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1Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-18071, Spain
2Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

(Received 21 November 2007; published 1 February 2008)

We study the photon induced ��1520� production in the effective Lagrangian method near threshold,
ELAB
� � 2 GeV, and in the quark-gluon string model at higher energies 3 GeV � ELAB

� � 5 GeV. In
particular, we study the role of the K� exchange for the production of ��1520� within the SU(6) Weinberg-
Tomozowa chiral unitary model proposed by Garcı́a-Recio, Nieves, and Salcedo [Phys. Rev. D 74, 034025
(2006)]. The coupling of the ��1520� resonance to the N �K� pair, which is dynamically generated, turns
out to be relatively small and, thus, the K exchange mechanism dominates the reaction. In the higher
energy region, where experimental data are available, the quark-gluon string mechanism with the K Regge
trajectory reproduces both the energy and the angular distribution dependences of the ��1520� photo-
production reaction.
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I. INTRODUCTION

The recent announcement of the finding of the exotic
hyperon, so-called pentaquark, opened a new field for
nuclear and particle physicists to study composite objects
with more than three quarks [1–3]. A correct understand-
ing of the experimental findings requires one to possess a
suitable description of hadron and photon induced reac-
tions in a region where both, the baryon-meson and the
quark-gluon degrees of freedom, should be considered, due
to the energy and momentum transfers involved. On the
other hand, in the recent years, our knowledge of the
structure and dynamics of s-wave and d-wave odd parity
baryon resonances has been increased thanks to the use of
chiral unitarity schemes, which successfully generate those
resonances lying near the composite hadron threshold en-
ergies [4–9]. All these developments make this new re-
search field exciting and worthwhile for further study.

The claimed pentaquark (��) has strangeness S � �1,
zero isospin, a mass of around 1530 MeV and its spin-
parity has not been identified yet. Definitely, all these
details have to be determined and even its existence has
to be investigated by further detailed experiments [10].
Because of this situation, a lot of theoretical attention is
being paid to the study of the isoscalar ��1520� resonance
(hereafter called ��), with similar mass to that of the
pentaquark, but with opposite strangeness (S � �1). In
particular, it clearly shows up in the K�p invariant mass
distribution of the two step process,

 �p! K��� ! K�K�p: (1)

Note that the above reaction has a clear resemblance to the
�n ! K����1530� ! K�K�n one, where the penta-
quark should appear in the K�n mass spectrum.1 The ��

spin-parity is J� � 3=2�, it lies slightly below the thresh-

old energy of the ����1380� channel, and it decays into a
d-wave anti-kaon nucleon pair. The recent extended SU(3)
chiral unitarity model of Ref. [11], which involves baryon
decuplet and meson octet degrees of freedom, seems to
reasonably describe the dynamics of this resonance.

There exist several effective hadron Lagrangian studies
[12,13] of the �p! ��K� reaction for laboratory photon

energies ranging from threshold, �mK�M�� �
2�M2

N
2MN

�

1:7 GeV, up to about 5 GeV, where experimental measure-
ments are available. These theoretical studies are ham-
pered by the lack of knowledge on the �K�N�� coupling
strength. This fact, in conjunction with the use of largely
different form factors to account for the compositeness of
the hadrons, has led to contradicting predictions of the
dominant reaction mechanism in the �p! ��K� reac-
tion. Thus, Nam et al. [12] claimed that the kaon exchange
provides the leading contribution in the whole energy
region, while within the quark-gluon string model of
Titov et al. [13], the vector kaon (K�) exchange turns out
to be the dominant mechanism. This quark-gluon string
picture was introduced by Kaidalov [14] and Donnachie
and Landshoff [15] more than 20 years ago, and it has been
used for photon and hadron induced reactions with ener-
gies above a few GeV [16]. Recently, the quark-gluon
string model has been used extensively for the photopro-
duction of pions above 2 GeV [17].

On the other hand, recently, a consistent SU(6) extension
of the Weinberg-Tomozawa (WT) SU(3) chiral Lagrangian
has been derived by Garcı́a-Recio et al. [18]. In this
manner, the lowest-lying meson vector nonet and baryon
3=2� decuplet hadrons are considered in addition to the
members of the pion and nucleon octets originally included
in the WT SU(3) interaction term. The potentials deduced
from this SU(6) Lagrangian are used to solve the coupled
channel Bethe-Salpeter equation (BSE), within the so-
called on-shell renormalization scheme (RS), leading to
unitarized s-wave meson-baryon scattering amplitudes. In

1The LEPS collaboration [1] uses a deuterium target since
neutrons are unstable particles.
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what follows we will refer to this model as �SU�6�-BSE.
The �SU�6�-BSE model reproduces the essential features
of previous studies [4–9] (for instance, properties of the
lowest-lying J� � 1=2� and 3=2� resonances; see for
instance [19,20]) and, in addition, it sheds some light on
the role played by the vector mesons in these processes.

The model assumes that the quark interactions are spin
and SU(3) flavor independent [21]. This corresponds to
treating the six states of a light quark (u, d, or s with spin
up, " , or down, # ) as equivalent. To speak meaningfully of
SU(6) transformations affecting spin but not orbital angu-
lar momentum (L) as invariances, it must be assumed that
the orbital angular momentum and the quark spin are to a
good approximation, separately conserved. This, in turn,
requires the spin-orbit, tensor, and spin-spin interactions
between quarks to be small, which seems to be the case in
the baryon spectrum. Indeed, SU(6) symmetry in the
baryon sector gets some support from the large Nc limit
of QCD, and it provides several predictions (relative close-
ness of baryon octet and decuplet masses, the axial current
coefficient ratio F=D � 2=3, the magnetic moment ratio
�p=�n � �3=2) which are remarkably well satisfied in
nature. In the meson sector, an underlying static chiral
U�6� 	 U�6� symmetry has been advocated by Caldi and
Pagels [22,23], in which vector mesons would be ‘‘dor-
mant’’ Goldstone bosons acquiring mass through relativ-
istic corrections. This scheme solves a number of
theoretical problems in the classification of mesons and
also makes predictions which are in remarkable agreement
with the experiment. In any case, although spin-flavor
symmetry in the meson sector is not a direct consequence
of large Nc QCD, vector mesons (K�, �,!, �K�,�) do exist
and they are known to play a relevant role in hadronic
physics [24]. We advocate the spin-flavor symmetric sce-
nario as a reasonable starting point to account for the
vector-meson degrees of freedom. As will be discussed
below, we will include some terms which break explicitly
the spin symmetry.

In the meson-baryon language, the fundamental ingre-
dients are the mesons belonging to the J� � 0� pseudo-
scalar octet and the J� � 1� vector nonet SU(3)
representations, and the baryons of the J� � 1=2� nucleon
octet and of the J� � 3=2� � decuplet. In this model, the
physical masses and the physical decay constants are the
only SU(6) breaking terms. After having fixed the RS, the
�SU�6�-BSE model predicts, up to an overall phase, the
coupling of the �� resonance to the different meson-
baryon channels entering in the solution of the SU(6)
BSE, and, in particular, that to the �K�N pair. This infor-
mation will help to fix the size of the t-channel K� ex-
change contribution to the �� photoproduction. In this
respect, Hyodo and his collaborators [25] studied the
�K�N�� coupling using an effective Lagrangian to couple

the K� degrees of freedom to an extended SU(3) chiral
unitarity model, which includes baryons from the decuplet.

They found a rather small value, of the order of 1, for this
coupling constant, while the phenomenological analysis of
the photon induced reaction tends to use larger values. It is
therefore important to find out this coupling in the new
�SU�6�-BSE scheme, since it provides a consistent unitary
chiral approach which involves also vector mesons.

The purpose of this paper is twofold: first, to calculate
the �K�N pair coupling to the �� resonance and, second, to
study the �p! ��K� reaction with the new information
on the role play by the K�. For the latter one, we will use a
hybrid model which combines both the hadron effective
Lagrangian approach, for energies close to threshold, and
the quark-gluon string reaction mechanism at higher
energies.

The paper is arranged as follows. In Sec. II, we shall
discuss the effective Lagrangian model (Sec. II A), the
quark-gluon string approach (Sec. II B), and the hybrid
hadron and Reggeon exchange model (Sec. II C) for the
photon induced reaction �p! ��K�. In Sec. III, we
describe the SU(6) model. Our results are presented in
Sec. IV. In Sec. IVA, we extract the �K�-nucleon coupling
to the �� resonance. In Sec. IV B, we discuss our results for
the �� photoproduction from both the effective baryon-
meson method and the quark-gluon string approach, and
also from the hybrid model. Finally, in Sec. V, we summa-
rize the present study.

II. REACTION MECHANISMS

In this section we study the reaction

 �p! ��K� (2)

whose total and angular differential cross sections were
measured with a tagged photon beam (2:8<E� <
4:8 GeV) using the LAMP2 apparatus at the 5 GeV elec-
tron synchrotron NINA at Daresbury [26].

As discussed in the Introduction, we will examine two
different approaches based on hadron and quark-gluon
degrees of freedom, respectively, and a hybrid model based
on both of them.

A. Effective hadron Lagrangian method

We begin with the effective Lagrangian approach, and
we first list all the necessary Lagrangian densities (we are
just considering charged nucleon and kaon fields, which
are the only ones appearing in the tree level Feynman
diagrams; in what follows and for simplicity, we will
omit any explicit reference to charges when referring to
coupling constants and masses):

 L �KK � �ie�K�@�K� � K�@�K��A� (3)

 L Kp�� �
gKN��

mK

�����@�K
���5p� H:c: (4)
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 L �pp � �e �p
�
A6 �

�p
2MN

��	�@
	A��

�
p� H:c: (5)

 L �Kp�� � �ie
gKN��

mK

����A�K��5p� H:c:; (6)

where e �
����������
4�

p

> 0, �p, and A� are the proton charge,
magnetic moment, and photon field, respectively, and we
use an obvious notation for the hadron masses, coupling
constants, and fields.2

With the above Lagrangians one can construct three tree
level amplitudes: (i) t-channel kaon exchange term,
(ii) s-channel nucleon pole term, and (iii) contact term,
which are depicted in Fig. 1. All contributions together
provide a gauge invariant amplitude. We do not consider in
this work the u-channel hyperon pole term which is by
itself gauge invariant and related with the magnetic cou-
pling of the photon with the ��, whose information is
scarce [12,13].

Next we consider the t-channel K� exchange contribu-
tion;3 we will need the Lagrangian densities,

 L �KK� � e
g�KK�

mK�
�
��	�@
A���@�K��	 �K� � H:c: (7)

 L K�p�� � igK�N��
�����K

����p� H:c: (8)

with �0123 � �1. The above K�p�� vertex is predomi-
nantly s-wave, and its coupling constant, gK�N�� is not
known. Below, we will use the �SU�6�-BSE of Ref. [18]
to fix it. Thanks to the transverse nature of the L�KK�

vertex, the t-channel K� exchange term is gauge invariant
by itself. To compare with the works of Nam et al. [12] and
Titov et al. [13], we have also considered a vector coupling
of the �K�N pair to the �� resonance, which contains a
d-wave contribution,

 L 0
K�p�� �

g0K�N��

mK�
�����	�@�K��	 � @	K��� �p� H:c:;

(9)

where the coupling constant g0K�N�� is not known either.
We denote it with an extra prime �g0K�N�� � to distinguish it
from the s-wave coupling used in Eq. (8). All the other
coupling constants can be fixed from the study of the K�

and �� decay widths.
The contribution of the different terms of Fig. 1, includ-

ing also the t-channel K� exchange, to the T-matrix reads
(kinematical and spin variables are given in the first dia-
gram of Fig. 1)

 � iTi � �u��p2; s��A
�	
i u�k2; sp��	�k1; 
�; (10)

where u� and u are dimensionless Rarita-Schwinger and
Dirac spinors, respectively, while �	�k1; 
� is the photon
polarization vector. The reduced A�	i amplitudes related to
t-channel K exchange are given by

 A�	t � �e
gKN��

mK

1

q2 �m2
K

q��q	 � p	1��5fc (11)

 

A�	s � �e
gKN��

mK

1

s�M2
N

p�1 �5�k6 1fs � �k6 2 �MN�fc��
	

� e
gKN��

mK

1

s�M2
N

p�1

	 �5�k6 1 � k6 2 �MN�i
�p

2MN
�	�k

�
1fs (12)

 A�	c � e
gKN��

mK
g�	�5fc: (13)

Here, the momentum transfer carried by the intermediate �K
is q � k1 � p1 and the Mandelstam variable s is defined as
usual s � �k1 � k2�

2. The subindices t, s, and c stand for
the t-channel kaon exchange, the s-channel nucleon pole,
and the contact terms, respectively, and are depicted in
Fig. 1. The form factors fc and fs will be discussed below.
We define

 TK � Tt � Ts � Tc; (14)

and in what follows we will refer to it as the K mechanism
contribution to the T-matrix. Similarly, for the K� contri-
bution we get

 A�	v � �e
g�KK�

m�K

gK�N��

q2 �m2
K�
�
	��k1
q�fv: (15)

For comparison with previous studies, we also write this
contribution for the case of the vector coupling of Eq. (9),

K+

p1

Λ*
2p

2k

k λ1

s
sΛ

γ

p

K−

p

FIG. 1 (color online). �p! ��K� tree level hadron mecha-
nisms constructed out of the Lagrangian densities given in
Eqs. (3)–(6). In the first diagram we also show our definition
of the kinematical �k1; k2; p1; p2� and polarization variables
�
; s�; sp�. In addition we use q � k1 � p1.

2We use a Rarita-Schwinger field to describe the �� reso-
nance, K� � �K��y annihilates a K� or creates a K� meson and
p destroys a proton and 
 � 1=137:036 is the fine-structure
constant.

3This contribution is readily obtained from the first diagram of
Fig. 1 by replacing the exchanged kaon by a vector K� meson.
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 A�	v0 � �e
g�KK�

m�K

g0K�N��

q2 �m2
K�
k1
q�

�
�
	��

q6
mK�

�
q�

mK�
�
	����

�
fv; (16)

where here again the form factor fv will be discussed
below. We remind here that q6 � M�� �MN , and
�q�u��p2; s�� � k�2 u��p2; s�� for on-shell baryons.
The first term in Eq. (16) is of the type of the contribution
in Eq. (15), and it is plausible to expect similar values for
g0K�N�� and gK�N�� , since �M�� �MN�=MK� � 2=3. The
second term in Eq. (16) is generated by a K��p d-wave
coupling to the �� resonance. In general, the interaction of
Eq. (9) contains two independent components. In terms of
multipoles, they are E1 and M2. In the E1 amplitude, the
orbital angular momentum of the decaying channel K��p
is s-wave, while in M2, it is d-wave. The E1 (M2) ampli-
tude is dominated by the first (second) term in Eq. (16). We
expect that the s-wave coupling will dominate near ��

threshold, where all involved three momenta at the hadron
vertex are small. We will apply the effective Lagrangian
method only near the threshold energy,

���
s
p
� 2 GeV, and

thus we do not expect sizable effects arising from the
second term in Eq. (16). The recent work of Hyodo et al.
[25] also assumes the dominance of the s-wave K�N��

component of vertex at low and intermediate energies.
The K� mechanism contribution to the T-matrix is given

by one of the above expressions, TK� � Tv or TK� � Tv0 .
Up to this point, the T-matrix is gauge invariant.

However, we ought to introduce the compositeness of the
hadrons. This is usually achieved by including form factors
in the amplitudes in such manner that gauge invariance is
preserved.4 There is no unique theoretical way to introduce
the form factors, this was discussed at length by Ohta [27]
and by Haberzettl et al. [28]. We adopt here the scheme
used in the previous works [12,13], where the prescription
of Ref. [28] was used. We take the following parameteri-
zation for the form factors:

 fi �
�4

�4 � �q2
i �M

2
i �

2 ; i � s; t; v (17)

 fc � fs � ft � fsft;

and
�
q2

s � s; q2
t � q2

v � q2

Ms � MN;Mt � mK;Mv � mK� :

(18)

In the expressions of the different contributions to TK and
TK� , given in Eqs. (11)–(13), (15), and (16), we have
already included the form factors. The form of fc is chosen
such that the on-shell values of the coupling constants are
reproduced.

B. String quark-gluon reaction mechanism

We introduce now the quark-gluon reaction mechanism,
based on the work of Kaidalov [14,29]. It is obvious from
the analysis of the experimental hadron cross section data
that the Reggeon and the Pomeron exchange mechanisms
play a crucial role at high energies, which was nicely
demonstrated by Donnachie and Landshoff [15].
Kaidalov demonstrated that the quark-gluon mechanism
involves the formation of the QCD string between colored
objects formed by high energy collisions and the reaction
cross section could be related with the Regge-slope, 
0,
and the intercept, 
�0�, in the Reggeon exchange model.
Hence, the reaction �p! K��� can be described by the
exchange of two valence (u and �s) quarks in the t-channel
with any number of gluon exchanges between them.
Alternatively, in terms of the Regge phenomenology, it
corresponds to a Reggeon (R) exchange, and thus the
scattering amplitude reads

 TqgR �
�g�KR �gRN��

MR
��s=s0�


�t�F�t� (19)

following the work of Grishina et al. [16]. F�t� is a form
factor which accounts for the compositeness of the external
(incoming and outgoing) hadrons with t � q2, the squared
of the four momentum transfer. We take F�t� �
F�K�t�Fp�� �t�with Gaussian forms for each of the vertices,
i.e. F��t� � exp�t=a2

��, and then the combined one is also
of Gaussian type,

 F�t� � exp�t=a2�: (20)

The constant s0 is taken as the Mandelstam variable s at
threshold [s0 � �mK �M�� �

2], and it is introduced to fix
the dimensions and to normalize the coupling constants.
On the other hand, 
�t� � 
�0� � 
0t is the Regge trajec-
tory associated to the Reggeon quantum numbers. We can
choose any of the K� or K�-trajectories or considering
both; we denote the different possibilities by R in Eq. (19).
On the other hand, it is customary to fix the coupling
constants to those used in the effective hadron
Lagrangian approach. However, this is not necessarily
true, since the exchanged Reggeon has its own extended
quark-gluon structure, and it does not have to couple to the
external hadrons with the same strength as the virtual
exchanged meson does within the effective Lagrangian
model. In addition, the strength of the couplings will also
depend on the election of s0. In Eq. (19), we use bars ( �g0s)
to differentiate the coupling constants from those appear-
ing in the previous subsection. The parameter a in Eq. (20),
which controls the t-exponential decrease of the form
factor and the coupling constants will be fixed to the
experimental data.

The spin structure of the Reggeon exchange comes from
the quark rearrangement process [30], for simplicity we do
not consider it in this study and, thus, we consider the

4For the sake of brevity and to avoid repeating similar equa-
tions, in Eqs. (11)–(13), (15), and (16), we have already included
form factors. Details are given in what follows.
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Regge amplitude independent of the incoming and out-
going particle helicities.

C. Hybrid hadron and Reggeon exchange model

We propose a hybrid mechanism to study the �p!
��K� reaction in a wide range of laboratory photon en-
ergies. At low energies, near threshold, we consider the
effective Lagrangian model discussed in Sec. II A, while
for higher photon energies we assume that the string quark-
gluon mechanism is dominant. We will implement a
smooth transition between both reaction mechanisms for
laboratory photon energies around 2.5 GeV. The invariant
differential cross section, d�=dt, reads

 

d�
dt
�

1

4�
MNM��

�s�M2
N�

2

�
1

4

X

;sp;s�

jTj2
�
; (21)

where the invariant Mandelstam variable t � �k1 � p1�
2

varies in the range t� � t � t�, with t
 � m2
K �

2j ~kc:m:
1 j�p0

1 � j ~p1j�
c:m:, with variables defined, for instance,

in the center of mass (c.m.) frame. Also of interest is the
angular differential cross section in the c.m. frame, which
is related to d�=dt by

 

d�
d�

��������c:m:
�
j ~kc:m:

1 jj ~pc:m:
1 j

�
d�
dt
: (22)

The sum over polarizations is trivially done for the Regge
amplitude, since we have neglected any spin dependence in
that case. In the case of the effective Lagrangian approach,
it can be easily done thanks to

 

X



���k1; 
��	��k1; 
� � �g�	 � � � � ; (23)

where the terms � � � are proportional to k�1 and/or k	1 and do
not contribute because of gauge invariance, and the tradi-
tional expressions for the sum of Dirac and Rarita-
Schwinger spinors. In this latter case, we use
 X
s�

u��p2; s�� �u	�p2; s�� � �
p6 2 �M��

2M��
P�	�p2�

P�	�p2� �

�
g�	 �

1

3
���	 �

2

3

p�2 p
	
2

M2
��

�
1

3

p�2 �
	 � p	2�

�

M��

�
: (24)

Finally, we get
 

1

4

X

;sp;s�

jTj2 �
1

16MNM��
g	� Tr��p6 2 �M�� �

	 P���p2�A
�	�k6 2 �MN��

0�A���y�0� (25)

with

 A�	 �
X
i

A�	i ; i � s; c; t; v or v0: (26)

We construct the T-matrix as a weighted combination of
the two reaction mechanism contributions,

 T � T�hadron��1� g�ELAB
� �� � T�quark�g�ELAB

� �;

T�hadron� � TK � TK� ; T�quark� � TqgR;
(27)

and for the weighting function g�E� we use

 g�E� �
1

1� exp���E� E0�=�E�
: (28)

We will fix E0 and �E by comparing with the experimental
data.

III. SU(6) WT UNITARY MODEL (�SU�6�-BSE) AND
THE ��1520� RESONANCE

The WT interaction Lagrangian, which is the leading
contribution in the chiral counting, has been the starting
point of all SU(3) chiral unitarity approaches developed in
recent years to study meson-baryon s-wave scattering. As
discussed in the Introduction, SU(6) spin-flavor symmetry
might provide a reasonable framework to incorporate
baryon decuplet and vector-meson nonet degrees of free-
dom in the study of hadron processes at low energies. A
consistent SU(6) extension of the WT SU(3) chiral
Lagrangian was presented in Ref. [18], and its general-
ization to an arbitrary number of colors and of colors and
flavors can be found in Refs. [31,32], respectively.

Following Ref. [18], the building blocks of this exten-
sion are the f35g and f56g representations5 of SU(6). The
first one is the adjoint representation of the SU(6) group,
and its SU(3) multiplet and SU(2) spin content is

 f35g � 81 � 83 � 13; (29)

where we denote a SU(3) multiplet � of spin J by �2J�1.
Hence, the pseudoscalar meson octet (K, �, �, and �K), and
the vector-meson nonet (K�, �,!, �K�, and�) belong to the
same SU(6) representation, f35g. The lowest mass baryons
belong to the f56g representation of SU(6), which is totally
symmetric allowing the baryon to be made of three quarks
in s-wave. Its spin-flavor (isospin and hypercharge) content
is determined by the decomposition

 f56g � 82 � 104 (30)

and it accommodates the spin 1=2� members of the nu-
cleon octet (N, �, �, and �) and the spin 3=2� members of
the � decuplet (�, ��, ��, and �).

We denote a meson state as M � 
��M�2JM�1; IM; YM�,
where JM, IM, YM are the spin, isospin, and the hyper-
charge quantum numbers of the meson. We use a similar
notation for baryon states B. The meson-baryon states are
then expressed in terms of the SU(6) coupled basis,
j�;�


2J�1IYi, as

5We label the SU(6) multiplets by a number, which is their
dimensionality, enclosed between curly brackets.
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 jMB; JIYi �
X
�;
;�

�M �B

IMYM IBYB

�������� �
IY

� �

	
35 56

�MJM �BJB

�������� �
�J


� �
j�;�


2J�1IYi;

(31)

where the first and second factors in the linear combination
are SU(3) and SU(6) Clebsh-Gordan coefficients, respec-
tively, and are given in Refs. [33,34]. In the SU(6) coupled
basis, � stands for the SU(6) irreducible representations
(� � f56g, f70g, f700g, and f1134g, from the reduction into
irreducible representations of the product f35g � f56g) and

 accounts for possible multiplicity of each of the �2J�1

SU(3) multiplets of spin J.
The assumption that the s-wave meson-baryon potential,

V, is a SU(6) invariant operator implies that j�;�

2J�1IYi

coupled states are eigenvectors of the potential and the
corresponding eigenvalues [V��s�], besides the
Mandelstam variable s, depend only on the SU(6) repre-
sentation �, being thus independent of the other quantum
numbers, �, 
, J, I, Y. Hence, the matrix elements of the
potential can be written as

 VJIYMB;M0B0 �s� � hM
0;B0; JIYjVjM;B; JIYi

�
X
�

V��s�P
�;JIY
MB;M0B0 (32)

with the projection operators given by

 P �;JIY
MB;M0B0 �

X
�;


35 56
�MJM �BJB

�������� �
�J


� �

	
�M �B

IMYM IBYB

�������� �
IY

� �

	
�0M0 �0B0
I0M0Y

0
M0 I0B0Y

0
B0

�������� �
IY

� �

	
35 56

�0M0J
0
M0 �0B0J

0
B0

�������� �
�J


� �
: (33)

We are now in a position to extract the four SU(6)
eigenvalues by relating them to those of the SU(3) matrix
elements of the WT interaction. The mesons of the pion
octet and the baryons of the nucleon octet interact through
the WT Lagrangian, being the corresponding potential [4–
6,8]

 VIYij �
���
s
p
� � DIY

ij

���
s
p
�M

2f2 ; (34)

where the indices i and j identify the final and initial
meson-baryon pair (quantum numbers I0M0Y

0
M0I
0
B0Y

0
B0 and

IMYMIBYB, respectively) and

 DIY
ij �

X
�;�;�0


��!��0

8 8
IMYM IBYB

����������

IY

� �

	
8 8

I0M0Y
0
M0 I0B0Y

0
B0

����������0

IY

� �
: (35)

Here, M is the baryon mass, f ’ 93 MeV the pion weak
decay constant, � runs over the 27, 10, 10�, 8, and 1 SU(3)
representations and �, �0 are used to account for the two
octets (8s and 8a) that appear in the reduction of 8 � 8. The
SU(3) eigenvalues 
’s, are 
27 � 2, 
8s � 
8a � �3,

1 � �6, 
10 � 
10� � 
8s$8a � 0 [9]. Note how chiral
symmetry determines all eigenvalues, which otherwise will
be totally independent and unknown for a generic SU(3)
symmetric theory.

To deduce the SU(6) eigenvalues, we study the reduction
of the SU(6) matrix elements of Eqs. (32) and (33) when
only the pion and nucleon octets are considered. It is clear
that not all SU(3) invariant interactions in the �81�-meson–
�82�-baryon sector can be extended to a SU(6) invariant
interaction. Remarkably, the seven couplings (
’s) in the
WT interaction turn out to be consistent with SU(6) and,
moreover, the extension is unique. Indeed, we find that by
taking

 V��s� � �
�

���
s
p
�M

2f2 ; (36)

with the coefficients �
’s given by

 

�
 56 � �12; �
70 � �18;

�
700 � 6; �
1134 � �2;
(37)

the SU(3) matrix elements described above [Eqs. (34) and
(35)] are completely reproduced. As discussed in Ref. [18],
the underlying chiral symmetry of the WT Lagrangian has
made possible the spin symmetry extension presented here.

Next we consider explicit SU(6) breaking effects due to
the use of physical (experimental) hadron masses and
meson decay constants. Hence, in Eq. (36), we make the
replacement

 

���
s
p
�M

2f2
!

2
���
s
p
�Mi �Mj

4fifj
: (38)

To describe the dynamics of resonances, one needs to
have exact elastic unitarity in coupled channels. For that
purpose, we solve the coupled channel BSE and use the
SU(6) potential defined above to construct its interaction
kernel. In a given JIY sector, the solution for the coupled
channel s-wave scattering amplitude, TJIY , satisfies exact
unitarity in coupled channels. In the so-called on-shell
scheme [9], and normalized as the t matrix defined in
Eq. (33) of the first entry of Ref. [8], it is given by
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 TJIY�s� �
1

1� VJIY�s�J
J
IY�s�

VJIY�s�; (39)

where JJIY�s� is a diagonal function in the coupled channel
space. Suppressing the indices, it is written for each chan-
nel as

 J�s� �
�
���
s
p
�M�2 �m2

2
���
s
p J0�s� (40)

 J0�s� � i
Z d4k

�2��4
1

�P� k�2 �M2 � i�

1

k2 �m2 � i�
;

(41)

where M and m are the masses of the baryon and meson
corresponding to the channel and P� is the total meson-
baryon four momentum (P2 � s). On the other hand, J0�s�
involves a logarithmic divergence which needs to be sub-
tracted,

 J0�s� � �J0�s� � J0�s � �M�m�
2�; (42)

where the finite �J0�s� function can be found in Eq. (A9) of

the first entry of Ref. [8]). It induces the unitarity right-
hand cut of the amplitude. Besides, the constant J0�s �
�M�m�2� hides the logarithmic divergence. It is renor-
malized by requiring

 J0�s � �2
0� � 0 (43)

at a certain scale�0. This defines our RS. A suitable choice
is to take �0 independent of J and set it uniformly within a

given IY sector as
���������������������
m2

th �M
2
th

q
, where �mth �Mth�

2 gives
the smallest threshold among all channels involved in an
IY sector [7].

Particularly for the ��1520� state, with quantum num-
bers I � 0, Y � 0, and J� � 3=2�, we have a total of 9
channels in the SU(6) scheme: ���, �K�N, !�, ��, K��,
��, ���, K��, and K���. The potential thus reads

 V�3=2;0;0� � D�3=2;0;0� 2
���
s
p
�Mi �Mj

4fifj
; (44)

where the symmetric coupled channel matrix D�3=2;0;0� is
obtained from Eqs. (32), (33), (36), and (37). It is given by

 D�3=2;0;0� �

�4 �
���
2
p

0 �4=
���
3
p

�
���
6
p

0 �
�����������
80=3

p ���
2
p

�
������
10
p

0
���
6
p ��������

2=3
p

0 0
�����������
10=3

p
0 0

0 2
���
2
p

0
������
20
p

�
��������
2=3

p �����������
10=3

p
�8=3 �

���
2
p

0 �
�����������
20=9

p ��������
2=3

p
�

�����������
10=3

p
�3 �2 �

������
10
p

0 �
������
15
p

2 0
�����������
16=3

p �����������
20=3

p
�16=3

�����������
10=3

p
�

�����������
50=3

p
�4=3

�����������
80=9

p
�11=3

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

���

�K�N
!�
��
K��

��
���

K��
K���

: (45)

Note we assume an ideal mixing in the vector-meson
sector, i.e., ! � 1��

2
p �u �u� d �d� and � � s�s, which induces

the use of some linear combinations of the isoscalar SU(3)
vector-meson mathematical states.6

We include an explicit breaking of the SU(6) symmetry
through the use of the experimental masses and the meson
decay constants: f� � 92:4 MeV [35], fK � 113:0 MeV
[35], f� � fK� � 153 MeV [from ���! e�e��, ���!
�	��, and ���! K�	��], f� � 163 MeV [from ���!
e�e��], and f! � f�.

IV. RESULTS AND DISCUSSION

We useM�� � 1519:5 MeV and charged nucleon, kaon,
and K� masses from the PDG [35]. Besides, we use

eg�KK� � 0:23 and gKN�� � 10:5 from the K�� ! K��
radiative,7 and the �� decay widths,8 respectively. Thus,
the only unknown parameters in the effective Lagrangian
approach are gK�N�� and the cutoff � entering in the
hadron form factors of Eq. (18).

A. The coupling gK�N��

We study here the dynamics of �� resonance within the
SU(6) model presented in Sec. III. Without including the

6In the vector-meson sector, Carter’s SU(6)-multiplet coupling
factors [34] are consistent with the election of �1 �

1��
3
p �u �u�

d �d� s�s� and �8 � �
1��
6
p �u �u� d �d� 2s�s� quark wave functions

for the SU(3) singlet and isospin singlet of the SU(3) octet,
respectively. The relative minus sign is absent in the pseudosca-
lar meson sector.

7From the Lagrangian of Eq. (7), we obtain [35]

 � �
1

96�
�eg�KK� �

2mK�

�
1�

m2
K

m2
K�

�
3
� 50:3 KeV: (46)

8From the Lagrangian of Eq. (4), we obtain for the �� ! pK�

decay width [35]

 � �
1

12�

g2
KN��

m2
K

j ~pc:m:j
3 M�� � p

0
c:m: �MN

M��

�
1

2
0:45	 15:6 MeV; (47)

where p�c:m: is the anti-kaon four momentum in the �� rest frame.
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vector mesons in the model, there exist only two channels
which contribute to the formation of the �� state, which are
�� �� and K ���. Since the mass of �� resonance is
very close to the threshold energy of the �� �� channel
( � 1520–1525 MeV), this channel dominates the dynam-
ics of ��. When the vector-meson degrees of freedom are
taken into account, there appear seven additional channels.
However, the dynamics of the �� resonance is almost
unaffected by the heavier ones. Thus, in very good ap-
proximation, we have considered the 4	 4 submatrix of
D�3=2;0;0� constructed out the first four rows and columns
(�� ��, �K� � N, !��, and ���). We solve the
coupled channel BSE and renormalize the amplitudes as
described above in Eqs. (39)–(43). We look for complex
poles of the T-matrix in the second Riemann sheet (SRS),
determined by continuity to the first Riemann sheet (FRS)
[8]. In a given JIY sector, physical resonances appear in
the SRS of all matrix elements of T�s� [Eq. (39)], in the
coupled channel space, differing only on the value of the
residue at the pole. The pole position determines the mass
and width of the resonance, while the different residues for
each meson-baryon channel give the respective couplings
and branching ratios (see section II D of the second entry of
Ref. [8]). Let us consider sR � M2

R � iMR�R a pole in the
SRS of the coupled channel scattering matrix T�s�. Then,
around the pole, it can be approximated by

 
T�s��ij � 2MR
gigj
s� sR

; (48)

where gigj is the residue matrix. The complex vector gi
determines the coupling of the resonance to the different
final states, which are well and unambiguously defined
even if the corresponding channels are closed in the decay
of the resonance.

As discussed above, after Eq. (43), to describe the I � 0,
Y � 0 sector, our standard choice would be �0 ����������������������
m2
� �M

2
�

q
� 1:2 GeV, for which we find a pole with

MR � 1528 MeV and �R � 42 MeV. This is a remarkable
result, since the SU(6) model predicts the existence of the
�� resonance. Within the model, it appears slightly above
the ��� threshold and that originates a nonvanishing
width, since the ��� channel is open. Experimentally,
the mass of the resonance is 1519.5 MeV, around 3 MeV
below the��� threshold, and its width is around 15.6 MeV
[it decays predominantly into d-wave �� and �KN pairs
and the three body mode ���, none of them considered in
the SU(6) model]. To better describe the dynamics of the
resonance, we have varied the renormalization scale in the
vicinity of 1.2 GeV. Results are displayed in Fig. 2. For
values of�0 below 1185 MeV, the pole appears in the FRS
and therefore it should be interpreted as ��� bound state.
Within our model it would be stable (zero width), since
none of the allowed decay modes (��, �KN, and ���) are
included in our two body s-wave approach. Scales in the
range 1160–1185 MeV provide masses around 1520 MeV.

In the figure we also show the couplings [Eq. (48)] of the
resonance �� to the ��� and �K�N channels (g��� and
g �K�N , respectively). We would like to make three remarks.

(i) Both couplings are determined up to an overall
minus sign.

(ii) The coupling gK�N�� [defined in Eq. (8)] is given by
g �K�N=

���
2
p

, where the
���
2
p

factor comes trivially from
the projection of the pK�� state into isospin zero.

(iii) Both couplings vanish when the �� resonance is
placed just at the ��� threshold; that is, when the
resonance can be interpreted as ��� state bound
with zero energy.

The latter remark has important phenomenological re-
percussions, since the actual position of the �� is quite
close to the ��� threshold and it would imply that gK�N��

coupling should be much smaller (we read off from the
figure a value around 0:75=

���
2
p

) than the values used in the
phenomenological analysis of Refs. [12,13]. It is easy to
understand this behavior of the coupling constants. Let us
start studying the simple case of the elastic scattering of a
meson of mass m off a baryon of mass M. The s-wave
scattering amplitude close to threshold can be then ap-
proximated by

 f�p� �
e2i��p� � 1

2ip
�

1

� 1

�

1
2 r

2
0p

2 � � � � � ip
;

p2 � 2�E; s � sth � 2�m�M�E

(49)

with 
 and r0 the scattering length and effective range,
respectively. Besides, sth � �m�M�

2 and � is the re-
duced mass. If there exists a bound state at s � sB very
close to threshold,9 one can drop the scattering range term

 50
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ER ± ΓR/2

gπ Σ*

gK
- *N

Re gK
- *N

Im gK
- *N

Re gπ Σ*

Im gπ Σ*

FIG. 2 (color online). �SU�6�-BSE predictions for the ��

resonance pole position (MR � m� �M�� � ER, �R) and cou-
plings [Eq. (48)] to the ��� and �K�N channels as a function of
the renormalization scale �0.

9It is to say, the scattering amplitude has a pole for a real value
of s � sB � sth. In Fig. 2, it would correspond to ER � 0.
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and the scattering length can be approximated by 
�
1�����������

2�jEBj
p , where EB�<0� � �sB � sth�=2

������
sth
p

is the binding

energy of the bound state. In this situation for both above
(E> 0) and below (E< 0) threshold, but close to it, f can
be written as

 f�p� �
�1�������
2�
p

��������
�E
p

�
�����������
�EB
p

E� EB
; (50)

and therefore the residue of the f at the pole is given by
�

������������������
2jEBj=�

p
. Since the scattering amplitude and the

T-matrix close to threshold are related by f �
� M

4��m�M�T, from Eq. (48) we obtain

 g2 � 4�
m
�

������������
2jEBj
�

s
: (51)

Therefore the square of the coupling of the bound state to
the channel scales like the square root of the binding
energy. The same result can be found just by looking
directly for poles of T [Eq. (39)] in the FRS. Indeed,
following Ref. [9], the position of the pole, sB, is such
that the dimensionless function

 ��s� �
2f2

J�s��
���
s
p
�M�

; (52)

at s � sB, becomes10 D. In addition,

 g2 � D2

�����
sB
p
�M

2f2

1

�0�sB�
(53)

and it reduces to Eq. (51) when sB is close to threshold. The
behavior of g2 with jEBj follows from the behavior of
dJ=dsjsB when sB is close to sth, where it diverges like

1=
�����������������
sth � sB
p

� �2�m�M���1=2=
���������
jEBj

p
, and therefore

�0�sB� does also diverge in that limit.
Similar conclusions can be drawn in the general case,

when coupled channels are considered. However, in that
case, D, �, and J are matrices and some subtleties appear.
Nevertheless, the behavior of the coupling of the bound
state to the different channels can be analytically worked
out. We find that, if there exists a bound state very close to
the smallest of the thresholds (let us take an ordering such
that this channel is the first one), the sum of the squares of
the couplings of this bound state to the different channels
vanishes as the binding energy approaches to zero. Indeed,
it can be proved that this sum scales again as

���������
jEBj

p
, i.e.

 

X
i

g2
i �

1

c2 1

4�m�

�������
2jEB j
�

q � � � �
; (54)

where c is a coefficient related with the projection of the

resonance wave function into the first channel, m and M
are the masses of the meson and baryon in this channel,
EB � �sB � �m�M�2�=2�m�M�, and the dots stand for
some contributions which remain finite in the jEBj ! 0
limit. Note that the sum over i in the above equation runs
over all channels, and since all couplings are real, it implies
that all terms in the sum must vanish. For jEBj � 2:5 MeV,
we find

P
ig

2
i � 2:75, which is largely saturated by g��� ,

leaving little room for g �K�N .
Of course, if one is working with a unique channel, c �

1, we recover Eq. (51). However, if the resonance does not
couple to the first channel, c � 0 and g1 � 0, then we
cannot conclude anything about the rest of the couplings.

The results of Fig. 2 favor values of the coupling con-
stant gK�N�� around 0.5 or smaller, which, following the
discussion below Eq. (16), will correspond to a value of
g0K�N�� of about 0.75 and it constitutes one of the major
results of this work. This value is significantly smaller than
the values of around 10 used in the phenomenological
analysis of Nam et al. [12] and Titov et al. [13]. From
the discussion above and taking into account the proximity
of the �� to the ��� threshold, we have compelling
reasons to expect such a small value for this coupling
constant.

Hyodo et al. [25] find g0K�N�� � 1:5=
���
2
p

within an ex-
tended SU(3) chiral unitary model,11 which accounts for
the baryons of the decuplet and for some d-wave contri-
butions, and where an effective Lagrangian is used to
include the �K� degrees of freedom. Our approach instead
provides directly the coupling of the �� to �K�N because
�K�N, together with other vector-meson-baryon states, are

part of the basis of the coupled channels. These latter states
are not considered in the coupled channel approach of
Ref. [25]. Nevertheless, it is reassuring that the value
quoted in [25] for g0K�N�� � 1:5=

���
2
p
� 1:1 is similar to

ours ( � 0:75), and in any case it is much smaller than
that used in the previous phenomenological studies of the
�p! K��� reaction.

From the findings of this subsection, we conclude that
the K� mechanism is much smaller than the K one. We
drop hereafter completely the K� contribution in the effec-
tive Lagrangian approach.

B. �p! K��� cross section

We use a hybrid approach, and assume that the quark-
gluon string mechanism dominates the �p! K��� reac-
tion at photon energies well above threshold, where the
experimental data exist. The quark-gluon string model
accounts, in principle, for both the K and the K�

Reggeon exchange processes. For these trajectories, we use

10In the case of only one channel, D is a 1	 1 matrix, it is to
say a real number.

11The
���
2
p

factor is implemented here because the value 1.5
quoted in Ref. [25] refers to the K�N�� coupling in isospin basis
(I � 0).
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K�t� � �0:20� 0:8t= GeV2 (55)

 
K� �t� � 0:36� 0:8t= GeV2; (56)

where we have taken slopes around 0:8 
GeV�2� that
provide, as we will show, a reasonable description of the
d�=dt data, and are not far from the value of around 0.9
used in Ref. [13]12 or of 0.93 deduced from the �-trajectory
[36]. The intercepts, 
�0�, are determined by requiring

K�m2

K� � 0 and 
K� �m2
K� � � 1.

We show in Fig. 3 the energy dependence of the photon
induced �� production cross section with both Regge
trajectories. We use a cutoff a in Eq. (20) of 1 GeV, which
is of a natural size in hadron physics. To describe the
overall normalization of the data, we take �g�KK �gKN�� �

egKN�� 	 0:12 and �g�KK� �gK�N�� � eg�KK�gK�N�� 	 4:24.
We see that the K Regge trajectory provides a better
description of the data than the K� one in the energy range
studied here. Of course, this conclusion is affected by the
choice of the cutoff parameter a in the Gaussian form
factor of Eq. (20). The larger a, the better description of
data is obtained with the K�-trajectory, since the slope (in
absolute value) of the cross section with respect ELAB

�

increases. Nevertheless, the description obtained from the
K-trajectory is always better. To find a more or less com-
parable description from both trajectories, we need to use
values of a above 10 GeV. For those values of a and the
energies explored in this work, the form factor F is in
practice 1, which is somehow unrealistic. We remind
here also that, to make both the K- and K�-Regge contri-
butions similar in size, we should rescale one over the other
by a factor of the order 1200 [�4:24=0:12�2].

Thus, here again we conclude that the K Reggeon
mechanism is more favored by data than the K� Reggeon
one, which will be neglected in what follows.

Next, we pay attention to d�=dt and test the dependence
of the Regge results on the cutoff parameter a. This dif-
ferential cross section, averaged over the incident LAB
photon energy range 2:8 GeV � ELAB

� � 4:8 GeV, has
been measured in the Daresbury experiment [26]. In
Fig. 4, we compare these measurements with our
K-Reggeon exchange results for three values of a around
1 GeV and using an average energy ELAB

� � 3:8 GeV.
First, the figure shows that our election for the Regge slope

0K�0� � 0:8 
GeV�2� provides a fair description of the
t-dependence of the differential cross section when the
Gaussian cutoff is fixed to values around 1 GeV. Second,
we see a mild dependence of the results on a, and find that
the use of a � 1 GeV provides a slightly better description
of the t-dependence of the differential cross section.

Hybrid hadron/K-Reggeon exchange model results for
the �p! K��� total cross section are shown in Fig. 5
from threshold up to photon energies (in the LAB frame)
around 5 GeV. We always neglect the K�-contributions,
both in the hadron and in the quark-gluon string model. In
the effective hadron Lagrangian model, we neglect the
terms affected by the fs form factor, since they are greatly

FIG. 3 (color online). �p! K��� total cross section (in units
of �b) from the quark-gluon reaction mechanism, as a function
of the photon energy in the LAB frame. The solid (dashed) curve
has been obtained with the K � �K��� Regge trajectory. The
cutoff parameter a in the Gaussian form factor of Eq. (20) is set
to 1 GeV. The experimental data are taken from Ref. [26].

FIG. 4 (color online). �p! K��� differential cross section
(d�=dt) from the K-Reggeon exchange mechanism, as a func-
tion of ��t� for ELAB

� � 3:8 GeV. We use three values for the
cutoff parameter a in the Gaussian form factor of Eq. (20): a �
1 GeV, a � 0:75 GeV, and a � 1:25 GeV, which results corre-
spond to the solid, dashed, and dash-dotted curves, respectively.
In the latter two cases, the results have been scaled up and down
by factors 3=2 and 0.85, respectively. The experimental data
points, taken from [26], stand for the K��� photoproduction
differential cross section d�=dt averaged over the incident LAB
photon energy range 2:8 GeV � ELAB

� � 4:8 GeV of the
Daresbury experiment.

12Note, however, that the K�-trajectory used in this reference
does not lead to 
K� �m2

K� � � 1. Indeed, it is much closer to our
K-trajectory than to the K�-one, in the t-range 
�1:0� GeV2 of
interest in this work.
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suppressed by it [12]. We have examined two different
values of the cutoff � entering in the hadron form factors
of Eq. (18), and as can be appreciated in the figure, the
predictions depend drastically on the precise used value.
For the weighting function of Eq. (28), which characterizes
the hybrid model, the values E0 � 2:3 GeV (for � �
0:75 GeV) and 2.0 GeV (for � � 1 GeV) and �E �
0:1 GeV have been used.

We also show, in Fig. 5, results from the K Reggeon
exchange model in the entire photon energy range. This
latter reaction mechanism leads to cross sections of about

2 �b at ELAB
� � 2 GeV. It would be highly desirable to

count with experimental measurements of the cross section
around these energies, for which occur the transition be-
tween the hadron and the string quark-gluon reaction
mechanisms [10].

Finally, in Fig. 6 we present results for the ELAB
� �

2 GeV c.m. angular distributions from the three models
studied in Fig. 5. For all cases the differential cross section
peaks forward and gradually fall down as the c.m. angle
increases.

V. CONCLUSION

We have studied the photon induced �� production
using both an effective hadron model and a quark-gluon
string approach, in a wide range of laboratory photon
energies from threshold up to 5 GeV.

We have studied first the coupling constant gK�N��

within the SU(6) chiral unitary model proposed in
Ref. [18], and found that this coupling constant is of the
order of 0.5. This value is much smaller than both the value
used by phenomenological studies and that of gKN�� ,
determined by the �� decay width. Hence, we conclude
that the contribution of t-channel K� exchange in the
effective Lagrangian approach is much smaller than that
due to the exchange of the pseudoscalar K meson, and it
can be safely neglected. One might link this to an appre-
ciable violation of the spin-flavor SU(6) symmetry in the
meson sector, which in contrast to the situation in the
baryon sector, is not a direct consequence of large Nc
QCD.13 However, this is somehow unclear because first,
the electromagnetic �KK and �KK� vertices are different
and second, anti-kaons can only excite the 3�

2 resonance ��

through d-wave interactions with nucleons, while here we
have considered a s-wave �K�N�� coupling.

We have also discussed the existing connection between
the small value found for gK�N�� and the proximity of the
�� mass to the ��� threshold.

We have also shown that the quark-gluon string reaction
mechanism, realized in the Reggeon exchange model, is
able to reproduce the available experimental data in the
region from ELAB

� � 2:8 GeV up to 5 GeV. Here again, we
find that the K-trajectory, with a 1 GeV cutoff parameter
for the Gaussian form factor, reasonably describes the
energy and angular dependence of the cross section.

We should also mention that Titov advocated for the
very first time a quark-gluon string approach to study the
�p! K��� reaction [13]. However, he assumed a clear
dominance of the K� t-exchange contribution in the hadron
approach near threshold and to describe the higher energy
region, where the data lie, he used a Reggeization of theK�

meson propagator. We would like to make here two re-

FIG. 6 (color online). Center of mass differential cross section
predicted by the three theoretical models of Fig. 5 for ELAB

� �

2 GeV.

FIG. 5 (color online). Predictions from different models and
data [26] for the �p! K��� total cross section as a function of
the LAB photon energy. Results from the quark-gluon mecha-
nism �a � 1 GeV� are shown by the solid curve. The other two
curves display the hybrid hadron/K-Reggeon exchange model
results (see Sec. II C) for two different values of the cutoff �
entering in the hadron form factors of Eq. (18). The dashed and
dash-dotted lines stand for the results obtained with � �
0:75 GeV and � � 1 GeV, respectively. In the latter (former)
case, we use E0 � 2:0�2:3� GeV, while the parameter �E is set
in both cases to 0.1 GeV.

13Large Nc, like SU(6), places the N and � states and their
SU(3) partners into a single multiplet. However, in the large Nc
limit, the K and K� mesons do not belong to the same multiplet.
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marks. First, our results for the K�N�� coupling contradict
Titov’s assumption that the K� t-exchange is the dominant
mechanism near threshold (he used a value for this cou-
pling around a factor 10 larger than that deduced here).
Second, and as we have already mentioned, the
K�-trajectory used in this reference does not lead to

K� �m

2
K� � � 1. Indeed, it is much closer to our

K-trajectory than to the K�-one in the t-range where the
data have been measured.

We have smoothly extended this Reggeon exchange
model down to smaller energies and found that it leads to
cross sections of around 2�b in the ELAB

� � 2 GeV region.
We have then proposed a hybrid model to connect with the
meson-baryon approach. Finally, we have shown that the
effective Lagrangian model predictions depend largely on
the hadron form factor. It would be very important to
compare with experimental measurements of the cross

sections in the energy region of ELAB
� � 2 GeV in order

to determine this form factor and also to better understand
the transition between the meson-baryon and the quark-
gluon mechanisms.

ACKNOWLEDGMENTS

H. T. acknowledges the hospitality of the Departamento
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