the LCDA within the BT scheme
using a Hamiltonian describing the spectrum, like the
Godfrey-Isgur (GI) model [27], that has been used else-
where to compute the elastic Isgur-Wise function ��w� and
the inelastic ones �1=2�w�, �3=2�w� [16]. However, we have
tested the GI model to compute the shape function S�!�
and have realized that this model does not fit the B! Xs�
spectrum. This is the reason why we have decided on
another phenomenological approach, namely, to relate
the light-cone distribution amplitudes ’B��!� to the shape
function S�!�, a relation that is provided by the BT
scheme. Using this relation, and a SF S�!� that fits the B!
Xs� spectrum, one can predict the LCDA. The problems
for the SF and also a discussion of heavy-to-light form*Unité Mixte de Recherche UMR 8627-CNRS
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factors within the BT scheme for the GI spectroscopic
model will be given in detail elsewhere.

The paper is organized as follows. In Sec. II we give the
master formulas defining the theoretical framework of BT
quark models. In Sec. III we review the definitions of the
LCDA at finite mass and in the heavy quark limit of QCD
and in Sec. IV we set a main natural hypothesis to compute
the LCDA within quark models. In Sec. V, to introduce the
technicalities of the BT model, we review the calculation
of the heavy meson decay constant. In Sec. VI we obtain
our main results, namely, the expressions for the LCDA in
the BT quark models. In Sec. VII we compute the SF S�!�
in BT models and show that, in the case of the harmonic
oscillator, it is identical with the so-called roman shape
function, used to fit the B! Xs� spectrum [20–22,26]. In
Sec. VIII we use the parameters of the latter to predict the
LCDA functions ’B��!� and their moments. In Sec. IX,
following Braun, Ivanov, and Korchemsky [7] and Lee and
Neubert [9], we introduce the radiative tail of ’B��!�. In
Sec. X we compare our results with proposals for the
LCDA in other theoretical schemes. In Sec. XI we review
the different phenomena that are sensitive to the LCDA,
and in Sec. XII we conclude.

II. THE BAKAMJIAN-THOMAS RELATIVISTIC
QUARK MODEL

As explained in [14], the construction of the BT wave
function in motion involves a unitary transformation that

relates the wave function ��P�s1;


;sn�p1; 
 
 
 ;pn� in terms of
one-particle variables, the spin Si and momenta pi to the
so-called internal wave function �int

s1;


;sn�P;k2; 
 
 
 ;kn�

given in terms of another set of variables, the total mo-
mentum P and the internal momenta k1;k2; 
 
 
 ;kn
(
P
iki � 0). This property ensures that, starting from an

orthonormal set of internal wave functions, one gets an
orthonormal set of wave functions in any frame. The base
��P�s1;


;sn�p1; 
 
 
 ;pn� is useful to compute one-particle ma-
trix elements like current one-quark matrix elements, while
the second �int

s1;


;sn�P;k2; 
 
 
 ;kn� allows to exhibit
Poincaré covariance. In order to satisfy the Poincaré com-
mutators, the unique requirement is that the mass operator
M, i.e. the Hamiltonian describing the spectrum at
rest, should depend only on the internal variables and
be rotational invariant, i.e. M must commute with
P, @

@P and S. The internal wave function at rest
�2��3��P�’s1;


;sn�k2; 
 
 
 ;kn� is an eigenstate of M, P
(with P � 0), S2 and Sz, while the wave function in motion
of momentum P is obtained by applying the boost BP,
where P0 �

�������������������
P2 �M2
p

involves the dynamical operator
M.

The final output of the formalism that gives the total
wave function in motion ��P�s1;


;sn�p1; 
 
 
 ;pn� in terms of
the internal wave function at rest ’s1;


;sn�k2; 
 
 
 ;kn� is
the formula

 ��P�s1;


;sn�p1; 
 
 
 ;pn� � �2��3�
�X

i

pi � P
� ����������P

i
p0
i

M0

vuuut �Y
i

�����
k0
i

q
������
p0
i

q � X
s01;


;s

0
n

�Di�Ri��si;s0i’s01;


;s0n�k2; 
 
 
 ;kn� (1)

where p0
i �

������������������
p2
i �m

2
i

q
and M0 is the free mass operator is given by M0 �

����������������
�
P
ipi�

2
q

.

The internal momenta of the hadron at rest are given in terms of the momenta of the hadron in motion by the free boost

ki � B�1P
ipipi where the operator Bp is the boost �

������
p2

p
; 0� ! p, the Wigner rotations Ri in the preceding expression

Ri � B�1
pi B�1P

ipiBki and the states are normalized by hP0; S0zjP;Szi � �2��3��P0 � P��Sz;S0z .
The current one-quark matrix element acting on quark 1 between two hadrons is then given by the expression

 h�0�P0; S0z�jJ�1�j��P; Sz�i �
Z dp01
�2��3

dp1

�2��3

�Yn
i�2

dpi
�2��3

�

�P0
s01;


;sn

�p01; 
 
 
 ;pn�
hp01; s01jJ
�1�jp1; s1i�

P
s1;


;sn�p1; 
 
 
 ;pn�

(2)

where �P
s1;


;sn�p1; 
 
 
 ;pn� is given in terms of the internal

wave function by (1) and hp01; s01jJ
�1�jp1; s1i is the one-

quark current matrix element.
As demonstrated in [14,28], in this formalism, in the

heavy quark limit, current matrix elements are covariant
and exhibit Isgur-Wise scaling, and one can compute Isgur-
Wise functions like ��w�, �1=2�w�, �3=2�w� [16].

In the present paper, as far as the LCDA are concerned,
we are dealing with current matrix elements between one
meson and the vacuum, i.e. h0jJj�i. In [29] such matrix
elements were considered and it was demonstrated that the
decay constants of heavy-light mesons are covariant—
independent of the frame—in the heavy quark limit, and
exhibit heavy quark scaling, i.e. fB

�������
mB
p

is a constant in this
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limit. This quantity was calculated for various Hamil-
tonians describing the meson spectrum.

We want now to go beyond and compute the LCDA
’B��!� starting from the meson-to-vacuum matrix ele-
ments h0jJj�i. We can here advance our main result, that
is parallel to the one obtained for meson-to-meson current
matrix elements. The LCDA are covariant in the heavy
quark limit, and can therefore be computed without any
arbitrary parameter once the Hamiltonian giving the inter-
nal wave function is given. The same statement holds for
the shape function S�!� in B! Xs�, that can be expressed
as a meson-to-meson matrix element h�jOj�i. For the
latter we will use the harmonic oscillator that gives the
roman shape function [20–22,26]. We will then use the
phenomenological parameters of this function, that fit the
B! Xs� spectrum, to predict the LCDA.

III. B MESON LIGHT-CONE DISTRIBUTION
AMPLITUDES

Let us define the LCDA �B
����, �B

���� [1]
 

h0j �q�z�Sn��z;0��b�0�j
�Bd�P�ijz��z?

��
fB
4

Z 1

0
d�e�i�P�z�

�Tr
�
��P6 �mB��5

�
�B
�����

n6 �
v 
n�

�B
������B

����
2

��
(3)

where Sn��z; 0� is the Wilson line following the lightlike
four vector n� � �1; 0; 0;�1� (n2

� � 0), v is the B four
velocity v � P

mB
, � is an arbitrary Dirac matrix, and the

center-of-mass motion is along the Oz axis. P�, z� are
light-cone variables defined for any four vector p by p� �
p0�pz��

2
p , p� �

p0�pz��
2
p . Sometimes one takes v 
 n� � 1, i.e.

the B rest frame, but to exhibit covariance we have adopted
a general value for v 
 n�. The LCDA �B1

���, �B2
���

satisfy the normalization conditions

 

Z 1

0
d��B

���� �
Z 1

0
d��B

���� � 1: (4)

In the heavy quark limitmb ! 1 it is useful to use a new
variable

 ! � mb� (5)

keeping ! fixed, that yields the definition of the LCDA

[2,4,30],
 

h0j �q�z�Sn��z;0��hv�0�j
�Bd�v�ijz��z?

��
fBmB

4

Z 1
0
d!e�i!v�z�

�Tr
�
��1�v6 ��5

�
’B��!��

’B��!��’
B
��!�

2

n6 �
v 
 n�

��
:

(6)

The relation between �B
���� and ’B��!� is

 ’B��!� �
1

mB
�B
�

�
!
mB

�
(7)

and ’B��!� satisfy the normalization conditions

 

Z 1
0
d!’B��!� � 1: (8)

IV. LCDA IN QUARK MODELS

In what follows, we will use the preceding relations to
obtain the expression of ’B��!� in BT quark models. In the
class of BT quark models, gluon exchange is included in
the potential. Therefore, in a way, the gluon field is inte-
grated out, but one loses the explicit gauge invariance that
is ensured by the Wilson line of the preceding expressions.

In a quark model, what we can consider is the matrix
element involving constituent quarks, in particular, con-
stituent light quarks with a dynamical mass. Our ansatz
will be to identify the QCD matrix element with the Wilson
line with a matrix element involving the constituent quark
field, or in more rigorous terms, one would say that one
works in the light-cone gauge,

 A� � 0 Sn��z; 0� � 1 (9)

and set

 h0j �q�z�Sn��z; 0��b�0�j
�Bd�v�ijz��z?�0

� h0j �qconstituent�z��b�0�j �Bd�v�ijz��z?�0: (10)

This is our main hypothesis and the starting point of the
quark model calculation, that then follows in a straightfor-
ward way. From now on the constituent light quark field
qconstituent will be denoted by q. Of course, the condition (9)
can hold only in field theory, and our BT scheme is just a
model. Defining ����� by the quark model expression:

 h0j �q�z��b�0�j �Bd�P�ijz��z? � �
fB
4

Z 1

0
d�e�i�P�z� Tr

�
��P6 �mB��5

�
�B
���� �

n6 �
v 
 n�

�B
���� ��B

����
2

��
(11)

where n� � �1; 0; 0;�1�, one obtains
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 �B
���� �

1

fBmB

P�
2�

Z
dz�ei�P�z�h0j �q�z�

n6 �
v 
 n�

�5b�0�j �Bd�P�ijz��z?�0

�B
���� �

1

fBmB

P�
2�

Z
dz�ei�P�z�h0j �q�z�

�
2v6 �

n6 �
v 
 n�

�
�5b�0�j �Bd�P�ijz��z?�0:

(12)

Calling p2 the four-momentum of the light quark, using translational invariance and integrating over z�, these
expressions write

 �B
���� �

1

fBmB
h0j �q�0��

�
��

p2�

P�

�
n6 �

v 
 n�
�5b�0�j �Bd�P�i

�B
���� �

1

fBmB
h0j �q�0��

�
��

p2�

P�

��
2v6 �

n6 �
v 
 n�

�
�5b�0�j �Bd�P�i:

(13)

These will be the starting formulas to compute these functions in the BT quark model, from which we will deduce their
heavy quark limit ’B��!�. But let us first compute the heavy meson decay constant fB in the BT quark models, that will
provide the desired normalization for the LCDA.

V. DECAY CONSTANT IN BT MODELS

The calculation of the matrix elements to obtain the LCDA ’B��!� is just reminiscent of the one made to obtain the
corresponding decay constant [29]. In this latter case one needs the matrix element

 h0j �q�0��b�0�j �Bd�v�i �
������
Nc

p Z dp2

�2��3

����������P
i
p0
i

M0

vuuut �����������
k0

1k
0
2

p0
1p

0
2

vuut ������������
m1m2

p0
1p

0
2

s
1���
2
p ’�k2�Tr

�
��5BuBk2

1� �0

2
B�1
u Bu

1� �0

2
B�1
k1

B�1
u

�
(14)

where ’�k2� is the internal wave function at rest, with the normalization

 

Z dk2

�2��3
j’�k2�j

2 � 1: (15)

p1 and p2 (m1 and m2) are the quark four-momenta (masses) of, respectively, the heavy and light quarks, Bp is the 4� 4
boost matrix associated with the four-vector p, and the four vector u, M0 and the relation between ki and pi are given by

 u �
p1 � p2

M0
M0 �

�����������������������
�p1 � p2�

2
q

Buki � pi �i � 1; 2� (16)

where k1 and k2 are the four-momenta of the quarks in the rest frame of the Bmeson and Bu is the boost associated with the
four-vector u. The products of 4� 4 matrices under the trace read

 B uBk2

1� �0

2
B�1
u �

m2 � p6 2�����������������������������
2m2�k

0
2 �m2�

q 1� u6
2

Bu
1� �0

2
Bk1

B�1
u �

1� u6
2

m1 � p6 1�����������������������������
2m1�k

0
1 �m1�

q : (17)

This yields the expression

 h0j �q�0��b�0�j �Bd�P�i � �

������
Nc
p

8

Z dp2

�2��3
���
2
p

�����
u0
p

p0
1p

0
2

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut Tr��5��m2 � p6 2��1� u6 ��m1 � p6 1��’�k2�:

(18)

Using the current � � ���5 we obtain, after some algebra and the definition of the four vector u (16),

 h0j �q�0����5b�0�j �Bd�P�i �

������
Nc
p ���

2
p

Z dp2

�2��3

�����
u0
p

p0
1p

0
2

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut �
1�

m1 �m2

M0

�
�p1�m2 � p2�m1�’�k2�: (19)

Since the BT states are normalized according to
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 h �Bd�P0�j �Bd�P�iBT � �2��3��P� P0� (20)

while the covariant normalization is h �Bd�P0�j �Bd�P�i � �2��32P0��P� P0�, we have to identify the former matrix element
with the definition of the decay constant

 h0j �q�0����5b�0�j �Bd�P�i �
fBP���������

2P0
p (21)

one obtains

 fB
�������
mB
p

�
������
Nc

p ������
v0

p Z dp2

�2��3

�����
u0
p

p0
1p

0
2

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut �
1�

m1 �m2

M0

�
�m1�p2 
 v� �m2�p1 
 v��’�k2�: (22)

This expression is not covariant, but becomes covariant in the heavy quark limit. For m1 ! 1 one has

 m0 ! m1 ! mB; u! v;
p1

m1
! v;

k0
1

m1
! 1; k0

2 ! p2 
 v (23)

where v is the B meson four-velocity, and one gets the expression of the B decay constant in the BT model in the heavy
quark limit [29],

 fB
�������
mB
p

�
���
2
p ������

Nc
p Z dp2

�2��3
1

p0
2

��������������������������������������������
�p2 
 v��p2 
 v�m2�

q
’�

������������������������������
�p2 
 v�2 �m2

2

q
�: (24)

This expression is covariant, satisfies heavy quark scaling, and gives the decay constant in terms of the internal wave
function. In the B rest frame one gets

 fB
�������
mB
p

�

������
Nc
p ���

2
p

1

�2

Z 1
0
dpp2

�m2 �
������������������
p2 �m2

2

q
������������������
p2 �m2

2

q �
1=2
’�p�: (25)

We have checked that these expressions for the decay constant hold exactly in the equivalent light-front approach of
Cardarelli at al. [13] in the heavy mass limit.

VI. LCDA IN THE HEAVY QUARK LIMIT IN BT MODELS

According to (13), we have to compute a generic matrix element

 �B��� �
1

fBmB
h0j �q�0��

�
��

p2�

P�

�
�b�0�j �Bd�P�ijz��z?�0 (26)

where � is a Dirac matrix. In the BT quark model, this expression writes, taking into account the appropriate normal-
izations,

 ���� � �
��������
2P0

p 1

fBmB

������
Nc
p

8

Z dp2

�2��3
1

p0
2

�
�
��

p2�

P�

�

�
���
2
p

�����
u0
p

p0
1

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut Tr��5��m2 � p6 2��1� u6 ��m1 � p6 1��’�k2�: (27)

Changing the measure and integrating relatively to p2� and p2�, one obtains

 

���� � �
��������
2P0

p 1

fBmB

������
Nc
p

8

1

�
1

2�

�Z dp2?

�2��2
���
2
p

�����
u0
p

p0
1

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut
� Tr��5��m2 � p6 2��1� u6 ��m1 � p6 1��’�k2��p2���P�;p2����p2?�

2�m2
2�=�2P���

: (28)

Making use of the definition of the four-vector u (16) and computing the trace particularizing, respectively, to � � n6 �
v
n�

�5
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and � � �2v6 � n6 �
v
n�
��5, one gets

 

�B
���� �

��������
2P0

p 1

fBmB

������
Nc
p

2

1

�
1

2�

�Z dp2?

�2��2
���
2
p

�����
u0
p

p0
1

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut �
1�

m1 �m2

M0

�

�

�
m1�p2 
 n�� �m2�p1 
 n��

v 
 n�

�
’�k2�

�
p2���P�;p2����p2?�

2�m2
2�=�2P���

�B
���� �

��������
2P0

p 1

fBmB

������
Nc
p

2

1

�
1

2�

�Z dp2?

�2��2
���
2
p

�����
u0
p

p0
1

�����������������������������������������
k0

1k
0
2

�k0
1 �m1��k

0
2 �m2�

vuut �
1�

m1 �m2

M0

�

�

�
2�m1�p2 
 v� �m2�p1 
 v�� �

m1�p2 
 n�� �m2�p1 
 n��
v 
 n�

�
’�k2�

�
p2���P�;p2����p2?�

2�m2
2�=�2P���

:

(29)

A. Heavy quark limit

At finite mass the expressions (29) are not covariant. In the heavy quark limit, using now the variable ! � m1�,

 u! v1 ! v k0
1 ! m1; k0

2 ! p2 
 v M0 ! m1 ! mB m1�! ! (30)

one obtains, denoting p2? � p?
 

’B��!� �

������
Nc
p

fB
�������
mB
p

���
2
p 1

8�2

Z
dp2
?

�����������������������������������
p2
? �m

2
2 �!

2

p2
? � �!�m2�

2

vuut !�m2

!
’
� ����������������������������������������������������������
�p2
? �!

2 �m2
2�

2 � 4!2m2
2

q
2!

�

’B��!� �

������
Nc
p

fB
�������
mB
p

���
2
p 1

8�2

Z
dp2
?

�����������������������������������
p2
? �!

2 �m2
2

p2
? � �!�m2�

2

vuut p2
? �m2�!�m2�

!2 ’
� ����������������������������������������������������������
�p2
? �!

2 �m2
2�

2 � 4!2m2
2

q
2!

�
:

(31)

In the heavy quark limit, the LCDA ’B��!� are covariant, since the boost is along Oz, and the variable ! can be written in
the covariant form,

 ! � mB� � mB
p2�

P�
� mB

p2 
 n�
P 
 n�

�
p2 
 v�
v 
 n�

: (32)

Performing the change of variables

 p �

����������������������������������������������������������
�p2
? �!

2 �m2
2�

2 � 4!2m2
2

q
2!

(33)

one obtains

 ’B��!� �

������
Nc
p

fB
�������
mB
p

���
2
p 1

4�2 �!�m2�
Z 1
p0�!�

dp
p

�p2 �m2
2�

1=4�
������������������
p2 �m2

2

q
�m2�

1=2
’�p�

’B��!� �

������
Nc
p

fB
�������
mB
p

���
2
p 1

4�2

Z 1
p0�!�

dp
p�2

������������������
p2 �m2

2

q
�!�m2�

�p2 �m2
2�

1=4�
������������������
p2 �m2

2

q
�m2�

1=2
’�p�

(34)

with

 p0�!� �
j!�m2j�!�m2�

2!
: (35)

One can check the normalization (8) by changing the order
of the integrals

 !> 0; p > p0�!� , p > 0;

!��p�<!<!��p�
(36)

with

 !��p� �
������������������
p2 �m2

2

q
� p: (37)

The integrals over ! are trivial
 Z !��p�

!��p�
d!�m2�!� �

Z !��p�

!��p�
d!�2

�����������������
p2�m2

2

q
�!�m2�

� 2p�
�����������������
p2�m2

2

q
�m2� (38)

and the normalization (8) follows.

A. LE YAOUANC, L. OLIVER, AND J.-C. RAYNAL PHYSICAL REVIEW D 77, 034005 (2008)

034005-6



B. Limit of vanishing light quark mass

In the limit of vanishing light quark mass, one can
immediately demonstrate from expressions (34) that
’B��!� satisfy the differential equation, the so-called
Wandzura-Wilczek approximation [4] [31]

 

d’B��!�
d!

� �
’B��!�
!

(39)

or, equivalently, the integral relation

 ’B��!� �
Z 1
!
d	

’B��	�
	

: (40)

Moreover, for vanishing light quark mass, one gets from
(34), for small !,

 ’B��!� �! ’B��!� � Constant �m2 � 0�: (41)

The relation (39) or (40) holds in QCD if one restricts to
the valence quark sector of Fock space [4,31]. It is reassur-
ing that this relation holds also in the BT quark model,
since it is obviously formulated in the valence quark ap-
proximation. For this relation to be satisfied one needs
nevertheless the dynamical light quark mass to vanish.
However, it will be interesting to grasp the significance
of the corrections due to a nonvanishing m2 and check its
numerical effect on ’B��!�, as we will do below.

C. Behavior of ’B��!� for nonvanishing light quark
mass

A specific trend of our results for the LCDA ’B��!� is
the important role played by the light quark mass m2, as
will show the numerical results of Sec. VIII. The light
quark mass has dramatic consequences, namely, that the
first derivative of ’B��!� and ’B��!� vanish, as we can see
by inspection of formulas (34) and (35):

 ’B
0

� �0� � 0 ’B��0� � 0: (42)

This is apparently at odds with the general belief, based on
QCDSR, that predicts the behavior (41) [2,6–8]. The
relation (40) is strongly violated in the presence of a
constituent light quark mass, since the l.h.s. of (40) van-
ishes: ’B��!� vanishes for !! 0, since the lower limit
(35) of the integral behaves like

 p0�!� �
m2

2

!
! 1 for !! 0: (43)

In the QCDSR approach one has an expression giving
the correction to the behavior (41) from the h �qqi conden-
sate, i.e. the first order correction due to the dynamical light
quark mass, the gap induced by dynamical chiral symmetry
breaking. This is the constituent mass involved in our
quark model calculation, proportional to the condensate.
The corrections at first order in h �qqi have been given by
Grozin and Neubert [2] that write, in a simplified notation,

 ’B��!� � ’B�0�� �!� � h �qqi~f�!�

’B��!� � ’B�0�� �!� � h �qqi~f�!�
(44)

where ’B��!� are LCDA at leading order, independent of
h �qqi, satisfying (39), and the function ~f�!� has the behav-
ior

 

~f�0� � ~f�1� � 0: (45)

Notice moreover that the correction dependent of h �qqi is
the same for ’B��!� and ’B��!�.

In our scheme, the first order correction in m2 to ’B��!�
and ’B��!� are also equal, but our calculations contain
higher orders in the constituent light quark mass, as we
observe from (31), (34), and (35), giving the much stronger
behavior (42).

D. Moments of ’B��!�

Defining the moments

 M�N�� �
Z 1

0
d!!N’B��!� M�N�� �

Z 1
0
d!!N’B��!�

(46)

one finds for m2 � 0 that M�0�� � M�0�� � 1, i.e. the nor-
malization condition (8). Moreover, one finds for any mo-
ment with N � 0, for vanishing light quark mass m2 � 0,

 M�N�� � �N � 1�M�N�� (47)

that holds obviously in the BT class of quark models since
it follows from the QCD relation (39). Of interest are the
moments M�1�� , M�1�� that are given in the valence sector of
QCD by [2]

 M�1�� � 2M�1�� �
4 ��

3
(48)

and should allow us to compute �� in the BT models.
The momentM��1�

� � ��1
B , satisfies, due to the positivity

condition in the absence of a radiative tail ’��!� � 0 [5],

 ��1
B � M��1�

� �
1

M�1��
�

3

4 ��
: (49)

VII. THE SHAPE FUNCTION S�!� IN THE BT
APPROACH

A. Definitions of the shape function

The shape function S�!� that enters in the description of
the decay B! Xs� [22,23] is defined by the expression

 S�!�
1

2
Tr
�

�
1� v6

2

�
�
h �B�pB�j �hv���!� iD��hvj �B�pB�i

2mB

(50)

where p� � p0 � pz and the support of S�!� is
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 �1<! � ��: (51)

One uses also another definition [24,25]

 Ŝ�!̂� � S� ��� !̂� (52)

with the support

 0 � !̂ <1: (53)

The functions S�!� or Ŝ�!̂� can also be computed in the
BT model.

B. Calculation of the shape function in the BT model

Since the field hv annihilates the b quark within the �B
meson, one can introduce a complete set of intermediate
states of the spectator quark jp2; s2ihp2; s2j in the preced-
ing expression
 

h �B�pB�j �hv�x���!� iD��hv�x�j �B�pB�i

�
X
p2;s2

h �B�pB�j �hv�x�jp2; s2i

� hp2; s2j��!� iD��hv�x�j �B�pB�i (54)

with

 

hp2;s2jhv�x�j �B�pB�i�ei�p2�pB�mbv�
xhp2;s2jhv�0�j �B�pB�i

hB�pB�j �hv�x�jp2;s2i�e�i�p2�pB�mbv�
xh �B�pB�j �hv�0�jp2;s2i:

(55)

We use now for the operator ��!� iD�� the following
representation

 ��!� iD�� �
1

2�

Z 1
�1

dsei�!�iD��s (56)

and make the identification in the quark model, that fol-
lows from the hypothesis (9)

 D� ! @� �
@
@x�

: (57)

One obtains, for any function f�x��

 es@�f�x�� �
X1
n�0

1

n!
�s@��nf�x�� � f�x� � s� (58)

from p 
 x � p�x� � p�x� � p? 
 x? with p� � p0 �
pz and @� �

@
@x� �

@
@x�

one finds

 es@�ei�p2�pB�mbv�
x � eif�p2�pB�mbv���x��s���p2�pB�mbv��x���p2�pB�mbv�?
x?g (59)

and therefore

 ��!� i@��e
i�p2�pB�mbv�
x � ��!� �p2 � pB �mbv���e

i�p2�pB�mbv�
x (60)

hence, in the quark model

 S�!�
1

2
Tr
�
�

1� v6
2

�
�
h �B�pB�j �hv�x���!� i@��hv�x�j �B�pB�i

2mB
�
h �B�pB�j �hv�x���!� �p2 � pB �mbv���hv�x�j �B�pB�i

2mB
:

(61)

In the �B rest fame mbv� � mb, pB � �mB; 0� and therefore, from �� � mB �mb one gets

 S�!�
1

2
Tr
�
�

1� v6
2

�
�
h �B�pB�j �hv�x����!� p2� �

���hv�x�j �B�pB�i
2mB

: (62)

One obtains for the shape function (52)

 Ŝ�!̂�
1

2
Tr
�
�

1� v6
2

�
�
h �B�pB�j �hv�x����!̂� p2��hv�x�jB�pB�i

2mB
: (63)

In these expressions p2� is the component p2� � p0
2 � p

z
2 of the spectator light quark.

Let us now compute explicitly this last expression in the BT model, proceeding along the same lines as we have done in
Sec. VI for the LCDA. One needs to compute the matrix element of the operator ���!̂� p2�� in the forward direction

 

h �B�P�j���!̂� p2��j �B�P�i �
Z dp2

�2��3
1

p0
2

�’�k2��
2��!� p2��

u0

�p0
1�

k0
1k

0
2

�k0
1 �m1��k

0
2 �m2�

1

16

� Tr���m1 � p6 1��1� u6 ��m2 � p6 2��1� u6 ��m1 � p6 1�� (64)

where ki are related to pi through the boost (16), Buki � pi. Changing the measure, and taking into account that now
p2� � p0

2 � p
z
2, one can write
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h �B�P�j���!̂� p2�j �B�P�i �
Z dp2�

p2�

dp2�

2�
�
�
p2� �

p2
? �m

2
2

p2�

�
dp?
�2��2

u0

�p0
1�

k0
1k

0
2

�k0
1 �m1��k

0
2 �m2�

� �’�k2��
2��!̂� p2��

1

16
Tr���m1 � p6 1��1� u6 ��m2 � p6 2��1� u6 ��m1 � p6 1��: (65)

Integrating relatively to p2� and p2�
 

h �B�Pj���!̂� p2��j �B�P�i �
1

16

1

2�

Z dp?
�2��2

1

!̂

�
�’�k2��

2 u0

�p0
1�

2

k0
1k

0
2

�k0
1 �m1��k0

2 �m2�

� Tr���m1 � p6 1��1� u6 ��m2 � p6 2��1� u6 ��m1 � p6 1��

�
p2��!̂;p2���p2

?
�m2

2�=!̂
: (66)

C. Heavy quark limit

In the heavy mass limit one has u! v1 ! v, k0
2 ! p2 
 v and M0 ! m1 ! mB and therefore, after some algebra,

 

h �B�Pj���!̂� p2��j �B�P�i �
1

8

1

2�

Z dp?
�2��2

1

!̂

�
�’�

������������������������������
�p2 
 v�

2 �m2
2

q
��2

1

v0

p2 
 v
p2 
 v�m2

� Tr���1� v6 ��m2 � p6 2��1� v6 ��
�
p2��!̂;p2���p2

?
�m2

2�=!̂
(67)

and from

 Tr ���1� v6 ��m2 � p6 2��1� v6 �� � 8�m2 � �p2 
 v��
1

2
Tr
�

�
1� v6

2

�
(68)

one gets finally

 h �B�Pj���!̂� p2��j �B�Pi �
1

2
Tr
�
�

1� v6
2

�
1

2�

Z dp?
�2��2

1

!̂

�
�’�

������������������������������
�p2 
 v�

2 �m2
2

q
��2

1

v0 �p2 
 v�
�
p2��!̂;p2���p2

?
�m2

2�=!̂
:

(69)

Let us identify with the definition (52). With the normal-
ization of the BT model (20) we have to identify the matrix
element (69) with

 

h �B�P�j���!̂� p2��j �B�P�i
2MB

�
1

2
Tr
�
�

1� v6
2

�
Ŝ�!̂�

2P0 :

(70)

Therefore one gets

 Ŝ�!̂� �
1

2

Z dp?
�2��2

1

!
f�p2 
 v�

� �’�
������������������������������
�p2 
 v�2 �m2

2

q
��2gp2��!̂;p2���p2

?
�m2

2�=!̂

(71)

and from

 p2 
 v �
p2
? �m

2
2 � !̂

2

2!̂
(72)

one obtains finally

 Ŝ�!̂� �
1

2

Z dp?
�2��2

p2
? �m

2
2 � !̂

2

2!̂

�

�
’
� ����������������������������������������������������������
�p2
? � !̂

2 �m2
2�

2 � 4!̂2m2
2

q
2!̂

��
2
: (73)

Again, similarly to the LCDA, one can obtain a more
compact form of Ŝ�!̂� by performing the change of vari-
ables

 k �

����������������������������������������������������������
�p2
? � !̂

2 �m2
2�

2 � 4!̂2m2
2

q
2!̂

(74)

and one obtains the simple final result for the shape func-
tion in the BT model

 Ŝ�!̂� �
1

4�2

Z 1
k0�!̂�

dkk�’�k��2 �0 � !̂ <1� (75)

with

 k0�!̂� �
j!̂�m2j�!̂�m2�

2!̂
(76)

that gives the value !̂max for which Ŝ�!̂� attains its maxi-
mum value Ŝmax � Ŝ�!̂max�,
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 !̂ max � m2 Ŝmax �
1

4�2

Z 1
0
dkk�’�k��2: (77)

For the other definition of the shape function S�!� (50)
one reads, from (52),

 S�!� �
1

4�2

Z 1

0�!�

dkk�’�k��2 (78)

with

 
0�!� �
j ���!�m2j�

���!�m2�

2� ���!�

��1<! � ���:

(79)

To check the normalization condition

 

Z 1
0
d!̂ Ŝ�!̂� � 1 (80)

we use (78) and exchange the order of the integrals over !̂
and k,

 !̂ > 0; k > k0�!̂� , k > 0;

!̂��k�< !̂ < !̂��k�
(81)

where

 !̂��k� �
�����������������
k2 �m2

2

q
� k: (82)

One obtains

 

Z 1
0
d!̂ Ŝ�!̂� �

1

4�2

Z 1
0
dkk�’�k��2

Z !̂��k�

!̂��k�
d!̂

�
1

2�2

Z 1
0
dkk2�’�k��2 � 1 (83)

from the normalization of the internal wave function (15).
From (52) and (83) it follows, for the function S�!�,

 

Z ��

�1
d!S�!� � 1: (84)

D. Gaussian wave function

In principle, one could calculate the wave function ’�k�
entering in ’B��!� (34) and S�!� (78) from the quark
potential. However, as argued in the Introduction, we
prefer here to adopt simply a Gaussian wave function,
that has been used elsewhere to obtain S�!� and to fit the
B! Xs� spectrum [20–22,26].

Let us compute the shape function S�!� using the har-
monic oscillator potential, with the internal wave function
at rest ’�k2� is given by

 ’HO�k2� � �2��3=2

�
R2

�

�
3=4

exp
�
�
R2k2

2

2

�
: (85)

We obtain

 S�!� �
R����
�
p exp

�
�

1

4

�� ���!�2 �m2
2�

2

R2� ���!�2

�
: (86)

With the notation

 R �
1

pF
	 �

m2
2

p2
F

x �
!
��

(87)

one gets
 

S�!� �
1����
�
p

1

pF
exp

�
�

1

4

�
pF
��

	
1� x

�
��

pF
�1� x�

�
2
�

�
x �

!
��

�
(88)

that is correctly normalized to 1.
We obtain therefore in the BT model with harmonic

oscillator potential the so-called ‘‘roman’’ shape function
[20–22,26].

VIII. PREDICTIONS FOR THE LCDA ’B��!�

A. Parameters of the roman shape function

Limosani and Nozaki [26] have made a recent fit to the
Belle B! Xs� data [32], in order to extract the b-quark
shape function parameters ��SF and �SF

1 (�SF
1 � ��

2
�) in a

number of models for the shape function, among them the
roman shape function. Writing (87) in their notation

 ! � k� F�k�� � S�!� (89)

 F�k�� � N

����
�
p exp

�
�

1

4

�
1



	

1� x
� 
�1� x�

�
2
�

(90)

with

 x �
k�
��SF


 �
��SF

pF
	 �

m2
2

p2
F

(91)

amounts to replace in (88) �� by ��SF of the shape function
renormalization scheme [33]. Of course, the BT quark
model is not field theory, and this scheme is too rough to
distinguish between �� and ��SF, that differ by QCD radia-
tive corrections. Therefore, we can make the replacement
of �� by ��SF in the formulas of the precedent section, and
this will be our final model for the shape function.

The first moments of F�k��

 An �
Z ��SF

�1
dk�kn�F�k�� (92)

are given in QCD by

 A0 � 1 A1 � 0 A2 � �
�SF

1

3
: (93)

Computing them explicitly using the shape function (90)
one obtains
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 An � N� ��SF�
n�1 
����

�
p e	=2

X
k

��1�k
n
k

� �

�

�
	


2

�
�k�1�=2

K�k�1�=2

�
	
2

�
(94)

and the conditions (93) yield respectively

 N �
1

��SF


 �
	����
�
p e	=2K1

�
	
2

�

�SF
1 � �3

�
2


2

�
1� 	

2

�
� 1

�
� ��SF�

2:

(95)

The best fit of Limosani and Nozaki [26] gives

 

�� SF � 0:66 GeV �SF
1 � �0:39 GeV2 (96)

that corresponds, using (95), to the values

 	 � 0:776 
 � 1:462 (97)

or, from (87) and (91), to the quark model parameters

 R �
1

pF
� 2:216 GeV�1 m2 � 0:398 GeV: (98)

On can also compute the value �k��max of k�, for which
F�k�� becomes maximum, Fmax � F��k��max�,

 �k��max �

�
1�

����
	
p




�
��SF Fmax � N


����
�
p (99)

or numerically,

 �k��max � 0:262 Fmax � 1:250 GeV�1: (100)

The other definition of the roman shape function Ŝ�!̂�
(52) has a very simple expression in the BT model

 Ŝ�!̂� �
R����
�
p exp

�
�
R2

4

�
m2

2

!̂
� !̂

�
2
�

(101)

that is identical to Ŝ�!̂�roman with
 

	 � R2m2
2

��SF �
R2m2

2����
�
p exp

�
R2m2

2

2

�
K1

�
R2m2

2

2

�

�SF
1 � �3

�
2

R2 �m
2
2 � �

��SF�
2

�
(102)

and

 !̂ max � 0:398 GeV Ŝmax � 1:250 GeV�1: (103)

B. Predictions for ’B��!�

Using the harmonic oscillator wave function (85), the
parameters (98) and expressions (31) or (34) we can pre-
dict the LCDA ’B��!�within the BT model.

In the limit of vanishing light quark mass m2 � 0, in
which the relation (39) between ’B��!� and ’B��!� holds,
one obtains simple analytic expressions in terms of the
error function ��x�

 ��x� �
2����
�
p

Z x

0
dte�t

2
: (104)

For the decay constant one gets

 fB
�������
mB
p

�
������
Nc

p 1

�3=4

����
R
2

s Z 1
0
d!!

�
1��

�
R!

2
���
2
p

��
(105)

and for the LCDA,
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�������
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�
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2
���
2
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���
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(106)

To illustrate numerical results, and give a feeling of the
dependence on the light quark mass, we chose two sets of
parameters:

(1) The realistic case of the parameters of the quark
wave function (98) R � 2:216 GeV�1 and m2 �
0:398 GeV. From these parameters fitted on the
B! Xs� spectrum we predict

 fB
�������
mB
p

� 0:388 GeV3=2 (107)

and the functions’B��!� and’B��!� that are plotted,
respectively, in Figs. 1 and 2. The heavy quark limit
value (107) gives, using the physical B mass, fB �
170 MeV, a little smaller than the popular values for
this quantity.

(2) For comparison we adopt the vanishing light quark
mass case, taking the same radius R �
2:216 GeV�1 but m2 � 0. We find fB

�������
mB
p

�

0:315 GeV3=2 and the functions ’B��!� and ’B��!�
that are also plotted in Figs. 1 and 2.

1 2 3 4

0.2

0.4

0.6

FIG. 1. The function ’B��!� for a Gaussian wave function for
the sets of parameters (98) obtained from the roman shape
function [26] �R;m2� � �2:216 GeV�1; 0:398 GeV� (higher
curve) and �R;m2� � �2:216 GeV�1; 0� (lower curve). For non-
vanishing m2 the first derivative vanishes at ! � 0.
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We observe that the nonvanishing light quark mass gives
’B��0� � 0 and ’B

0

� �0� � 0, while for vanishing light quark
mass one obtains ’B��0� � 0 and also ’B

0

� �0� � 0 like in
QCD sum rules. Since the vanishing ’B��0� � 0 for m2 �

0 is an unfamiliar feature, we plot in Fig. 3 the evolution of
’B��!� with increasing values ofm2 � 0, 0.1, 0.2, 0.3 GeV.

C. Moments of ’B��!�

Let us now compute the moments of ’B��!� using the
harmonic oscillator wave function (85) that gives the ro-
man shape function (90) and (91) with the parameters (98).
We obtain for the first moments M�1��

 M�1�BT
� � 2M�1�BT

� �
4 ��SF

3
� 0:964 GeV (108)

that gives ��SF � 0:723 GeV, in qualitative agreement at
the 10% level with the value (96) obtained from the fit to
B! Xs�, and for the moment M��1�BT

� , called also ��1
B

 ���1
B �

BT � M��1�BT
� � 1:521 GeV�1 (109)

IX. RADIATIVE CORRECTIONS

The importance of the radiative tail has been underlined
by Braun, Ivanov and Korchemsky [7]. When taking into
account one-loop QCD corrections, the moments for N �
0 of ’B��!� are divergent, as already pointed out by Grozin
and Neubert [2] and by Descotes-Genon and Sachrajda [6].

Braun et al. give a parametrization of ’B��!;�� based
on QCD sum rules plus the QCD behavior � 1

! log�!�� at
large !,
 

’B��!;�� �
4��1

B

�
!�

!2 ��2

�

�
�2

!2 ��2 �
2��B � 1�

�2 log
�
!
�

��
(110)

where the parameters ��1
B and �B are defined in terms of

the integrals
 

��1
B �

Z 1
0
d!

’B��!;��
!

�B��1
B � �

Z 1
0
d!

’B��!;��
!

log
�
!
�

� (111)

We realize that, due to the logarithm in the radiative tail,
the moments M�N�� for N � 0 are divergent.

As explained below in Sec. 10.11, the parametrization
(110) is a simplified and approximated form of a full QCD
sum rules calculation that includes radiative corrections.

A thorough study of the radiative corrections has been
done by Lee and Neubert [9]. The lowest positive moments
M�0�� and M�1�� are given as a power expansion in the
ultraviolet cutoff �UV

 M�0�� ��UV� � 1�
CF�s

4�

�
�2log2

�
�UV

�

�
� 2 log

�
�UV

�

�

�
�2

12

�
�

16 ��

3�UV

CF�s
4�

�
log

�
�UV

�

�
� 1

�
(112)
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� 8 log
�
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�
�

7

4
�
�2

12

��
: (113)

In the limit �s ! 0, one recovers M0 � 1 and M1 �
4 ��
3 .

Lee and Neubert define the radiative tail of the function
’B��!;�� by the prescription

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

1.75

FIG. 3. Evolution of ’B��!� with the constituent light quark
mass for R � 2:216 GeV�1 and m2 � 0, 0.1, 0.2, 0.3 GeV.
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FIG. 2. The function ’B��!� for a Gaussian wave function for
the sets of parameters obtained from the roman shape function
[26] �R;m2� � �2:216 GeV�1; 0:398 GeV� and �R;m2� �
�2:216 GeV�1; 0�. For nonvanishing m2 the function vanishes
at ! � 0.
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 ’RAD
� �!� �

�
dM0��UV;��

d�UV

�
�UV�!

(114)

that gives
 

’RAD
� �!� �
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��
1

2
� log

�
!
�

��

�
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3

1

!

�
2� log

�
!
�

���
: (115)

Notice that for large enough ! the radiative tail becomes
negative, and that at lowest order it agrees with (110).

To include the radiative tail is not without ambiguity. To
add it to our calculation of the long distance part of’B��!�,
we follow two different models, that have different con-
tinuity properties, but that lead to almost identical results:
first, a similar procedure to the one proposed by Lee et al.
[9], although different in its details; second, a procedure
close to the one followed by Braun et al. [7]. We now
expose both methods, and compare the results at the end.

A. Model to add the radiative tail following Lee et al.

Our first model for the function ’B��!�, including the
radiative corrections follows essentially the prescription of
[9]

 ’B��!� � N’BT
� �!� � 
�!�!t�’

RAD
� �!� (116)

where ’BT
� �!� is the function (31) or (34) with the har-

monic oscillator wave function (85) and the parameters of
the roman shape function (98).

Without loss of generality at leading order in �s, we take
the radiative tail ’RAD

� �!� as given by expression (115)
with �� replaced now by ��SF���, as determined from the fit
to B! Xs�
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� �!� �

CF�s
�!

��
1

2
� log

�
!
�

��

�
4 ��SF���

3

1

!

�
2� log

�
!
�

���
: (117)

The relation between ��SF��� � ��SF��;�� and �� is [25]

 

�� � ��SF��� �
CF�s

4�
4�: (118)

We choose from now on� � 1:5 GeV as an illustration,

 � � 1:5 GeV CF�s � 0:470: (119)

For this value of � one has, from B! Xs� and B!
Xu‘ ��‘ [9,33],

 

�� SF��� � �0:65� 0:06� GeV �� � 1:5 GeV�

(120)

that is in agreement with the determination (96) from [26].
The relation between !t, defined by the vanishing of the

radiative tail to ensure continuity, and ��SF��� is given by
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��
� 0: (121)

��SF��� becomes a function of !t and N is a parameter to
be determined by the matching with the QCD behavior
(112) and (113).

In terms of ��SF���, at the lowest order in �s one can
rewrite the moments (112) and (113)
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(123)

Notice that a new term proportional to �s appears in the
first moment M�1�� ��UV�.

Using the LCDA ’B��!� from the BT model (34) with
the harmonic oscillator wave function (85) and the parame-
ters (98) we then compute the moments in the model

 M�0�model
� ��UV� �

Z �UV

0
d!’B��!�

M�1�model
� ��UV� �

Z �UV

0
d!!’B��!�

(124)

and match with the OPE expressions (122) and (123).
Making the approximation, that will be discussed below,

 

Z �UV

0
d!’B��!� �

Z 1
0
d!’B��!� (125)

 

Z �UV

0
d!!’B��!� �

Z 1
0
d!!’B��!� (126)

the matching implies

 M�0�� ��UV� � NM�0�BT
� �M�0�� ��UV� �M

�0�
� �!t�

M�1�� ��UV� � NM�1�BT
� �M�1�� ��UV� �M

�1�
� �!t�

(127)

that gives, since M�0�BT
� � 1,

 N � M�0�� �!t� (128)
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 M�1�BT
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N
: (129)

Equation (128) gives N in terms of !t
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and Eq. (129) gives, expanding to first order in �s,
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: (131)

Using the result (108) of the model M�1�BT
� �

0:964 GeV, this equation gives another relation, besides
(121), relating !t and ��SF���.

From (121) and (131) we can solve for !t and ��SF���
for a given value of � and see if the value obtained for
��SF��� is consistent with the known value of ��SF��� (120)
from the fit to B! Xs�. Once !t and ��SF��� are known
one can compute N and �� from (118) and (130).

From (121) and (131) we obtain, for � � 1:5 GeV,

 !t � 3:288 GeV N � 0:974

��SF��� � 0:578 GeV �� � 0:354 GeV:
(132)

These values for ��SF��� and �� that come from the OPE
constraints are only about 10% lower from the values (120)
coming from the fit to B! Xs� and B! Xu‘ ��‘. We
conclude that the situation is good enough.

A different status from �� has the parameter ��1
B , that

enters in a number of processes that we examine blow. The
value that we obtain including the radiative corrections is

 ��1
B � 1:429 GeV�1 (133)

to be compared with the value (109) without the radiative
tail. The correction is small. We find, for the parameter �B
(111)

 �B � 1:207: (134)

The function (116) with its radiative tail is plotted in Fig. 4.

B. Model to add the radiative tail following Braun et al.

This model follows the regularization of Braun et al. as
illustrated by Eq. (110), but using the full radiative tail of
Lee et al. (115). We set

 ’B��!� � N’BT
� �!� � ’

RAD
� �!� (135)

where ’BT
� �!� is the same function (31) or (34) as in (116)

and we now regularize the radiative tail by making the
replacement 1

!!
!

!2��2 , i.e. we take
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(136)

The radiative tails (117) and (136) differ at low!. Now we
do not have to determine the gluing point!t. To impose the
OPE conditions we proceed as follows. We have two
conditions to fulfill

 Mmodel
0 ��UV� � MOPE

0 ��UV�

Mmodel
1 ��UV� � MOPE

1 ��UV�:
(137)

These conditions give, respectively
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(138)
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FIG. 4. The function ’B��!� in the BT approach with its
radiative tail adopting the SF renormalization scheme for � �
1:5 GeV. The two curves show the two ways of gluing the
radiative tail, following Lee et al. [9] (lower curve) or Braun
et al. [7] (upper curve).
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where M�1�BT
� � 0:964 GeV from (108).

We have to solve these two equations for N and ��SF in
terms of �UV and find in which region of �UV these
quantities become approximately constant. We find that
this is the case for the reasonable range �UV > 3 GeV,
giving

 N � 0:856 ��SF��� � 0:563 GeV

�� � 0:338 GeV
(140)

i.e. a situation very close to the first model for ��SF���.
Although the radiative tails are different, the final func-

tions are almost identical, as shown in Fig. 4. The reason is
that the positive part of the radiative tail in the latter model
is compensated by the lower value of N (140), imposed by
the OPE constraints.

In this second model we have, for the quantities of
interest,

 ��1
B � 1:432 GeV�1 �B � 1:219: (141)

These values are very close to the ones of the first model
(133) and (134).

We conclude that our results, due to the OPE constraints,
are invariant relatively to the way of adding the radiative
tail to the nonperturbative part.

X. PROPOSALS FOR LCDA IN OTHER
APPROACHES

The alternative theoretical method for the calculation of
the LCDA is essentially the one of QCD sum rules. Here
we will distinguish between the work that considers the
LCDA at leading order and the one incorporating the
radiative tail. Our aim is not a critical one, but only to
show the great variety of ansätze that one can find in the
literature for the functions ’B��!�, and the corresponding
varied results for the parameters �� and ��1

B .

A. LCDA at leading order

A word of caution is in order here. In this part, that
involves the LCDA at leading order, without radiative
corrections, �� is considered to be related to the center-
of-gravity of the function ’B��!�, i.e. to its first moment
through

 h!i� �
4 ��

3
: (142)

Actually, in the calculation of the present paper, this first

moment is assimilated to 4 ��SF

3 , since the parameters are
obtained from the fit of the roman shape function to B!
Xs�, that provides ��SF. This will make easier the compari-
son with the other approaches in the absence of radiative
corrections.

Before going to specific theoretical schemes, it is worth
to quote the bound found by Korchemsky, Pirjol, and Yan
[5], that is independent of the precise form of ’B��!�, and
follows from assuming positivity ’B��!�> 0

 ��1
B �

3

4 ��
: (143)

Of course, the positivity condition ’B��!�> 0 is violated
by the radiative tail, as we have seen in the preceding
section.

1. QCD Sum Rules

Grozin and Neubert did obtain from the QCDSR result
the simple form for the functions ’B��!� [2],

 ’B��!� �
!

!2
0

e�!=!0 ’B��!� �
1

!2
0

e�!=!0 (144)

that satisfy relation (39) and give, for the positive moments
(see also the analysis of Ref. [31]),

 h!i� � 2h!i� � 2!0 �
4 ��

3
(145)

and for the parameter ��1
B

 ��1
B �

1

!0
�

3

2 ��
: (146)

From the value �� � 0:55 GeV used in this paper one
gets

 ��1
B � 2:72 GeV�1: (147)

On the other hand, Braun et al. [7] have obtained from
QCDSR the following simple form for the normalized long
distance shape of the LCDA

 ’� �!� �
3

4"3
c
!�2"c �!�
�2"c �!� (148)
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where "c is the continuum threshold, and obtain

 h!i� � 2h!i� �
4 ��

3
��1
B �

3

2"c
�

9

8 ��
(149)

that gives, for "c � �0:9� 0:1� GeV [7]
 

�� � �0:67� 0:07� GeV

��1
B � �1:68� 0:18� GeV�1:

(150)

Also, within the QCDSR approach, Ball and Kou [8]
find the above relation and the numerical value, adopting
the value �� � 0:68 GeV [34,35]

 ��1
B �

9

8 ��
� 1:67 GeV�1: (151)

Both Refs. [7,8] find the same expression (148).
However, we must emphasize that in the work of Braun
et al. [7], formula (148) represents just the simplest con-
tribution to the QCD sum rules. The full result of [7] is
much more complicated, and the formula (110) represents
a simple parametrization of the full expression. In Ref. [7]
the long distance part and the radiative tail follow together
from the calculation, and the latter is not added by hand.

2. QCD factorization models

Within the QCD factorization approach of Beneke et al.
[3] for the calculation of charmless nonleptonic B decays
( �B! �K�, �B! ��; 
 
 
 ) the following range is adopted:

 ��1
B � �3:5� 1:5� GeV�1: (152)

This is a guess essentially based on the determination (146)
of [2], using �� � 0:4 GeV. The same range is adopted in
[6] for the description of the decay B� ! �‘ ��‘.

3. pQCD factorization models

A number of models have been proposed for the function
�B
���� defined in (3) within the framework of the pertur-

bative QCD factorization (pQCD factorization) approach,
needed in the description of nonleptonic charmless B
decays. Integrating over p? or equivalently taking impact
parameter b � 0, the following models were proposed
[35–37] for the function �B

���� defined by (3),

 �B
���� � NF��� exp

�
�

1

2

�
mB�
!B

�
2
�

(153)

with a range of values for !B in the interval

 0:25 � !B � 0:65 (154)

and different models for the function F���,

 F��� � �2�1� ��2; ��1� �� or
�������������������
��1� ��

p
(155)

with N determined by the normalization condition (4).
To compare with the present work we have to make the

change of variables (5) and take the limit mb ! 1 at !
fixed. Using relation (7) one finds the following models for
’B��!�,

 ’B��!� � NG�!� exp
�
�

1

2

�
!
!B

�
2
�

(156)

with

 G�!� � !2; ! or
����
!
p

(157)

and N determined by the normalization condition (8).
Just a few comments are in order to compare with the

present work. First, in the BT scheme with an harmonic
oscillator potential, ’B��!� is not proportional to a
Gaussian, but given by the function (106). Second, the
models (153)–(157) give generically low values for the
first positive moment and very large values for the first
inverse moment

 0:38 GeV � h!i� �
4 ��

3
� 0:48 GeV

2:66 GeV�1 � h!�1i� � ��1
B � 4:18:

(158)

4. Results in the BT quark model

The Bakamjian-Thomas quark model of the present
paper with harmonic oscillator wave function and parame-
ters taken from the fit to the B! Xs� spectrum using the
roman shape function yields

 h!i� � 2h!i� �
4 ��SF

3
� 0:964 GeV (159)

and

TABLE I. Results for the parameters �� and ��1
B in the different theoretical approaches for ’B��!� in the absence of the radiative tail.

Theoretical frame �� ��1
B

Positivity ’B��!� � 0 [5] � 3
4�

QCDSR [2] 0.55 GeV 3
2� � 2:72 GeV�1

QCD Factorization [3,6] �0:45 GeV 3
2� � �3:5� 1:5� GeV�1

QCDSR [7,8] �0:67� 0:07� GeV 9
8� � �1:7� 0:2� GeV�1

pQCD [35–37] �0:32� 0:04� GeV �3:42� 0:76� GeV�1

BT model with roman shape function parameters 0.49 GeV 1:52 GeV�1
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 ��1
B � h!

�1i� � 1:521 GeV�1 (160)

that satisfies the bound (142). The comparison between
��1
B and h!i�1

� is different than in the Lee et al. model
(144), since we find approximately

 h!�1i� �
3

4
h!i�1

� : (161)

��1
B is smaller than in the Lee-Neubert model due to the

effect of the dynamical light quark mass m2, that has a
large value from the fit with the roman shape function, and
depresses h!�1i� due to the behavior (42).

From the value for ��SF � 0:723 GeV from (159), not
inconsistent with (120) we obtain, for � � 1:5 GeV, from
(118) and (119):

 

�� � 0:49 GeV: (162)

We summarize the values obtained for the parameters ��
and ��1

B , guessed or used in other approaches, that we
compare with the results of the present paper (Fig. 1), in
Table I and in Fig. 5.

A remark is in order here in the comparison in Fig. 5
between ’B��!� from, e.g. the QCDSR result (144) and our
model. While in the former h!i� �

4 ��
3 with �� �

0:55 GeV, we have in our model (159), h!i� �
4 ��SF

3 with
��SF � 0:723 GeV, since it is ��SF that is determined by the
Shape Function. This explains why our ’B��!� is more
spread than (144).

B. LCDA with a radiative tail

Let us now discuss the impact of adding a radiative tail
to the LCDA in the various approaches. Braun et al. [7]
have proposed the parametrization (110) of ’B��!;�� for
� � 1 including the radiative tail. Lee and Neubert [9]

take as a model the long distance piece expression (144)
adding the tail (117) with ��SF��� replaced by ��DA��;��,

 ’B��!� � N
!

!2
0

e�!=!0 � 
�!�!t�’RAD
� �!�: (163)

The consistency of (163) with the first moments with the
OPE (112) and (113) imposes constraints on N and !0 that
only depend on !t and ��DA �

��DA��;�� [9]. For � � 1,
using the relations between ��DA��;��, ��SF��
; �
� and
�� one finds from ��SF��
; �
� � 0:65 GeV (120),
��DA��;�� � 0:52 GeV (� � 1 GeV), !t � 2:33 GeV,
N � 0:963, !0 � 0:438 and the results of Table II. On
the other hand, Lee et al. have shown that the model of
Braun et al. for ’B��!�, for � � 1 GeV is quite close to
their own.

We show in Fig. 6 and Table II the results of our models
for adding the radiative tail of sections IX A and IX B,
compared to the results of [7,9].

Some comments are in order here on the row of Ref. [7]
in Table II. The range for �� is the choice given in [7],
below formula (15). The value of ��1

B (1.5 GeV) is ob-
tained from ��1

B (1.0 GeV) (formula (39) of [7]) using
’��!;� � 1 GeV� [formulas (39), (43), and (44)] and the
scale dependence for ��1

B ��� given by (41).

TABLE II. Results for the parameters �� and ��1
B for � �

1:5 GeV in the QCDSR approach and in our models (1) and (2)
of Secs. IX A and IX B including the radiative tail.

Method �� �GeV� ��1
B �GeV�1�

Braun et al. [7] 0:4–0:5 1:98� 0:52
Lee-Neubert [9] 0.34 1:86� 0:17
BT model (1) 0.35 1.43
BT model (2) 0.34 1.43

1 2 3 4 5

0.2

0.4

0.6

FIG. 6. The function ’B��!� including the radiative tail for
� � 1:5 GeV. From higher to lower curves: model of the
present paper; Lee-Neubert model [9].

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

FIG. 5. Different models for the function ’B��!� in leading
order. From higher to lower curves: the heavy quark limit of the
three models of pQCD [35–37] (156) and (157), with !B � 0:4;
follows the models of QCDSR [2] (144) with �� � 0:49 GeV and
[7,8] (148); the wider curve is the model of the present paper
(31) with the harmonic oscillator wave function (85) and the
parameters (98), that give �� � 0:49 GeV.
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XI. PHENOMENA SENSITIVE TO THE LCDA

Let us now review the observables that are related to the
LCDA. In this respect there is essentially the work based
on QCD factorization and the one based on QCD sum
rules. We will briefly review:

(1) The decay B� ! �‘ ��‘.
(2) Hard scattering contribution to nonleptonic decay

amplitudes like A� �Bd ! ����� in the framework
of QCD factorization.

(3) Asymptotic behavior of the Isgur-Wise function
��w� and the subleading form factor �3�w�.

(4) Heavy-to-light form factors like B! � at q2 � 0.

A. The decay B� ! �‘ ��‘
This decay is described by two form factors FV�E�� and

FA�E�� that, at tree level, are related, in the heavy quark
limit, to the LCDA ’B��!� by

 FV�E�� � FA�E�� �
fBmBQu

2E�
h!�1i� �

fBmBQu

2E�

1

�B
(164)

This process is directly related to the parameter ��1
B and

would be the most direct way of measuring it. Conversely,
having a good theoretical estimate of ��1

B , the process
B� ! �‘ ��‘ allows us to measure jVubj.

A considerable effort has been devoted to the study of
this decay going beyond the tree result (164). Korchemsky
et al. [5] have computed the form factors for photon
energies larger than �QCD combining QCD methods for
exclusive processes with HQET. They have written the
leading twist form factors as the convolution of the B
meson light-cone amplitude ’B��!� with a hard-scattering
term, and computed also Sudakov contributions. In a later
paper, Braun et al. [7] have considered the radiative tail for
the LCDA ’B��!�, reviewed in Sec. IX and X. Descotes-
Genon and Sachrajda [6] have studied the decay B� !
�‘ ��‘ in the framework of QCD factorization, demonstrat-
ing that indeed at the one-loop order the amplitude can be
written as a convolution of a perturbatively calculable
hard-scattering amplitude with ’B��!�. For the parameter
�B, they use the guess of [3] �B � �350� 150� MeV.

The scheme of the present paper predicts a value ��1
B �

1:43 GeV�1 that is in the lower range given in the different
schemes of the literature, as reviewed in Sec. X. This
feature is due to the rather large value of the dynamical
mass of the constituent light quark.

It is important to underline that the decay B� ! �‘ ��‘ is
the only process that could allow, in principle, to directly
measure ��1

B , modulo radiative and 1=mQ corrections.
Recently, in a search for the decay B� ! �‘��‘, with

‘ � e or � BABAR has found the following upper bounds
[38], depending on the way of analyzing the data:

 ��1
B < 1:49 GeV�1 (165)

or

 ��1
B < 1:69 GeV�1: (166)

These bounds are fulfilled by our value (133) ��1
B �

1:43 GeV�1 while they seem at odds with the predictions
of other schemes (Tables I and II). The predictions of
Refs. [7,9] are within 1� or 2� in agreement with the
bounds (165) or (166).

B. Hard-scattering in nonleptonic two-body B decays

The correction to factorization to the decays with an
emitted light meson �B! D�;��; . . . , that comes from a
gluon attached to the spectator quark, called the hard-
scattering amplitude, depends directly on �B

���� or
’B��!� [3]. In the case of the decays to two light mesons,
it scales in terms of dimensionful quantities like
GF�smb�5=2

QCD, having the same behavior as the leading

term GFmb�5=2
QCD. In this case of decays of B to two light

mesons, this results in a contribution to the effective QCD
factors like a1 [3]

 a1;k �
C2

Nc

CF��s
Nc

HK� (167)

with

 HK� �
1

�B

fBf�
mBFB!�0 �0�

�h�1� x��1iKh�1� y�
�1i�

� r��hx
�1iKX

�
H� (168)

where r�� is the well-known chiral enhancement factor [3].
This contribution to nonleptonic decays is proportional to
��1
B . BBNS [3] propose the number �B � �350�

150� MeV, based on the relation to �� obtained in [2] and
the bound [5]. The range adopted by BBNS ��1

B � �3:5�
1:5� GeV�1 is larger than the prediction of the model of the
present paper, ��1

B � 1:43 or ��1
B � 1:52 with or without

the radiative tail. However, in the phenomenological analy-
sis of two-body nonleptonic decays, as we can see in
expression (168), ��1

B is affected by a subleading although
important term, chirally enhanced and proportional to the
unknown logarithmically divergent factor

R
1
0
dy

1�y��
p �y�,

where ��
p �y� � 1 is the twist-3 pion light-cone amplitude.

The second term in (168) is parametrized phenomenolog-
ically by X�H � �1� 	He

i’H � log�mB=�� (	H � 1), and
fitted to the data. The modulus of the ratio between the
two terms in (168) is roughly jr��X�Hj �

2m2
�

mb�mu�md�
j1�

	Hei’H j log�mB=��, of O�1�. This term results in a large
uncertainty on HK� (Fig. 5 of [3]), that for the real part is
0:5 � ReHK� � 2:5, with a somewhat smaller uncertainty
for the imaginary part. Therefore, strictly speaking, due to
this unknown term, that plays a non-negligible role in the
description of the data, two-body nonleptonic decays do
not allow us to make a model-independent extraction of the
parameter ��1

B . We can conclude that data on nonleptonic
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decays into two light mesons, although dependent on ��1
B ,

are not a model-independent determination of this quantity.

C. Asymptotic behavior of the functions ��w� and �3�w�

Grozin and Neubert [2] have given the behavior of the
elastic Isgur-Wise function ��cosh
� in the large recoil
limit w	 1 (
	 0),

 ��cosh
� � 16��s
CF
Nc

f2h!�2i�h!
�1i�e

�2
 (169)

where 2f � fM
�������
mQ
p . In our notation, this writes

 ��w� � �
CF�s
Nc
�fB

�������
mB
p

�2h!�2i�h!�1i�
1

w2 (170)

where

 h!�2i� �
Z 1

0

d!

!2 ’
B
��!� h!�1i� �

Z 1
0

d!
!
’B��!�

(171)

From the description of the behavior of the functions
’B��!� in the different limits in Secs. VI and X, one
realizes that these two integrals diverge for massless light
quarks. However, the nonvanishing light quark mass of the
BT model, implying the behavior (42), provides a natural
infrared cutoff.

Using expressions (31) or (34) for nonvanishing light
quark mass and the wave function (85) with the parameters
(98), one finds the finite results

 h!�2i� � 3:826 GeV�2 h!�1i� � 2:322 GeV�1:

(172)

This gives, for � � 1 (CF�s � 0:624), an order of magni-
tude ��w� � 1

w2 , smaller but of the same order of magni-
tude as with a function ��w� � � 2

w�1�
2 and a slope of the

order 	2 � 1.
A comment is in order here. Grozin and Neubert [2]

argue that the logarithmic singularities of h!�2i� and
h!�1i� would be cutoff by the transverse momenta and
virtualities of the light quarks in the mesons. In our
scheme, the transverse momenta do not play such a role,
since the divergence remains taking those into account, as
shown by the explicit expressions for ’B��!� in the mass-
less limit that can be read from (31) or (34). It is the
nonvanishing dynamical light quark mass, that one can
consider as a ‘‘virtuality’’ of the massless quark due to
the h �qqi condensate, that ensures the finiteness of the mo-
ments h!�2i� and h!�1i�.

The subleading function �3�w� [39], coming from 1=mQ

perturbations to the current, behaves [2] in the large recoil
limit 
	 0 like

 �3�cosh
� � 4��s
CF
Nc

f2h!�1i2�e
�
 (174)

or, in our notation,

 �3�w� �
�
2

CF�s
Nc
�fB

�������
mB
p

�2h!�1i2�
1

w
(175)

and from the value (133) or (141) for h!�1i� � ��1
B ,

 h!�1i� � 1:521 GeV�1 (176)

we find

 �3�w� � 0:174�
CF�s
Nc

1

w
GeV (177)

that gives

 �3�w� �
0:1
w
: (178)

D. B! � form factor at q2 � 0

From Eq. (23) of [1] one has up to terms in 1=�1� u�,

 FB!��;0 �0� �
��sCF
Nc

f�fB
m2
b

Z 1

0
d�du�B

�������u�

�
1

��1� u�2
(179)

i.e.,

 FB!��;0 �0� �
��sCF
Nc

f�fB
mb

Z 1
0

d!
!
’��!�

�
Z 1

0

du

�1� u�2
���u�: (180)

However, this expression is not usable due to the
infrared divergence of the integral over u, since ���u� �
6u�1� u�.

One way out of this problem is the use of the light-cone
QCD sum rules approach by Khodjamirian et al. [4], that
provides a simple and explicit expression for the heavy-to-
light form factors in terms of LCDA. Taking as an example
the form factor FB!�� �0� one has,

 FB!�� �0� �
fB

f�mB

Z s�0

0
ds exp

�
�

s

M2

�
’B�

�
s
mB

�
: (181)

An approximation to this expression has been used in the
first reference of [4],

 

Z s�0

0
ds exp

�
�

s

M2

�
’B�

�
s
mB

�
� ’B��0�

Z s�0

0
ds exp

�
�

s

M2

�
(182)

that gives, from the integral relation (40), valid only for
vanishing light quark mass,

 FB!�� �0� �
1

�B

fB
f�mB

M2

�
1� exp

�
�
s�0
M2

��
: (183)

Some remarks are in order here:
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(1) If ’B��!� and ’B��!� are related by (40), the nu-
merical results for FB!�� �0� from (181) and (183)
are very close.

(2) As pointed out in [4] and we observe from (183), for
a given window of the Borel parameter M2 and a
value of s�0 ,

 0:5 GeV2 � M2 � 1:2 GeV2 s�0 � 0:7 GeV2:

(184)

FB!�� �0� is very sensitive to the precise value of
��1
B . The value adopted in [4] is ��1

B � 2 GeV�1.
(3) The differential relation (40) between ’B��!� and

’B��!� is only valid for m2 � 0, and is badly vio-
lated in the BT model examined here, where the
value ofm2 extracted from the B! Xs� spectrum is
rather large.

(4) A nonvanishing dynamical light quark mass m2 has
a dramatic impact since then ’B��0� � 0. We are not
allowed then to use (183) but must rely on the
relation (181). Using this expression and the pa-
rameters (184) one obtains a very small value for
FB!�� �0� � 0:015, the reason being that ’B��!� van-
ishes at! � 0. One would need a much larger value
of s�0 to get an appreciable contribution of ’B��!� to
the integral (181). Our conclusion is that with our
prediction for ’B��!� (Fig. 2), relation (181) and the
set of parameters (184), one cannot describe the
form factor FB!�� . This feature deserves further
investigation.

XII. CONCLUSIONS

In conclusion, within the Bakamjian-Thomas relativistic
quark model, that in the heavy quark limit yields covariant

form factors and Isgur-Wise scaling, we have computed the
Bmeson light cone distribution amplitudes ’B��!�, that are
also covariant in this scheme, and satisfy, in the limit of
vanishing dynamical light quark mass, the integral relation
given by QCD in the valence quark-antiquark sector. We
have also computed the shape function S�!� that enters in
the description of the decay B! Xs�. The light cone
distribution amplitudes and the shape function are related
in the BT class of models and given in terms of the Q �q
internal wave function. Using a Gaussian wave function,
we have shown that the shape function is identical to the
so-called roman shape function. Using the parameters of
the latter that fit the B! Xs� spectrum, we have predicted
the LCDA ’B��!�. We have discussed the role played by
the dynamical mass of the light constituent quark and
included the short distance behavior of QCD for ’B��!�.
Compared to most schemes in the literature, our model
predicts a rather small value for the parameter ��1

B �
1:43 GeV�1, due to the rather large value of the constituent
light quark mass, fitted from the B! Xs� spectrum. This
value for ��1

B fulfills the upper bounds obtained by BABAR
from the search of B� ! �‘��‘. Moreover, the nonvan-
ishing constituent light quark mass has the important im-
plication ’B��0� � 0. We have compared with other
theoretical approaches and discussed the phenomena that
are sensitive to the LCDA.
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