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A quasiparticle model of the quark-gluon plasma is compared with lattice QCD data for purely
imaginary chemical potential. Net quark number density, susceptibility as well as the deconfinement
border line in the phase diagram of strongly interacting matter are investigated. In addition, the impact of
baryochemical potential dependent quasiparticle masses is discussed. This accomplishes a direct test of
the model for nonzero baryon density. The found results are compared with lattice QCD data for real
chemical potential by means of analytic continuation and with a different (independent) set of lattice QCD
data at zero chemical potential.
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I. INTRODUCTION

Strongly interacting matter, as described by QCD, ex-
hibits an astonishingly rich phase structure. In the region of
not too large baryon densities, the deconfinement transition
from hadronic matter to a plasma built of quark-gluon
constituents is the most prominent feature. It is signaled
by a rapid change in the expectation value of the Polyakov
loop and the chiral condensate where one assigns a pseu-
docritical temperature Tc to this transition (cf. reviews, e.g.
[1]). At higher temperatures, T > 3Tc, further structural
changes are conjectured [2]. For nonzero quark chemical
potential �, corresponding to a finite net baryon density,
many researchers argue on the change of the deconfine-
ment border line, representing an analytic crossover, into a
first-order transition curve. The onset of this sequence of
first-order transitions is marked by a critical point being of
second order which has attracted much attention recently
(see [3]). The interest in this part of the phase diagram is
triggered by the possibility to probe it under laboratory
conditions in relativistic heavy-ion collisions.

With the advance of precision data from ultrarelativistic
heavy-ion collisions at RHIC, the paradigm on the quark-
gluon plasma has changed [4]: The notion of a strongly
coupled plasma has been put forward to explain the seem-
ingly very small viscosity to entropy ratio deduced from
hydrodynamical fits to experimental data as in [5], and
various models have been developed [6] to account for
such a property. On the other hand, we are witnessing a vast
progress in first-principle calculations of thermodynamic
properties of hot strongly interacting matter based directly
on QCD [7–9]. While various observables such as pres-
sure, energy density or numerous susceptibilities are ad-
dressed, the available lattice QCD data are obtained for
different numerical setups, lattice sizes, flavor numbers and
quark masses as well. Particular attempts are needed to
access nonzero baryon densities because the notorious sign
problem of the fermion determinant prevents a direct ap-
plication of methods useful for zero baryon density.
Nevertheless, a few methods have been developed to ac-

cess nonzero baryon densities. Among such methods is the
calculation of thermodynamic quantities at purely imagi-
nary chemical potential. Here, the sign problem is avoided
but the results have to be analytically continued to real
chemical potential. In this respect it is useful to have a
model at our disposal which is successfully probed for both
real and imaginary chemical potential in order to accom-
plish the translation of results from imaginary to real
chemical potential.

While baryon density effects are small for heavy-ion
collisions at top-RHIC energies and will be even smaller
for LHC energies, at least in the midrapidity region, they
are sizeable for CERN-SPS and upcoming FAIR energies.
In this respect, a firm knowledge of thermodynamic bulk
properties of strongly interacting matter is highly desir-
able. As a step towards achieving this goal we are going to
extend our quasiparticle model [10–13] to imaginary
chemical potential. Here, information is obtained for�2 <
0 allowing, in principle, for identifying � � �i�i. The
model has been tested successfully for real chemical po-
tential [14], say in describing the Taylor expansion coef-
ficients of the pressure as a series in powers of �=T. In
such a way, Peshier’s flow equation [11] is tested in some
detail. This flow equation transports information about the
effective coupling, G2, from the temperature axis to non-
zero � and determines to a large extent the dependence on
� and thus on baryon density. Another important piece of
the model is the quasiparticle ansatz for dynamically gen-
erated effective masses of quarks / �T2 � �2

�2�G2. When
going to purely imaginary chemical potential �! �i�
the sign of the �2 term is flipped, as also signs in Peshier’s
flow equation are changed. Therefore, the� dependence of
the model is directly tested by considering an imaginary
chemical potential.

In the following, two symmetries of the QCD partition
function Z�T;�� are of relevance: (i) Z�T;�� � Z�T;���,
and (ii) Z�T; i�i� � Z�T; i��i �

2�
3 T��, i.e. Z�T;�� is pe-

riodic in �i with period 2�T=3 [15]. Symmetry (i) makes
Z an even function of � (meaning that in a Taylor series
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expansion only even powers of �=T, and thus also of
�i=T, are encountered) such that we can focus on � �
�i�i only, while (ii) implies the Roberge-Weiss periodic-
ity [15] which is anchored in the center symmetry. This
periodicity is characterized by lines of first-order transi-
tions (Z3 transitions) at �i �

�
3 T�1� 2k� for all integers k

and sufficiently high temperature T while for smaller tem-
peratures the behavior of thermodynamic quantities is
analytic. The endpoint of first-order transitions, TE, is
determined by the crossing of the Roberge-Weiss transition
line with the chiral critical line which is also a first-order
transition line for Nf � 4 degenerate quark flavors [16].
The Roberge-Weiss periodicity implies that in the T �
�i=T plane all sectors between �i=T �

2�
3 k and �i=T �

2�
3 �k� 1� are copies of the sector between �i=T � 0 and
�i=T �

2�
3 . Furthermore, the subsector between �i=T �

�=3 and �i=T � 2�=3 is an reflected copy of the sub-
sector between�i=T � 0 and�i=T � �=3 mirrored at the
first Roberge-Weiss transition line. As thermodynamic
quantities behave nonanalytically at �i=T � �=3
(Roberge-Weiss transition), an analytic continuation of
results obtained for imaginary chemical potential to real
� has direct access to the region �<�=3T only.

Because of the severe approximations made when link-
ing our phenomenological model [10,11,13] to QCD as
presented in [12], the Roberge-Weiss periodicity is not
longer apparent. Having this in mind, we translate the
model to imaginary chemical potential in Sec. II. The
comparison with lattice QCD data at imaginary chemical
potential is performed in Sec. III, where also the continu-
ation to real chemical potential is presented. This allows, in
addition, for a comparison with another and independent
set of lattice QCD data obtained at � � 0 (Sec. IV).
Furthermore, we investigate in detail the impact of the
baryochemical potential dependence of the quasiquark
and quasigluon masses (self-energies) on the found results
and discuss the deconfinement border line in the phase
diagram of strongly interacting matter. Our results are
summarized in Sec. V. Appendices A and B contain
Peshier’s flow equation for imaginary chemical potential
and a discussion about the parametrization of the � de-
pendence of the density.

II. QUASIPARTICLE MODEL AT IMAGINARY
CHEMICAL POTENTIAL

The employed model is constructed by assuming a
quasiparticle picture for the QCD pressure or quark num-
ber density (the explicit expression for the pressure is
relegated to Appendix A) using dynamically generated
effective masses for the quasiquarks and quasigluons.
The entering QCD running coupling is replaced by an
effective coupling G2�T;�� which is subject to Peshier’s
flow equation [11] resting on a thermodynamic self-
consistency condition and the stationarity of the grand
canonical potential � � �pV � �T lnZ, where p de-

notes the pressure and V the volume of the system.
Straightforward replacement of � � i�i in p�T;�� ren-
ders the net quark number density, n�T; i�i� �
�i@p�T; i�i�=@�i, related to the net baryon density nB �
1
3n, to

 n�T; i�i� �
dq

2�2

Z 1
0
dkk2

�
1

e�!q�i�i�=T � 1

�
1

e�!q�i�i�=T � 1

�
(1)

 � i
dq
�2

Z 1
0
dkk2

�
e!q=T sin��i=T�

e2!q=T � 2e!q=T cos��i=T� � 1

�
; (2)

where dq � 2NcNf is the degeneracy factor of quarks for
Nc � 3 colors and Nf quark flavors. The found result for n
is purely imaginary and positive (negative) for small posi-
tive (negative) �i, i.e. n is an odd function in �i.
Furthermore, for small �i=T, i.e. for small �i or large T,
the �i dependence of the net quark number density is to a
good approximation linear in �i.

The quark dispersion relation !q�k� employed in
Eqs. (1) and (2) reads

 !2
q � k2 �M2

1 (3)

with asymptotic mass M2
1 � m2

q � 2M2
� using

 M2
� �

N2
c � 1

16Nc

�
T2 �

�2
i

�2

�
G2�T; i�i� (4)

as plasma frequency. This dispersion relation is based on a
calculation of one-loop self-energies with finite quark
masses mq in Feynman gauge in the asymptotic limit
[17] for small mq=T, where mq may be temperature de-
pendent as well in order to allow for a direct comparison
with lattice QCD data. In the following, we will fix the
quark mass parameter mq � 0:2T in line with the lattice
QCD simulations considered in Secs. III and IV. (A differ-
ent approximation of M1 is discussed in Sec. III C.)
Equations (1) and (2) highlight the quasiparticle character
of the model: the baryon charge is carried by excitations
with dispersion relation given by Eq. (3). The dependence
ofM1 on the chemical potential (cf. [18]) will be discussed
in Sec. III D.

Peshier’s flow equation [11] for imaginary chemical
potential reads

 b � aT
@G2

@T
� a�i

@G2

@�i
; (5)

where the coefficients b, aT and a�i
depending on T, �i

and G2�T; i�i� are relegated to Appendix A. Transforming
Eq. (5) to a system of three coupled ordinary differential
equations, it can be solved by the methods of character-
istics knowing, for instance, G2�T;� � 0�. A convenient
parametrization of G2�T;� � 0� is [11]
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 G2�T � Tc;� � 0� �
16�2

�0 log�2 ; (6)

making some contact to perturbative QCD at very large
temperatures, while in this paper we focus on the region
T � Tc. Here, �0 �

1
3 �11Nc � 2Nf� and � is parametrized

phenomenologically as � � ��T � Ts�=Tc, where the
model parameters are a scale parameter � necessary for
the correct description of thermodynamics at large tem-
peratures and a phenomenological infrared regulator Ts

shifting the infrared divergence to T � Ts � Tc=� < Tc
for appropriate parameter values.

Results obtained for �2 < 0 need to be analytically
continued into the �2 > 0 half-plane in order to achieve
physical results. An effective analytic continuation re-
quires a positive second derivative of Z with respect to
�, cf. [19,20], i.e. the quark number susceptibility
��T;�� � @n�T;��=@� > 0. The result for � reads for
imaginary chemical potential

 ��T; i�i� �
dq

2�2T

Z 1
0
dkk2 �2e

3!q=T cos��i=T� � 4e2!q=T � 2e!q=T cos��i=T��

�e2!q=T � 2e!q=T cos��i=T� � 1�2
�

dq
2�2T

Z 1
0
dk

k2

!q

�
�e3!q=T sin��i=T� � e!q=T sin��i=T��

�e2!q=T � 2e!q=T cos��i=T� � 1�2
�
N2
c � 1

8Nc

�
2

�2 �iG
2 �

�
T2 �

�2
i

�2

�
@G2

@�i

�
; (7)

it is purely real and symmetric under �i ! ��i
(cf. Appendix A). Furthermore, for small �i, the first
term in Eq. (7) is positive and dominates the second
term. At � � 0, one finds

 ��T;� � 0� �
dq
�2T

Z 1
0
dkk2 e ~!q=T

e2 ~!q=T � 2e ~!q=T � 1
> 0;

(8)

where ~!q � !q�T;� � 0�.

III. COMPARISON WITH LATTICE QCD RESULTS
FOR IMAGINARY MU

A. Baryon density and quark number susceptibility

We confront now the above introduced quasiparticle
model (QPM) with lattice QCD data [19,21] at nonzero
T and �i obtained for Nf � 4 degenerate quark flavors
with mq � 0:2T; these calculations [19,21] are performed
on a lattice with temporal and spatial extensions N� � 4
and N� � 16. In some simulations with imaginary chemi-
cal potential �i < 0 is considered [22] implying a negative
imaginary part of the net quark number density n�T; i�i�
according to Eq. (2). In the following, however, we will
consider �i > 0 which renders the sign of n�T; i�i� and
accordingly the behavior of � � @n=@�i�i�. Our model is
formulated for a system infinite in space and time. Thus,
we need a proper extrapolation of the lattice QCD data to
the continuum limit (N� ! 1 at fixed temperature).
Different estimates for a continuum extrapolation are con-
ceivable. For instance, one may select a scaling factor
strictly valid only for asymptotically high temperatures,
or one may use as scaling factor the ratio of thermody-
namic quantities for a massless, noninteracting gas of
quarks and gluons known in the continuum limit and
from lattice QCD for finite N�. Even though such estimates
for a correction factor could depend on T, in general, we
apply the latter procedure, assuming that the continuum

extrapolations for QCD and for the noninteracting gas of
quarks and gluons are similar (cf. discussion in [23] for
pure SU�3� theory). In principle, however, a profound
extrapolation to the continuum limit should be based on
simulations with different size lattices as leading correc-
tions to the continuum limit are of the order O�N�2

� � [1,23].
Taking the Stefan-Boltzmann result of nB=T3 for N� � 4
[19], we find as educated guess for the needed continuum
extrapolation factor of the net quark number density d�n�lat �
0:456. This compares well with continuum extrapolation
factors reported in [24–26], reading 0.446 and 0.46, re-
spectively, where similar actions have been used in the
lattice simulations.

In Fig. 1, we compare our model with the continuum
estimate of the lattice QCD data [19,21] for the scaled net
quark number density as a function of�i=Tc at constant T.
Because n � 3nB as a function of imaginary chemical
potential is found to be purely imaginary, both in Eq. (2)
and in the lattice calculations, we exhibit its imaginary part
in the following. We adjust the QPM parameters of the
effective coupling G2�T;� � 0� in Eq. (6) in order to
perfectly describe n=T3 at T � 1:1Tc reading Ts �
0:96Tc and � � 56 which shifts the divergence of
G2�T;� � 0� to approximately T � 0:98Tc. We utilize
Tc � 163 MeV as given in [16] for the case at hand.
Note that we consider only temperatures T � Tc. The
continuum extrapolated lattice QCD data, in particular,
the pronounced bending of n=T3 for T � 1:1Tc, are im-
pressively well described by the QPM parametrization.
The drastic change in the slope for T � 1:1Tc signals the
onset of the Roberge-Weiss transition at �c=Tc �
11�=30, where n should exhibit a discontinuity. In the
QPM, this change in slope is driven by the dependence
of the quasiparticle asymptotic mass M1 on chemical
potential and, in particular, by the behavior of G2 with
respect to�i as dictated by Peshier’s flow equation Eq. (5).
On the other hand, as evident from Eq. (2) n=T3 exhibits a
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linear dependence on �i for larger temperatures and small
�i. We note that n=T3 exhibited as a function of �i=T
shows almost no dependence on T for temperatures T �
1:5Tc. Below Tc, however, n=T3 displays a qualitatively
different behavior being continuous and periodic as a
function of �i=T [19]. We choose the lattice QCD data
at T � 1:1Tc for adjusting the QPM parameters as the
pronounced bending close to �c=Tc represents the most
sensitive test of our model. In fact, the description of the
linear behavior of n=T3 for all temperatures is rather robust
under slight variations of the parameters, whereas the onset
of the pronounced structure at T � 1:1Tc decisively de-
pends on the parameter values. Therefore, a minimal �2-fit
to all available lattice QCD data is rather equivalent to a
perfect fit to the data at 1:1Tc.

Within the QPM, results obtained by considering purely
imaginary chemical potential can easily be analytically
continued to real �. This is achieved by continuing the
purely imaginary variable � � i�i to the entire complex
plane and finally taking the limit Im �! 0. In this way,
we recover the quasiparticle model [10–12] formulated for
real �. Within the analyticity domain, i.e. for �<�c�T�,
the analytic continuation is unique as guaranteed by gen-
eral arguments. Keeping the QPM parameters � and Ts
fixed, the results of n=T3 for real �=Tc are exhibited in
Fig. 2 (solid curves). These results may be compared to
other analytic continuations. For instance, in [19], a poly-
nomial fit to n=T3 as well as its analytic continuation to
real�=T (dashed curves in Fig. 2) was considered. Despite
the fact that this polynomial fit n�T;�i; mq� �

a�T;mq��i � b�T;mq��
3
i for imaginary chemical poten-

tial, with analytic continuation n�T;�;mq� �

a�T;mq��� b�T;mq��3, cannot account for the change

in slope observed for T � 1:1Tc at large �i=Tc, its coef-
ficients a and b are temperature and quark mass dependent.
In contrast, the QPM parameters � and Ts are once ad-
justed to n=T3 at T � 1:1Tc (cf. Fig. 1) and then kept fixed
for all temperatures and chemical potentials. In addition,
the behavior of analytic continuations of polynomial fits
decisively depends on the considered order in �2

i (cf.
discussion in [9,27]). The QPM, in contrast, contains all
orders of �2

i respecting the symmetry lnZ��� � lnZ����.
As evident from Fig. 2, we point out that close to �c�T� a
sensible analytic continuation is needed.

In Fig. 3, the net baryon density nB=T3 is exhibited as a
function of T=Tc for constant imaginary (solid curves) as
well as for real baryochemical potential �B � 3� (dashed
curves). As for small baryochemical potentials or large
temperatures nB depends linearly on � [cf. Eq. (2)]; the
results for real �B significantly deviate from the original
results for imaginary chemical potential only at large �B
and temperatures close to Tc. Note that in these consider-
ations �B is restricted to j�Bj 	 �T.

Susceptibilities are quantities serving as measures of
fluctuations. The quark number susceptibility �
[cf. Eqs. (7) and (8)] is simply the derivative of the density
in �i direction. We exhibit �=T2 either at � � 0 for
various temperatures (Fig. 4, left panel) or for T � 1:1Tc
for various values of �i (Fig. 4, right panel). Clearly, if
lattice QCD data for n�T; i�i� are well described by a
model, the model should also describe ��T; i�i�. This is
indeed the case, see Fig. 4, where both lattice QCD data as
well as QPM results, are obtained by numerical differen-
tiation of the net quark number density. The only concern
that could arise is that derivatives enhance possible system-
atic differences between a model and the data. Figure 4
does not point to such a possibility.

0 0.5 1 1.5
µ / T

0

0.5

1

1.5

2

2.5

3

3.5

4

n 
/ T

3

c

FIG. 2 (color online). Continuation of the QPM results for
n=T3 exhibited in Fig. 1 to real chemical potential �=Tc (solid
curves) for T � 1:1, 1.5, 2.5, 3.5 Tc (from top to bottom). For
comparison, we also show the analytically continued results
(dashed curves) of the polynomial fit from [19] to n=T3 for
imaginary chemical potential.

0 0.5 1 1.5
µ  / T
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3
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FIG. 1 (color online). Comparison of the QPM (solid curves)
for the scaled net quark number density n=T3 as a function of
�i=Tc with continuum estimates of the lattice QCD data [19,21]
for temperatures T � 1:1, 1.5, 2.5, 3.5 Tc (diamonds, circles,
squares, and triangles, respectively). The fat cross depicts the
Roberge-Weiss critical chemical potential �c=T � �=3 for T �
1:1Tc, where we stopped our calculations.
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B. Deconfinement border line

The solution of Peshier’s flow equation Eq. (5) is ac-
complished by the method of characteristics. As in [11], we
consider the characteristic curve emerging at T � Tc and
� � 0 as an indicator of the pseudocritical line. This
transition line has been calculated in lattice simulations
[16] for imaginary chemical potential. The lattice QCD
data have been analyzed by applying polynomial fits which
were analytically continued to real � [16]. The results of
such analytic continuations decisively depend on the
chosen degree of the considered polynomial or ratios
thereof, as discussed in [9,27].

In Fig. 5, the phase diagram is exhibited in specific
coordinate systems. Negative values �2

B 	 0 indicate

purely imaginary baryochemical potential, whereas posi-
tive �2

B � 0 indicate real �B. Diamonds represent the
polynomial fit [16] for both imaginary chemical potential
and the corresponding analytically continued results. For
comparison, we depict the QPM characteristic (solid)
curve starting at T � Tc as solution of Peshier’s flow
equation Eq. (5) for imaginary chemical potential as well
as for real�B. The flatness of the curve in the exhibited�2

B
interval (left panel) signals the dominance of the �2

B term
in agreement with the polynomial fit findings in [16]. Note,
however, that the QPM result contains all orders of�2

B. We
emphasize that our model parameters � and Ts are adjusted
to n�T; i�i� at T � 1:1Tc and have proven above to de-
scribe at the same time n�T; i�i� at T � 1:5; 2:5; 3:5Tc. In
so far, the agreement of our characteristic curve emerging
at Tc with the transition line in [16] is quite satisfying.

In Fig. 5 we also show the first two Roberge-Weiss
transition lines (fat dashed curves characterized by [15]
�2
B=T

2
c � �T2=T2

c�2�2k� 1�2 for k � 1; 2) at which ther-
modynamic quantities exhibit an analytic behavior at small
temperatures, while the Roberge-Weiss transition repre-
sents a first-order phase transition (fat solid section) at
sufficiently large T. In addition, the first Z3 center symme-
try line is shown (dotted curve characterized by [15]
�2
B=T

2
c � �T2=T2

c�2�2k�2 for k � 1). The repeated copies
of these sectors for k � 2 are not displayed in Fig. 5; they
reside in the left bottom edge.

Numerically, we find that the characteristic curve
emerging at T � Tc and the first Roberge-Weiss transition
line cross each other at TE=Tc � 1:112 and ��E

B�
2=T2

c �
�12:214, whereas the lattice QCD simulations [16,19]
report TE=Tc � 1:095 and ��E

B�
2=T2

c � �11:834. These
tiny differences can hardly be resolved on the scale dis-
played in Fig. 5. For larger negative �2

B the characteristic
curve is mirrored at the Roberge-Weiss transition line (see

1 2 3
T/T

0

1

2

3

4

χ 
/ T

2

c

0 0.2 0.4 0.6 0.8 1
µ  / T

0
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1

1.5

2

2.5

3

3.5

4

χ 
/ Τ

i

2

c

FIG. 4 (color online). Left: comparison of the QPM (solid curve) for the scaled quark number susceptibility �=T2 as a function of
T=Tc for � � 0 with the continuum estimate of the lattice QCD data in [19] (circles). Right: comparison of the QPM (solid curve) for
�=T2 as a function of �i=Tc 	 1 for T � 1:1Tc with the continuum estimate of the lattice QCD data in [21].

1 1.2 1.4 1.6 1.8 2
T/T

0

0.2

0.4

0.6
n 

  /
 T

B
3

c

|µ   / T  | =B c

1.8

1.2

0.6

FIG. 3 (color online). Scaled net baryon density nB=T
3 as a

function of T=Tc for constant imaginary �B=Tc � 3i�i=Tc
(solid curves) and for corresponding real �B=Tc (dashed curves).
Note that for all temperatures, @n=@T > 0 is fulfilled, as required
from thermodynamic stability conditions.
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the section in the left top edge below the first Roberge-
Weiss transition line in Fig. 5).

In the right panel of Fig. 5, we exhibit the phase diagram
with the same notions as in the left panel, but with a linear
abscissa �B=Tc; negative values of �B=Tc are to be as-
signed to purely imaginary chemical potential, while posi-
tive values correspond to purely real values of �B. As the
coefficients in Peshier‘s flow equation Eq. (5) for real
chemical potential obey aT ! 0 for �! 0 and a� ! 0
for T ! 0, the characteristic curves, including the one
crossing the T axis at Tc, approach the T � 0 and �B �
0 axes perpendicularly. Deviations between QPM results
for real�B and the polynomial fit become visible for�B �
330 MeV. In addition, we exhibit the solution of Peshier’s
flow equation starting at Tc for a different set of QPM
parameters (cf. Sec. IVA) by the dashed line. For imagi-
nary chemical potential, both results are indistinguishable,
whereas for real � deviations become visible for�B=Tc �
2 signaling again that small deviations in the imaginary
chemical potential sector result in larger deviations in the
sector of real �. This makes predictions about the onset of
possible deconfinement effects at small T and real �
difficult.

C. Quark mass dependence

In this subsection, we study the influence of a different
approximation of the quark dispersion relation on the QPM
results. In particular, we concentrate on the characteristic
curve emerging at T � Tc. Apart from Eq. (3), another
conceivable approximation of the quark dispersion relation
is given by

 !2
q � k2 �m2

q � 2mqM� � 2M2
� (9)

as for instance employed and successfully compared with
lattice QCD data in [11,28] with M2

� from Eq. (4). This
approximation of !q is motivated from perturbative con-

siderations of the high temperature limit of the renormal-
ized quark propagator for small quark masses mq [29] and
the assumption that the relation between asymptotic mass
and plasma frequency known for mq � 0 is approximately
true also for small mq [30]. Changing the approximation of
the dispersion relation !q demands a readjustment of the
parameters in the effective coupling G2�T;� � 0� in
Eq. (6) in order to appropriately describe the lattice QCD
data of n=T3 and causes changes in Peshier’s flow equation
(see Appendix A). The QPM parameters for using Eq. (9)
adjusted to the continuum estimate of the n=T3 data at T �
1:1Tc read Ts � 0:976Tc and � � 95 implying that the
divergence in G2�T;� � 0� is located at T � 0:987Tc.
With this new parametrization, the agreement between
QPM and continuum extrapolated lattice QCD data is
nearly as perfect as observed in Fig. 1 (at most 3% devia-
tions). However, it indicates that Eq. (3) might be some-
what more suitable than Eq. (9) as quark dispersion
relation. The influence on the characteristic curve emerg-
ing at T � Tc when employing Eq. (9) instead of Eq. (3) is
negligible for imaginary chemical potential. For real
�B=Tc, the difference between both parametrizations is
also very tiny and approximately 1.5% at small
temperatures.

In addition, we can discuss the quark mass dependence
of the found results by performing a naive chiral extrapo-
lation mq ! 0. For imaginary chemical potential, quark
mass effects turn out to be negligible independent of the
specific quark dispersion relation used. For real �B=Tc,
quark mass effects are also small and visible only for very
small temperatures. The differences between using mq �

0:2T andmq � 0 are less than 1% when employing Eq. (3)
and at most 3% when employing Eq. (9). In both cases,
decreasing quark masses imply a larger curvature of the
characteristic curves and thus a smaller critical chemical
potential at T � 0. A similar minor quark mass depen-
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dence with the same trend when decreasing mq was found
in lattice QCD simulations [31].

Another sensitive measure for the quark mass depen-
dence of the net baryon density nB is the chemical potential
dependence of the chiral condensate h �  i which are re-
lated to each other by a Maxwell relation [19,21]. Within
the QPM, the � dependence of h �  i is fairly well de-
scribed and will be reported elsewhere. We note that sim-
ply putting mq � 0 but keeping the parametrization of
G2�T;� � 0� fixed modifies n=T3 by less than 1% for
the considered range of temperatures and chemical poten-
tials. In principle, however, a general quark mass depen-
dence of the parameters Ts and � in the effective coupling
would be conceivable. Because of the minor effects ob-
served, we restrict our further considerations to quark
dispersion relation Eq. (3) in the following.

D. � dependence of the quasiparticle masses

In [18], the lattice QCD data [32] have been discussed
with the goal to extract the relevant excitation modes from
thermodynamic bulk quantities. The explicit � depen-
dence of the quasiparticle masses has been named BKS
effect. In order to test the importance of the BKS effect on
the found results, we omitted the �2

i =�
2 terms in the

quasiparticle dispersion relations or flipped their signs
though leaving the dependence of G2 on �i (Peshier’s
flow equation) unchanged. While changing in this way
the quasiparticle masses, we keep the QPM parameters
from Sec. III A fixed. In fact, neglecting simply the term
/ �2

i =�
2 in Eq. (4) [or Eq. (A4) below], n=T3 is only

affected for large �i, where the attenuation of �2
i by

1=�2 becomes smaller and the term proportional to �2
i

cannot be neglected compared to the term proportional to
T2. This implies that for larger T significant effects can
only be seen at sufficiently large values of �i. Note, how-
ever, that �i is restricted by �i 	

�
3 T. Similar effects can

be observed when flipping the signs in the asymptotic mass
expressions. Nonetheless, thermodynamic self-consistency
of the QPM requires in both considered cases of changing
the quasiparticle masses also changes in Peshier’s flow
equation (5) rendering the coefficients b, aT and a�i

ac-
cording to Maxwell’s relation. In these thermodynamically
self-consistent approaches, we find our results to be indis-
tinguishable from the QPM results exhibited in Fig. 1 when
employing the same parameters as in Sec. III A, i.e. found
results seem to be rather independent of the explicit form
of the �i dependence in the asymptotic mass expressions.
However, a general dependence of the asymptotic masses
on the chemical potential seems to be important. When
neglecting �i completely in the quasiparticle dispersion
relations, thermodynamic self-consistency dictates also an
independence of T in M1 (and m1 in Appendix A) which
significantly changes the results: even though the almost
linear behavior of n=T3 for small�i can be reproduced, the
pronounced curvature for T � 1:1Tc at larger�i cannot be

obtained under such an assumption. The �i dependence of
n=T3 is further discussed in Appendix A.

E. Scaling properties

In [24,33], a scaling of the ratio �p=�pSB of the excess
pressure in �B direction was reported. Here, we find a
similar scaling for the ratio nB=nSBB as depicted in Fig. 6,
where nSBB denotes the Stefan-Boltzmann expression of the
net baryon density. When considering nB=n

SB
B either for

real or for imaginary chemical potential, in both cases, �B
effects become visible only in the vicinity of Tc. In fact, for
the baryochemical potentials considered in Fig. 6, the ratio
nB=n

SB
B is found to be independent of �B for T � 1:2Tc.

Furthermore, nB=nSBB � 1 is approached only asymptoti-
cally, signaling the expected strong deviations from the
free field behavior. Apart from the observed differences in
the ratio between real and imaginary chemical potentials
close to Tc, we find an interesting pattern: nB=nSBB de-
creases with increasing baryochemical potential for real
�B, while the ratio increases in the case of imaginary
chemical potential. This is partly caused by differences
in nB=T3 between real and imaginary chemical potential
which become smaller for increasing temperature
(cf. Figure 3). But it is also related to different signs in
nSBB for real or imaginary chemical potential.

To be specific, in the case of real chemical potential, nB
can be expanded into a Taylor series in powers of �B with
expansion coefficients [32] ck�T� �

1
k!
@k�p�T;��=T4�

@��=T�k
j��0.

The Stefan-Boltzmann expression for the net baryon den-
sity reads

 nSB
B �T;�B� �

Nf
3

�B

3
T2 �

Nf
3�2

�
�B

3

�
3
: (10)

Even though this expression for nSB
B is correct only for a

massless ideal gas, while nB entering the ratio is evaluated
for mq � 0:2T, quark mass effects can safely be neglected
(as discussed in Sec. III C). The ratio nB=n

SB
B reads for

small �B=�3T�

 

nB
nSB
B



2c2

Nf
�

2

Nf

�
�B

3T

�
2
�

2c4 �
c2

�2

�
�O��4

B�: (11)

In the limit �B ! 0, the ratio approaches 2c2=Nf �
1
4��T;� � 0�=T2 for Nf � 4. For small �B=�3T�, i.e. for
small �B or large T, �B effects become small, thus ex-
plaining the observed scaling. Furthermore, as 2c4 �
c2=�

2 > 0 for all temperatures T � Tc and remains ap-
proximately constant for T � 1:2Tc (cf. Sec. IV B), a fixed
ratio nB=n

SB
B requires increasing temperatures T for in-

creasing �B, explaining the observed ordering in Fig. 6.
Close to Tc, deviations between exact results and the
Taylor series expansion of nB become larger with increas-
ing �B, such that the arguments presented here do not
apply.
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In the case of imaginary chemical potential, nB�T; i�i�
from Eq. (2) can be evaluated for small �i by expanding
the trigonometric functions in powers of �i=T yielding
also a Taylor series expansion similar to the one in the
sector of real chemical potential. Within this approach, we
find

 nB�T; i�i� � i�23~c2�iT2 � 4
3~c4�

3
i � . . .�; (12)

where

 ~c k�T� �
1

k!ik
@k�p�T; i�i�=T

4�

@��i=T�k

���������i�0
� ck�T�: (13)

Note that both ~ck and ck are real and ~ck; ck � 0 for odd k.
The Stefan-Boltzmann result for imaginary chemical po-
tential reads

 nSB
B �T; i�i� � i

�Nf
3
�iT2 �

Nf
3�2 �

3
i

�
(14)

and the ratio follows as nB
nSB
B

 2~c2

Nf
� 2

Nf
��B

3T�
2�2~c4�

~c2

�2�

O��4
B�. Similar to the considerations for real chemical

potential, we observe a scaling with �B=�3T� and in the
limit �B ! 0, nB=nSB

B ! 2c2=Nf �
1
4��T;� � 0�=T2 for

Nf � 4. For imaginary chemical potential, however, the
sign of the term proportional to �2

B is flipped, explaining
the different ordering observed in Fig. 6, i.e. at fixed T,
nB=n

SB
B becomes larger with increasing �B.

IV. COMPARISON WITH LATTICE QCD DATA AT
� � 0

A. Pressure

Via the QPM, we have access to both real and imaginary
chemical potentials. Thus, we can compare our results

based on the lattice QCD data of [19,21] with other lattice
QCD calculations. In [34], a similar lattice set-up for
calculating the pressure at � � 0 for Nf � 4 degenerate
quark flavors with mq � 0:2T on a lattice with N� � 4 and
N� � 16 was considered, though employing an improved
lattice action. These lattice QCD data [34] require also a
proper continuum extrapolation. We apply a similar strat-
egy as in Sec. III A but now for the pressure, because its
Stefan-Boltzmann limit is given in [34] for N� � 4, and
find d�p�lat � 0:839 as continuum extrapolation factor. The
difference between d�p�lat and d�n�lat in Sec. III is maybe a
consequence of the different lattice actions used in the
simulations [19,21,34] resulting in different cutoff effects
on the data.

In Fig. 7, the continuum estimated lattice QCD data [34]
(squares) for p=T4 as a function of T=Tc at � � 0 are
compared with the QPM (for details see Appendix A)
using the parameters � and Ts in G2�T;� � 0� from
Sec. III A adjusted to n=T3 at T � 1:1Tc for imaginary
chemical potential. The integration constant B�Tc� adjust-
ing the QPM value of p=T4 at � � 0 and T � Tc to lattice
QCD reads B�Tc� � 2:56T4

c using again Tc � 163 MeV.
As evident from Fig. 7, the general trend of p=T4 and the
behavior at large T is reproduced. Nevertheless, p=T4

shows deviations of up to 20% in the intermediate tem-
perature region T � 1:5Tc. The same deviation pattern was
already discussed in [14,24,28]. In fact, it seems to be a
general feature, that fits to lattice QCD data in the sector of
zero (nonzero) chemical potential underestimate (overes-
timate) the according results in the sector of nonzero (zero)
chemical potential.

Considering, instead, an independent adjustment of the
QPM parameters to p=T4 at � � 0, the comparison of the
QPM with the continuum estimate of the lattice QCD data
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FIG. 6 (color online). Left: ratio nB=nSBB as a function of T=Tc for different imaginary and real baryochemical potentials. Dashed
curves represent results for imaginary baryochemical potential, with j�B=Tcj � 0:6, 1.2, 1.8 from bottom to top, while solid curves
depict corresponding results for real �B, with j�B=Tcj � 0:6, 1.2, 1.8 in inverted order, i.e. from top to bottom. Right: zoom into the
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is exhibited in Fig. 8 (left panel). We find an impressive
agreement when adjusting Ts � 0:91Tc, � � 16 and
B�Tc� � 1:25T4

c with Tc � 163 MeV. With this new pa-
rametrization, we evaluate the net quark number density
for imaginary chemical potential. The results (solid curves)
are shown in the right panel of Fig. 8. At constant �i=Tc,
we find increasing deviations for decreasing temperatures,
in particular close to the Roberge-Weiss transition, even
though the change in slope close to �c is qualitatively still
reproduced. Furthermore, using this set of parameters re-
sults in the dashed curve in the right panel of Fig. 5 as
characteristic curve emerging at T � Tc for real �B. With
respect to the observed deviations at T � 1:1Tc between

the lattice QCD data from [19,21] for n=T3 and the QPM
with parameters adjusted to p=T4 (see right panel of
Fig. 8), it is surprising that this characteristic curve agrees
so well with the one considered in Sec. III B.

B. Taylor expansion coefficients

Having the QPM parametrizations employed in Figs. 1
and 8 at hand, we can discuss their influence on the Taylor
series expansion coefficients ck�T� defined in Sec. III E for
Nf � 4 similar to studies for Nf � 2 in [14]. In Fig. 9, we
exhibit c2�T� and c4�T�: c2�T� �

1
2��T;� � 0�=T2 shows

some deviations between both parametrizations whereas
c4�T� agrees fairly well with visible deviations only in the
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FIG. 9 (color online). Taylor series expansion coefficients
c2�T� (upper curves) and c4�T� (lower curves) as function of
T=Tc for Nf � 4 employing the different parametrizations from
Fig. 1 (solid curves) and Fig. 8 (dashed curves).
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very vicinity of Tc. In addition, we observe that smaller
c0�T� � p�T;� � 0�=T4 (cf. Fig. 7 and the left panel of
Fig. 8) implies smaller c2�T� as already pointed out in [28].
As mentioned in Sec. III A, n=T3 depicted as a function of
�i=T shows almost no temperature dependence for T �
1:5Tc. This is mainly due to the fact that c2�T� (upper solid
curve in Fig. 9) exhibits also a rather negligible tempera-
ture dependence for larger T. Furthermore, c4�T� is size-
able only close to Tc and approaches its Stefan-Boltzmann
limit 1=�2 for T � 1:2Tc. Considering nB=T3 in terms of a
Taylor series expansion up to order O��3�, the results for
real and imaginary chemical potential differ only in the
sign of the cubic term which is / c4�3. Thus, the net
baryon density evaluated for real or imaginary chemical
potential deviates only for larger chemical potentials and
close to Tc as evident from Fig. 3. c6�T� (not exhibited)
deviates significantly from zero only for temperatures very
close to Tc but can become of the same order of magnitude
as c4�T� at T � Tc.

Finally, we mention that the parametrization in
Sec. IVA, optimized for reproducing the Nf � 4 lattice
QCD data of [34], can also be used to describe the Taylor
coefficients c2;4�T� from lattice QCD [32] for Nf � 2
(although in these simulations a larger quark mass parame-
ter mq � 0:4T was used) as exhibited in the left panel of
Fig. 10 (dashed curves). In doing so, we keep � and Ts
adjusted to Nf � 4 lattice QCD data fixed and change
merely from Nf � 4 to Nf � 2 in the thermodynamic
expressions of the QPM. In fact, we find deviations of
about 10% close to Tc and less than 5% for T � 1:2Tc
between QPM and [32] for c2�T�. While this coincidence
might be accidental, one could also argue that the quasi-
particle model catches correctly the flavor dependence. In
contrast, employing the parametrization from Sec. III A

gives a pattern resembling Fig. 9. Even though deviations
between both parametrizations are obvious, the ratio c4=c2

is rather insensitive with respect to the employed parame-
trization for T � 1:2Tc approaching 1=�2�2� as shown in
the right panel of Fig. 10.

V. SUMMARY AND DISCUSSION

In summary we extend our effective quasiparticle model
and compare it with lattice QCD data for purely imaginary
chemical potential. Despite the fact that our phenomeno-
logical model does not exhibit the Roberge-Weiss period-
icity of full QCD, it is able to describe the available lattice
QCD data [16,19,21] impressively well. In particular, the
drastic change in slope of n=T3 close to the critical chemi-
cal potential �c=T � �=3 of the Roberge-Weiss transition
can be described. This is entirely due to the BKS effect
[18], i.e. a consequence of chemical potential dependent
quasiparticle masses. A thermodynamically consistent in-
vestigation of the importance of the �i dependence in the
quasiparticles’ asymptotic masses shows that the found
results are independent of the chosen explicit form of the
�i dependence. Nonetheless, the pronounced structures
cannot be reproduced when the quasiparticle masses would
be completely independent of �i. In this respect, the �i
dependence implemented in the model is confirmed.
Another evidence is the comparison of the QPM result
for the characteristic curve emerging at T � Tc with the
phase transition line evaluated in lattice QCD simulations
[16]. For the Roberge-Weiss transition, we find critical
values of temperature and baryochemical potential close
to the ones given in [16]. The successful comparison points
to the correctness of Peshier’s flow equation as a tool for
transporting information from � � 0 to nonzero � which
is of particular importance for the knowledge of the equa-
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T=Tc with the QPM for Nf � 2. Solid curves represent results applying QPM parameters as in Fig. 1 adjusted to n=T3 while dashed
curves represent results applying the parametrization of Fig. 8 adjusted to p=T4 at � � 0. Right: ratio c4=c2 as a function of T=Tc for
both parametrizations.
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tion of state at larger baryon densities relevant for CERN-
SPS and upcoming FAIR.

With the found QPM parametrization describing lattice
QCD data in the sector of purely imaginary chemical
potential at hand, we can also compare with an indepen-
dent set of lattice QCD data [34] obtained at � � 0.
We find some deviations for the pressure in the intermedi-
ate temperature region which might account for the differ-
ent lattice actions used in the calculations but could also
signal to some extend a disagreement of results obtained
at � � 0 and nonzero �, as already discussed in [14,28].
In this context we emphasize that the comparison of ther-
modynamic models with lattice QCD data is hampered by
the lacking systematic continuum extrapolation of the
latter.

Ab initio it is not clear whether the assumed quasipar-
ticle excitations represent the proper description of QCD
thermodynamics also in the region close to Tc. The success
of the present comparison lends some credibility into the
picture of quasiquark excitations with a mass gap. This is
in line with findings in [35], where also a striking deviation
from the perturbative excitation pattern close to Tc has
been found. Nevertheless, it would be premature to claim
that the strongly coupled hot quark-gluon medium is en-
tirely described by the presently used quasiparticles. For
instance, excitation modes like plasminos and longitudinal
gluons are not included in the model. Furthermore, finite
width effects of the quasiparticles and Landau damping are
neglected. One should keep in mind that thermodynamic
bulk properties are sensitive essentially to excitations with
hard momenta, i.e. k� T;�. There may be a variety of soft
and ultrahard excitations rendering the picture of the
strongly coupled quark-gluon plasma into a much more
involved scenario, in line with the complexity of QCD.

Our model is far from being an ab initio calculation as
attempted in [36]. But, in particular, the flexibility of the
introduced effective couplingG2 allows for curing possible
deficits in the dynamical degrees of freedom. Apart from
that, the model is highly nonperturbative as it can be
formulated in terms of an infinite series in powers of the
coupling, though, making contact with perturbation theory,
as the first terms coincide with perturbative QCD and
asymptotically G2 approaches the running QCD coupling.

Finally, we remind the reader that we consider here a
fairly special case of four degenerate quark flavors. Despite
of the known sensitivity of particular features of QCD on
the flavor content, some scaling properties of thermody-
namic bulk properties may be useful for an orientation in
thermodynamic state space.
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APPENDIX A: FLOW EQUATION FOR
IMAGINARY CHEMICAL POTENTIAL

The QPM pressure for imaginary chemical potential
reads

 p�T; i�i� �
X
a�q;g

pa�T; i�i� � B�T; i�i� (A1)

with partial pressures
 

pq�T; i�i� �
dq

2�2 T
Z 1

0
dkk2�ln�1� e�i�i�!q�=T

� ln�1� e��i�i�!q�=T�; (A2)

 pg�T; i�i� � �
dg
�2 T

Z 1
0
dkk2 ln�1� e�!g=T (A3)

for quarks and gluons, respectively, where dq � 2NcNf
and dg � N2

c � 1. The quasiparticle dispersion relations
read!2

q � k2 �m2
q � 2M2

� � k2 �M2
1 withM2

� given in
Eq. (4) and !2

g � k2 �m2
1 with asymptotic mass

 m2
1 �

1

12

�
�2Nc � NfT2 �

3

�2 Nf�
2
i

�
G2�T; i�i�: (A4)

Assuming that all T and�i dependence of the function B is
encoded in the asymptotic mass expressions M1 and m1,
thermodynamic consistency is fulfilled from the stationar-
ity conditions @p=@M2

1 � @B=@M2
1 and @p=@m2

1 �
@B=@m2

1 [37] such that entropy density s and net quark
number density n are obtained from standard thermody-
namic relations. The purely real result for s � sq � sg
reads
 

sq�T; i�i� �
dq

2�2T

Z 1
0
dkk2

�
�43 k

2 �M2
1�

!q
�f�q � f

�
q 

� i�i�f�q � f�q 
�
; (A5)

 sg�T; i�i� �
dg
�2T

Z 1
0
dkk2

�43 k
2 �m2

1�

!g

1

�e!g=T � 1�
;

(A6)

where f�q � �e�!q�i�i�=T � 1��1 and n is given in Eq. (1).
Then, the function B is determined as appropriate line
integral with integration constant B�Tc�. The quasilinear
partial differential equation Eq. (5) to be solved for
G2�T; i�i� follows from Maxwell’s relation

 

@s
@�i�i�

�
@2p

@�i�i�@T
�

@2p
@T@�i�i�

�
@n
@T

; (A7)

where the explicit derivative terms cancel each other leav-
ing
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@n

@M2
1

@M2
1

@T
�

@sq
@M2

1

@M2
1

@�i�i�
�

@sg
@m2
1

@m2
1

@�i�i�
: (A8)

Omitting the overall factor of i in @n=@M2
1, @M2

1=@�i�i�,
and @m2

1=@�i�i�, the coefficients of Eq. (5) read

 b �
�Cf

2
TG2 � 2mqa

�
I1 �

3

6�2 Nf�iG2I2

�
Cf
2�2 �iG2I3; (A9)

 aT � �
Cf
4

�
T2 �

�2
i

�2

�
I1; (A10)

 

a�i
� �

1

12

�
�2Nc � NfT2 �

3

�2 Nf�
2
i

�
I2

�
Cf
4

�
T2 �

�2
i

�2

�
I3; (A11)

where Cf � �N2
c � 1�=�2Nc� and the integral expressions

explicitly read

 I 1 �
dq

2�2T

Z 1
0
dk

k2

!q

�
�e!q=T sin��i=T� � e3!q=T sin��i=T��

�e2!q=T � 2e!q=T cos��i=T� � 1�2
; (A12)

 I 2 �
dg
�2T

Z 1
0
dk

k2

!g

1

�e!g=T � 1�

�
1�
�43 k

2 �m2
1�

2!2
g

�
1�

!g

T
e!g=T

�e!g=T � 1�

��
;

I3 �
dq

2�2T

Z 1
0
dk

k2

!q

�
2e!q=T cos��i=T� � 2

e2!q=T � 2e!q=T cos��i=T� � 1

�
1�
�43 k

2 �M2
1�

2!2
q

�
�
�43 k

2 �M2
1�

2!qT

�
�2e3!q=T cos��i=T� � 4e2!q=T � 2e!q=T cos��i=T��

�e2!q=T � 2e!q=T cos��i=T� � 1�2
�
�i

T
�e!q=T sin��i=T� � e3!q=T sin��i=T��

�e2!q=T � 2e!q=T cos��i=T� � 1�2

�
:

(A13)

The term in b proportional to a stems from assuming
temperature dependent quark masses mq � aT as em-
ployed in some lattice QCD performances, e.g.
[19,21,32,34,38].

The quark number susceptibility � in Eq. (7) is found to
be symmetric when replacing �i by��i because the same
holds true for @G2=@�i. From Eq. (5) we find

 

@G2

@�i
�

b
a�i

�
aT
a�i

@G2

@T
: (A14)

For the individual expressions entering Eq. (A14) we find
I1 ! �I1, I2 ! I2 and I3 ! I3 for �i ! ��i such that
b! �b, aT ! �aT and a�i

! a�i
. In addition, a Taylor

series expansion of G2�T; i�i� in powers of �i consists
only of even powers in �i [13,14] such that @G2=@T is
symmetric under �i ! ��i. In the limit �i ! 0, we find
@G2=@�i ! 0 as b! 0, aT ! 0 but a�i

and @G2=@T
remain nonzero.

When employing the quark dispersion relation Eq. (9),
the coefficients of the flow equation render to
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FIG. 11 (color online). Left: comparison of ideal gas results for n=T3 as a function of �i=Tc employing either a constant mass
parameter M � 0:21 GeV (dashed curves) or readjusting M=T � 1:17, 0.90, 0.81, 0.77 for T � 1:1, 1.5, 2.5, 3.5, Tc(solid curves from
top to bottom) with the continuum extrapolated lattice QCD data (symbols) as exhibited in Fig. 1. Right: comparison of found M=T
(squares) as a function of T=Tc with the asymptotic quark mass M1=T of the QPM at � � 0 employing Ts � 0:96Tc and � � 56 as in
Sec. III A.
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APPENDIX B: PARAMETRIZING THE �i
DEPENDENCE

In Sec. III, we found a general dependence of the
quasiparticle dispersion relations on temperature and
chemical potential to be of utmost importance for the
successful description of lattice QCD data. This shall be
illustrated in some more detail by considering the net quark
number density in Eq. (1) of an ideal gas with dispersion
relation !2

q � k2 �M2. In principle, thermodynamic self-
consistency demands either a dependence of M on both T
and �i, or neither a T nor a �i dependence of M. In the
latter case of constant M, we adjust M � 0:21 GeV in
order to describe the continuum extrapolated lattice QCD
data of n=T3 (cf. Fig. 1) at T � 1:1Tc for small �i=Tc. The
corresponding QPM results for T � 1:1, 1.5, 2.5, 3.5 Tc are
then exhibited in the left panel of Fig. 11 (dashed curves).
At T � 1:1Tc, we find increasing deviations from the
lattice QCD data for �i=Tc > 0:66, in particular, in the
vicinity of the Roberge-Weiss critical chemical potential
�c�T�, where the pronounced curvature cannot be repro-
duced. This was already discussed in [21] by considering
the ratio n��i�=n��i�free signaling clear deviations of the

lattice QCD data from a free (ideal) gas behavior.
Furthermore, by increasing T but keeping M fixed, the
description of the lattice QCD data becomes less and less
accurate for smaller �i=Tc suggesting a general depen-
dence of M on T. Readjusting M individually for each
temperature, ignoring for the moment being thermody-
namic self-consistency, the results are depicted by solid
curves in the left panel of Fig. 11. The found scaled mass
parameters M=T for the temperatures considered here are
exhibited in the right panel of Fig. 11 (squares) and com-
pared with the scaled asymptotic quark mass M1=T of the
QPM at � � 0 (solid curve) employing the parametriza-
tion of Sec. III A. Both results agree fairly well, indicating
that nonzero chemical potential effects are tiny for small
�i=T but become sizeable close to�c�T� as also visualized
in Fig. 12. In Fig. 12, the scaled asymptotic quark mass
M1=T of the QPM is exhibited as a function of �i=Tc for
constant T using the QPM parametrization of Sec. III A
perfectly describing n=T3 in Fig. 1. For increasing T,
M1=T shows decreasing sensitivity on �i while nonzero
chemical potential effects become important close to�c �
�
3 T.
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[12] M. Bluhm, B. Kämpfer, R. Schulze, and D. Seipt, Eur.

Phys. J. C 49, 205 (2007).
[13] M. Bluhm, Diploma Thesis, Technische Universität

Dresden, 2004.
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