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We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and
theoretical results for electroweak form factors and for parton densities. In particular, we construct a
model for the generalized parton distribution that relates the asymmetry s�x� � �s�x� between the
longitudinal momentum distributions of strange quarks and antiquarks with the form factor Fs1�t�, which
describes the distribution of strangeness in transverse position space.
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I. INTRODUCTION

The distribution of strange quarks and antiquarks is a
nontrivial aspect of nucleon structure. Whereas the pres-
ence of these nonvalence degrees of freedom is not surpris-
ing, given that gluons can split into s�s pairs, their relative
abundance compared with u �u and d �d pairs reflects the role
of quark masses in nonperturbative dynamics. Further-
more, asymmetries in the distribution of s and �s are not
generated by the simple splitting g! s�s and hence are
footprints of more subtle dynamical mechanisms.
Quantities that have received considerable attention in
the recent literature are form factors of electroweak cur-
rents, which are accessible through parity violation in
elastic lepton-nucleon scattering, and the difference be-
tween the momentum distributions of strange quarks and
antiquarks, which has, in particular, shown to be relevant
for the determination of the weak mixing angle from deep
inelastic neutrino-nucleon scattering [1]. In the present
work we point out interrelations between different mea-
sures of strangeness and connect two of them quantita-
tively in a particular model.

A number of quantities related to strangeness in the
nucleon are matrix elements of local operators. In view
of our remarks in the previous paragraph, it is important to
note the behavior of these operators under charge conju-
gation. In particular, the electromagnetic current is C odd
and hence sensitive to the difference between contributions
from s and �s. In contrast, operators like the axial vector
current, the energy-momentum tensor or the scalar current
areC even and thus add the contributions from s and �s. (We
recall that the scalar current �ss is relevant in connection
with the pion-nucleon � term, see e.g. [2].) Large values of

nucleon matrix elements would be more surprising for C
odd operators than for C even ones, since for C odd
operators they necessitate important effects beyond simple
g! s�s fluctuations.

The unpolarized parton densities s�x�, �s�x� and their
longitudinally polarized counterparts �s�x�, ��s�x� are ex-
pectation values of nonlocal operators and give the mo-
mentum distribution of strange quarks or antiquarks in a
fast moving nucleon. Specific moments of these distribu-
tions are associated with local operators of definite C
parity, as we will specify shortly.

A suitable framework to discuss relations between vari-
ous quantities describing nucleon structure is provided by
generalized parton distributions. They are matrix elements
of the same nonlocal operators that define the usual parton
densities, but taken between proton states of different
momenta. Throughout this work we consider these distri-
butions at zero skewness � � 0, and for brevity we will not
display this variable. For our discussion it is useful to
introduce distributions
 

H �q�x; t� � �Hq��x; t�;

E �q�x; t� � �Eq��x; t�;

~H �q�x; t� � ~Hq��x; t�;

(1)

where the different signs on the right-hand side reflect the
different behavior of vector and axial vector operators
under charge conjugation. Hq�x; t�, Eq�x; t� and ~Hq�x; t�
respectively correspond to Hq�x; � � 0; t�, Eq�x; � � 0; t�
and ~Hq�x; � � 0; t� in the notation of [3,4]. Taking t � 0
and x > 0 we obtain the usual quark and antiquark den-
sities of the proton as

 Hq�x; 0� � q�x�; H �q�x; 0� � �q�x�;

~Hq�x; 0� � �q�x�; ~H �q�x; 0� � � �q�x�:
(2)

A two-dimensional Fourier transform with respect to t

*markus.diehl@desy.de
†feldmann@hep.physik.uni-siegen.de
‡kroll@physik.uni-wuppertal.de

PHYSICAL REVIEW D 77, 033006 (2008)

1550-7998=2008=77(3)=033006(15) 033006-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.033006


gives the so-called impact parameter densities

 q�x; b� �
Z d2�
�2��2

e�ib��Hq�x; t � ��2�;

�q�x; b� �
Z d2�
�2��2

e�ib��H �q�x; t � ��2�;

(3)

which specify the spatial distribution of quarks or anti-
quarks with longitudinal momentum fraction x in the
transverse plane, where the impact parameter b is the
transverse distance of the parton from the center of the
proton [5]. Impact parameter densities �q�x; b�, � �q�x; b�
for longitudinally polarized quarks and antiquarks in a
longitudinally polarized proton are obtained from
~Hq�x; t�, ~H �q�x; t� in full analogy to (3). The Fourier trans-
forms of Eq�x; t�, E �q�x; t� describe the dependence of the
impact parameter distribution of unpolarized quarks or
antiquarks on transverse nucleon polarization [5].

The distributions just introduced are connected with the
form factors mentioned above by sum rules, i.e. by inte-
grals over the momentum fraction x. In particular, the
lowest moments

 Fs1�t� �
Z 1

�1
dxHs�x; t� �

Z 1

0
dx�Hs�x; t� �H �s�x; t�� ;

(4)

 Fs2�t� �
Z 1

�1
dxEs�x; t� �

Z 1

0
dx�Es�x; t� � E�s�x; t�� (5)

give the strange Dirac and Pauli form factors, which are
defined as
 

hp�p0�j�s��sjp�p�i � Fs1�t� �u�p
0���u�p�

� Fs2�t� �u�p
0�
i����p0 � p��

2mp
u�p�;

(6)

where t � �p� p0�2 and mp is the proton mass. Their
normalization is

 Fs1�0� � 0; Fs2�0� � �s; (7)

where the first condition reflects that the proton has no net
strangeness, whereas the second condition involves the
strangeness magnetic moment �s. Note that the contribu-
tions of Fs1 and Fs2 to the electromagnetic form factors of
proton and neutron appear with a charge factor es � �1=3.
The sum rules (4) and (5) involve the difference of quark
and antiquark distributions, as it must be for form factors of
the current �s��s. Taking the Fourier transform as in (3) we
see that

 

Z d2�
�2��2

e�ib��Fs1�t � ��2� �
Z 1

0
dx�s�x; b� � �s�x; b��

(8)

describes the difference between the transverse spatial
distributions of strange quarks and antiquarks, averaged

over their momentum fraction x. Similarly, the Fourier
transform of Fs2 describes the different dependence of the
impact parameter distributions on transverse nucleon
polarization.

Further important moments are

 As2;0�t� �
Z 1

�1
dx xHs�x; t�

�
Z 1

0
dx x�Hs�x; t� �H �s�x; t�� ; (9)

which is a form factor of the energy-momentum tensor for
strange quarks, and the strange-quark contribution to the
axial form factor,

 FsA�t� �
Z 1

0
dx ~Hs�x; t� �

Z 1

0
dx � ~Hs�x; t� � ~H �s�x; t�� ;

(10)

which contributes to elastic lepton-nucleon scattering via Z
exchange. Both form factors belong to charge-conjugation
even currents and thus sum over quark and antiquark
distributions.

Using (2) we can connect the values of form factors at
t � 0 with moments of the usual quark and antiquark
densities. In particular, the first condition in (7) is equiva-
lent with hs� �si � 0, where we introduced the shorthand
notation

 hfi �
Z 1

0
dx f�x�: (11)

In contrast, we have nonzero values for

 As2;0�0� � hx�s� �s�i; FsA�0� � h�s� ��si; (12)

which, respectively, give the fractional contributions of
strange quarks and antiquarks to the longitudinal momen-
tum and to the spin of the proton. There is no analogous
relation for the second condition in (7) since Es�x; t� and
E�s�x; t� do not reduce to any parton density for t � 0. Let
us however mention that their Fourier transforms with
respect to t satisfy positivity constraints involving the
unpolarized and polarized quark or antiquark densities [6].

In order to obtain a quantitative feeling for the role of
strange quarks and antiquarks in the proton, we briefly
review in Sec. II the current experimental knowledge of
the form factors Fs1 and Fs2 and of strange parton distribu-
tions. In Sec. III we mention a number of approaches to
calculate the form factors and the momentum asymmetry
s�x� � �s�x� theoretically, which will indicate dynamical
mechanisms that can give rise to these C odd quantities.
In Sec. IV we develop a model for Hs�x; t� �H �s�x; t� and
use it to connect at a quantitative level the asymmetry
s�x� � �s�x� with the form factor Fs1�t�. According to (8)
we thus connect the asymmetry between strange-quark and
antiquark distributions in longitudinal momentum with the
one in transverse spatial position. Our results are summa-
rized in Sec. V.
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II. EXPERIMENTAL RESULTS FOR STRANGE
FORM FACTORS AND PARTON DENSITIES

A. Electromagnetic form factors

The strange form factors can be extracted from parity
violation in elastic electron scattering on a nucleon [7–14].
Experiments typically measure a linear combination of the
electric and magnetic form factors Gs

E and Gs
M at a low

value of the momentum transfer. This can of course be
converted into a linear combination of Fs1 and Fs2, using the
relations

 Fs1 �
Gs
E � �G

s
M

1� �
; Fs2 �

Gs
M �G

s
E

1� �
; (13)

where � � �t=4m2
p. Recent experimental results at low�t

are compiled in Table I. Inspection of the table reveals that
only the strange Dirac form factor is fairly well deter-
mined, whereas Fs2 suffers from large uncertainties. It is
also evident that the recent HAPPEX data [14] have sig-
nificantly smaller errors than the other measurements.
Unfortunately the two form factor combinations given in
[14] are for different values of t. The determination of the
individual form factors therefore requires an assumption
about their t dependence. A simple way to proceed is to
ignore the difference in t of the two measurements. From
the corresponding two entries in Table I one then obtains

 Fs1�t ’ �0:1 GeV2� � 0:003�12�;

Fs2�t ’ �0:1 GeV2� � 0:05�26�:
(14)

This result is graphically represented in Fig. 1. The use of
all data near t � �0:1 GeV2 in Table I does practically not
change Fs1, whereas Fs2 becomes substantially larger but
stays within the error quoted in (14).

An alternative method has been used in [15], where a
parametrization of the small t behavior of the strange form
factors was fitted to all data below �t � 0:3 GeV2. With
the results updated in [16], the authors of this study obtain
[17]

 Fs1�t� � �t	 0:02�11� GeV�2; Fs2�t� � �0:01�25�;

(15)

for �t 
 0:3 GeV2, which at �t � 0:1 GeV2 is fully
compatible with our simple estimate (14). The analysis in
[15,16] includes the data of the G0 Collaboration [13] with
their very fine binning in t, which we have not listed in
Table I.

We remark that the experimental values quoted here are
subject to theoretical uncertainties due to the effects of
two-photon and of �Z exchange, which have been dis-
cussed in [18–20] and may not be negligible.

B. Unpolarized parton densities

The determination of parton densities (PDFs) from un-
polarized hard scattering processes has made significant
progress in the recent decade, in particular, thanks to data
with high precision and a large kinematical reach from

TABLE I. Data for the strange form factors at low �t. Statistical and systematic errors have been added in quadrature. We quote
results for Gs

M or Gs
E � �G

s
M and the equivalent ones for Fs1 � �

0Fs2.

Experiment �t �GeV2� Gs
E, Gs

M Fs1, Fs2

SAMPLE [7] 0.100 Gs
M � 0:37�34� Fs1 � F

s
2 � 0:37�34�

A4 [8] 0.23 Gs
E � 0:225Gs

M � 0:039�34� Fs1 � 0:130Fs2 � 0:032�28�
HAPPEX [9] 0.477 Gs

E � 0:392Gs
M � 0:014�22� Fs1 � 0:184Fs2 � 0:010�16�

A4 [10] 0.108 Gs
E � 0:106Gs

M � 0:071�36� Fs1 � 0:068Fs2 � 0:064�33�
HAPPEX [11] 0.091 Gs

E � �0:038�43� Fs1 � 0:026Fs2 � �0:038�43�
HAPPEX [12] 0.099 Gs

E � 0:080Gs
M � 0:030�28� Fs1 � 0:048Fs2 � 0:028�26�

HAPPEX [14] 0.077 Gs
E � 0:002�16� Fs1 � 0:022Fs2 � 0:002�16�

HAPPEX [14] 0.109 Gs
E � 0:090Gs

M � 0:007�13� Fs1 � 0:054Fs2 � 0:006�12�
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FIG. 1 (color online). Results from [14] for the strange form
factors at t ’ �0:1 GeV2. The dark (violet) band represents the
result for Gs

E, and the light (yellow) band the one for Gs
E �

0:09Gs
M. If one neglects the difference of the associated t values

one obtains the central value given in (14), which is shown as a
bullet. Also shown are the corresponding 1� and 2� ellipses.
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HERA and from the Tevatron. The knowledge of strange
distributions is much less advanced, because the observ-
ables that dominate global fits of parton densities have little
sensitivity to s or �s. This holds, in particular, for inclusive
deep inelastic scattering (DIS) in kinematics where photon
exchange is dominant. More specific constraints on s and �s
distributions come from fixed-target DIS experiments with
� and �� beams. Thanks to such measurements, there have
recently been dedicated attempts to determine s�x� and �s�x�
without strong assumptions on their relation with the light
sea quark distributions �u�x� and �d�x�.

In Table II we give the moments hx�s� �s�i obtained in
recent PDF extractions. The study in [21] was dedicated to
strangeness and explored a number of fits at NLO in 	s.
The extractions in [22,23] were performed at NNLO. The
table also gives the moment hx� �u� �d�i, whose values
range from 6:21	 10�2 to 6:79	 10�2 and thus show a
much smaller spread than for hx�s� �s�i. The ratio of
hx�s� �s�i and hx� �u� �d�i is between 0.36 and 0.72 and
quantifies the suppression of strangeness in the light quark
sea. We furthermore show the flavor asymmetry hx� �u�
�d�i, which like hx�s� �s�i is not generated by simple g!
q �q splitting and hence requires more subtle dynamics in
order to be nonzero. The ratio of hx� �u� �d�i and hx� �u� �d�i
varies between �7% and �14%. The parton densities
corresponding to the entries in the table are plotted in
Fig. 2. We note that there are no experimental constraints
on �u�x� � �d�x� at small x, so that the large difference
between the results of [21–23] for this combination of
densities is a consequence of the different functional forms
assumed in the fits.

The CTEQ6.5S study [21] also performed fits where s�x�
and �s�x�were allowed to be different. An essential input for
constraining this difference are the CCFR and NuTeV data
for dimuon production in � and �� DIS [24]. The parame-
trization in [21] was chosen such that s�x� � �s�x� has
precisely one zero crossing. The resulting momentum
asymmetry at scale � � 2 GeV was found to be

 hx�s� �s�i �

8><
>:

2:0	 10�3 �set� 0�;
�0:94	 10�3 �set� 1�;
2:9	 10�3 �set� 2�;

(16)

where set �0 corresponds to the best fit, whereas sets �1
and�2 were chosen to give the smallest and largest values

of hx�s� �s�i, respectively. The ratio of hx�s� �s�i and
hx�s� �s�i in the three fits has respective values 5.4%,
�2:7% and 7.2%, which is somewhat smaller in size than
the ratio of hx� �u� �d�i and hx� �u� �d�i in the nonstrange
sector. The left panel in Fig. 3 shows the asymmetry s�x� �
�s�x� obtained in these fits. We note that the best fit (set�0)
is quite similar to preliminary results obtained by the
MSTW Collaboration [25]. It should be emphasized that
a wider range of shapes is obtained if one allows for a
variation of the small-x behavior of s�x� � �s�x�, which is
not well constrained by data. This is documented in a
previous study by CTEQ [26] and shown in the right panel
of Fig. 3.

C. Polarized parton densities

The polarization of strange quarks and antiquarks in the
proton is not well known at present, for similar reasons as
in the case of unpolarized parton densities. Many determi-
nations of polarized PDFs in the literature, such as those in
[27–29], are restricted to the structure functions for inclu-
sive DIS with electron or muon beams, which does not
permit a separate determination of strange densities. This is
highlighted in the ‘‘valence’’ scenario of [27], which as-
sumes ��s�x� � �s�x� � 0 at the starting scale � �
0:63 GeV of evolution. This gives a tiny moment h�s�
��si � �4	 10�3 at � � 1 GeV. The study in [30] addi-
tionally fits RHIC data for �0 production, which has no
particular sensitivity to strangeness either. A process that is
specifically sensitive to strangeness is semi-inclusive kaon
production in DIS, which has been measured by HERMES
[31]. The study by de Florian et al. [32] includes these data
and gives two sets of fits corresponding to different frag-
mentation functions. It does not assume flavor SU(3) sym-
metry in the polarized sea, allowing ��s�x� to differ from
� �u�x� and � �d�x�. We note that a recent analysis of semi-
inclusive hadron production by COMPASS reported evi-
dence that the polarized sea is not flavor symmetric and
that h� �ui and h� �di may have opposite signs [33]. All
analyses performed so far assume ��s�x� � �s�x�.

In Table III we list the values obtained in recent analyses
for the first moment h�s���si. Note that 1=2 times this
moment gives the contribution of strange quarks and anti-
quarks to the total spin 1=2 of the nucleon. The values from
the analyses [27–30] have been obtained with parametri-

TABLE II. Results of different PDF fits for the moments hx�s� �s�i, hx� �u� �d�i and hx� �u� �d�i. All numbers are given in units of
10�2 and refer to the scale � � 2 GeV in the MS scheme.

CTEQ6.5S [21]
Set 0 1 2 3 4 �0 �1 �2 Alekhin 06 [22] MRST 2006 [23]

hx�s� �s�i 3.35 2.46 4.44 2.45 4.30 3.72 3.48 4.04 3.40 3.89
hx� �u� �d�i 6.55 6.79 6.21 6.74 6.35 6.54 6.65 6.37 6.56 6.77
hx� �u� �d�i �0:72 �0:75 �0:69 �0:74 �0:69 �0:74 �0:76 �0:45 �0:56 �0:92
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FIG. 2 (color online). Different combinations of parton densities at � � 2 GeV. Left: comparison of the different sets from
CTEQ6.5S [21]. Right: comparison of set 0 from CTEQ6.5S [21] with Alekhin 06 [22] and MRST 2006 [23].
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zations where the polarized sea quark densities are equal,
� �u�x� � � �d�x� � ��s�x�, so that they should not be re-
garded as specific determinations of the polarization of the
strange sea. Rather, they indicate that the contribution
of sea quarks to the nucleon spin is negative and of mod-
erate magnitude. The different results of the study [32]
illustrate that a flavor decomposition of this contribution is
currently affected with considerable uncertainties. The
numbers do not suggest that the strangeness contribution
to the nucleon spin is very much suppressed compared
with the light flavors �u and �d, but further data and analyses
are clearly necessary to settle this issue. As a further
word of caution we remark that an important fraction
of the moments in Table III comes from the region of
small x, where the polarized densities are not con-
strained by data. Quantitative discussions are given in
[28,31].

III. THEORETICAL APPROACHES

A. Electromagnetic form factors

The strangeness contributions to the electromagnetic
and axial form factors of the nucleon have been studied
in a large number of theoretical approaches (with many
studies focusing on the strange magnetic moment or the
electric charge radius). Detailed reviews and discussions
can be found in [7,35,36]. In Table IV we list a small
number of recent results for the strange Dirac form factor
at �t � 0:1 GeV2. We find a substantial spread between
these results and remark that several of them are outside the
range �0:009 
 Fs1 
 0:015 obtained from the experi-
mental values (14) and (15).

The calculation of strange form factors is challenging in
many theoretical approaches. A large number of studies are
based on the meson cloud picture, where the nucleon

TABLE III. Lowest moments of polarized parton densities. All analyses shown set �s�x� � ��s�x�, and all except for [32] take
� �u�x� � � �d�x� � ��s�x�. The corresponding PDFs have been determined at NLO accuracy in the MS scheme and refer to the scale
� � 1 GeV.

GRSV 2000 [27] BB [28] LSS 05 [29] AAC 06 [30]
Set ‘‘Standard’’ 3 4 1 2 1 2

h�s���si � 2h� �qi �0:126 �0:148 �0:143 �0:122 �0:140 �0:10 �0:12

DNS [32,34]
Set KRE KKP

h�s���si �0:095 �0:090
h� �ui �0:046 0:076
h� �di �0:048 �0:101

FIG. 3 (color online). The strangeness asymmetry distribution at scale � � 2 GeV. The left panel shows the fits of the CTEQ6.5S
analysis [21] and the right panel those of CTEQ6 [26]. Sets B and C correspond to different assumptions on the small-x behavior of
s�x� � �s�x�, whereas sets �1 and B� (� 2 and B� ) have been chosen to minimize (maximize) the moment hx�s� �s�i.
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fluctuates into a K and a � or �. The coupling to the
strangeness current then proceeds through valence degrees
of freedom, namely, the �s in the kaon and the s in the
hyperon. Concerns have been raised about the quantitative
reliability of such calculations, based on the possible im-
portance of unitarity corrections [44] and of higher-mass
states [45,46] such as K� mesons [46]. There seems to be
no consensus about these issues in the literature, see
[36,47,48]. We will not quantitatively use the meson cloud
picture in the present work, but use it as a qualitative guide
in Sec. IV B. Chiral perturbation theory provides a system-
atic framework for calculations in terms of hadron degrees
of freedom, but its predictive power for strange form
factors is limited, as discussed in [49].

Kaons also play an essential role in chiral quark models
such as the one in [37], where the nucleon is described in
terms of three constituent quarks coupling to the pseudo-
Goldstone bosons. In this approach, nonzero strange form
factors are due to the splitting of a u or d quark into a kaon
and an s quark. The chiral quark soliton model [38] does
not rely on the constituent quark picture, containing as
degrees of freedom both quarks and antiquarks coupling
to pions and kaons.

A different approach is based on dispersion relations,
which represent the form factors for spacelike t in terms of
an integral over their imaginary parts in the timelike re-
gion. The assumption that the dispersion integral is domi-
nated by single vector meson states leads to the vector
meson dominance approximation, which underlies many
calculations of the strange form factors. A typical proce-
dure is to fix the relevant nucleon-meson coupling con-
stants from the isoscalar electromagnetic form factors of
the nucleon and then to predict the form factors of the
strangeness current. Such analyses often obtain rather large
couplings of the nucleon to the !�782� and the 
�1020�,
see for instance [39]. These large couplings are in strong
conflict with determinations from nucleon-nucleon poten-
tial studies [50,51] or from dispersion relations for forward
nucleon-nucleon scattering [52], with SU(6) symmetry
[53], and in the case of the 
 with the Okubo-Zweig-
Iizuka rule. To understand why fits of nucleon form factors
with a small number of vector meson resonances can give

large couplings, we consider the simplified case of just two
mesons with masses m1 and m2,

 

a1

m2
1 � t

�
a2

m2
2 � t

�
a1�m

2
2 �m

2
1� � �a1 � a2��t�m

2
1�

m2
1um

2
2 � �m

2
1 �m

2
2�t� t

2 :

(17)

In order to obtain a 1=t2 behavior of the isoscalar form
factor at large �t, one must have a1 � �a2 to keep the
term with t in the numerator small. At t � 0 the form factor
is then approximately given by a1�m2

2 �m
2
1�=�m

2
1m

2
2�, and

the small mass difference between 
�1020� and !�782�
forces the couplings a1 and a2 to be large. Taking into
account higher-mass resonances significantly reduces this
trend. As an illustration, we have fitted the isoscalar nu-
cleon form factors to a sum of contributions from
�1020�,
!�782� and !�1420�, with or without an additional con-
tribution from !�1650�. We require an asymptotic behav-
ior Fp1 � F

n
1  1=t2 at large �t, which provides a linear

relation between the different meson couplings in general-
ization of the simple case we just discussed. With the
normalization condition Fp1 �0� � F

n
1�0� � 1 this leaves

two free parameters if the !�1650� is included and a single
parameter if this resonance is omitted. For the meson-
nucleon couplings relevant to the Dirac form factors we
obtain

 gV
NN � �9:13; gV!NN � 20:6 (18)

in the fit without !�1650�, where the couplings refer to the
ground state mesons and are denoted by GV

NN
 and GV
NN!

in [51]. Including the !�1650�, we obtain a good descrip-
tion of the data with

 gV
NN � 4:69; gV!NN � 11:9; (19)

where gV!NN is fixed to a value as small as the data permits,
in order to minimize the tension with the still lower values
obtained in [50,52,53]. Taking both couplings as free fit
parameters we find gV
NN � �0:06 and gV!NN � 14:9.
Similar values have been obtained in [54].

TABLE IV. Theoretical results for the strange Dirac form factor at t0 � �0:1 GeV2. The numbers for Refs. [37–41] have been read
off from graphs. The value in the last row has been obtained from Gs

E�t0� in [42] and Gs
M�0� in [43] using the approximation Gs

M�t0� �
Gs
M�0�, which was also made in Fig. 2 of [16]. Taking into account that jGs

M�t0�j< jG
s
M�0�j would increase the value of Fs1�t0�.

Approach Reference Fs1�t � �0:1 GeV2�

Perturbative chiral quark model [37] 0.003
Chiral quark soliton model (�) [38] 0.063
Chiral quark soliton model (K) [38] 0.028
Vector meson dominance [39] �0:07
Vector meson dominance [40] 0.014
Lattice [41] 0.015(5)
Lattice � measured magnetic moments and charge radii [42,43] 0.000(6)
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This simple exercise suggests taking with great care the
corresponding predictions for strange form factors, where
contributions from 
 resonances are strongly enhanced
compared with those from ! states. A more realistic treat-
ment requires the inclusion of continuum states, as has for
instance been done in [55,56]. The analysis in [56] found
that the inclusion of the K �K and �� continua makes the
interpretation of a residual 
 resonance contribution
ambiguous.

B. The strangeness asymmetry s�x� � �s�x�

The meson cloud picture naturally induces an asymme-
try in the momentum distribution of strange quarks and
antiquarks, which was first observed in [57] and underlies
many calculations [58–64]. In this picture, the densities of
s and �s in the nucleon are given as convolutions of the
longitudinal momentum distributions of the kaon or hy-
peron within the nucleon and the valence distribution of �s
in the kaon or of s in the hyperon. A similar mechanism is
realized in chiral quark models [65], where the constituent
quarks of the proton can fluctuate into a kaon and a strange
quark. There is a significant spread among meson cloud
model predictions for the shape of s�x� � �s�x�, including
its sign and the number of zero crossings, see e.g. the
comparative study in [63]. The inclusion of K� fluctuations
in [64] also had a significant effect, changing even the sign
of the momentum asymmetry hx�s� �s�i compared to the
result with kaon fluctuations alone. We note that the pre-
dictions for s� �s in such models typically have a zero at a
value of x much larger than 0.01 and are thus rather differ-
ent from the results obtained in the PDF fits [21,25].

The study [66] pointed out that in perturbative evolution
at three-loop accuracy and beyond, graphs with three-
gluon exchange in the t-channel generate an s� �s asym-
metry. Starting with s�x� � �s�x� at the low scale � �
0:51 GeV, the authors of [66] find that s�x� � �s�x� for� �
2 GeV is positive at small and negative at intermediate to
large x, with hx�s� �s�i � �5	 10�4. This is much
smaller than the central fit results in [21,25], which sug-
gests that this perturbative mechanism plays only a minor
role in the generation of the momentum asymmetry.

IV. RELATING THE STRANGE DIRAC FORM
FACTOR TO s�x� � �s�x�

We now formulate a model ansatz for the C odd part of
the generalized parton distribution Hs at zero skewness,
which will allow us to calculate the Dirac form factor Fs1
from the phenomenologically extracted asymmetry s� �s
of momentum distributions. Following previous studies of
generalized parton distributions in the nonstrange sector
[5,67–69], we assume an exponential t dependence with an
x dependent slope and set

 Hs�x; t� �H �s�x; t� � �s�x� � �s�x�� etfs�x�; (20)

where for the slope we take the simple form

 fs�x� � 	0�1� x� log
1

x
; (21)

which was already proposed in [5]. With (3) it is easy to see
that the profile function fs�x� has a simple physical inter-
pretation in terms of the average squared impact parameter

 hb2ix �

R
d2b b2�s�x; b� � �s�x; b��R
d2b�s�x; b� � �s�x; b��

� 4fs�x� (22)

associated with the difference between s and �s distribu-
tions. As shown in [70], a finite average transverse size of
parton configurations with x! 1 in the nucleon requires
hb2ix to vanish at least like �1� x�2 in this limit, which is
obviously satisfied for the ansatz (21).

In the opposite limit x! 0, we use simple Regge phe-
nomenology as a guide for our parametrization. The form
(21) corresponds to the behavior Hs �H �s  x�	�t�, which
arises from the exchange of a single Regge pole with a
linear trajectory 	�t� � 	�0� � 	0t, or from the superpo-
sition of several Regge poles with the same value of 	0.
This is a generalization to finite t of a small-x behavior x�	

for the usual parton densities, which is consistent with
phenomenology. The leading Regge trajectory that can
contribute to Hs �H �s is the one for the 
 mesons, and
assuming a linear form 	
�t� � 	
�0� � 	

0t one obtains
	
�0� � 0:13 and 	0 � 0:84 GeV�2 from the masses and
spins of
�1020� and
3�1850�. This value of 	0 is close to
the one for other meson trajectories, such as the ones for
the � and !. The 
 trajectory contributes to soft hadronic
scattering processes like kaon-nucleon scattering or photo-
production of the
meson. It is however neglected in most
analyses of these processes (which is justified if the

-nucleon coupling is sufficiently small, see our discus-
sion in Sec. III A). An exception is the analysis of the total
kaon-nucleon cross sections performed by Barger and
Olsson [71], who found an intercept 	
�0� � 0:33�
0:06 of similar size as the result obtained from the hadronic
spectrum. We emphasize that in our approach we do not
need an explicit value for the 
-nucleon coupling, since
the normalization in (20) is fixed by the difference s� �s of
parton distributions.

We note that the CTEQ6.5S densities at � � 2 GeV are
well approximated by

 x�s� �s� � ax0:28 (23)

in the region 10�5 < x< 10�4, with a �
�0:031;�0:023;�0:044 for the respective sets �0, �1,
�2. This corresponds to 	�0� � 0:72, which is quite far
from the values we estimate for the 
 trajectory. There are
however no experimental constraints for the behavior of
s� �s at very small x, and a value of 	�0� between 0.1 and
0.4 is within the range for which a good description of all
relevant data has been obtained in the CTEQ study [26].

MARKUS DIEHL, THORSTEN FELDMANN, AND PETER KROLL PHYSICAL REVIEW D 77, 033006 (2008)

033006-8



Using an ansatz as in (20) for the valence combinations
Hu �H �u and Hd �H �d, we obtained in [68] a good de-
scription of the electromagnetic Dirac form factors of
proton and neutron. Given the wealth of data in this case,
we chose in that study more complicated forms than (21)
for the profile functions fu�x� and fd�x�. We find that for
10�4 < x< 0:1 they are both very well approximated by
the form (21) with 	0 � 1 GeV�2, which remains close to
fu�x� for x > 0:1. Given the fast decrease of s�x� � �s�x�
with x, the small-x region turns out to be most important
for our calculation of Fs1.

We take the ansatz (20) with the CTEQ6.5S densities
[21] at� � 2 GeV as input, where the chosen scale is to be
considered as a compromise between a small value appro-
priate for arguments based on hadronic Regge phenome-
nology and a large value where the densities are
sufficiently constrained by experimental data. In the left
panel of Fig. 4 we show the values of Fs1�t� obtained with
the best fit (set �0) and with the alternative fits (sets �1
and�2). The central curves are for 	0 � 1 GeV�2 in (29),
and the bands correspond to 	0 between 0:85 GeV�2 and
1:15 GeV�2. We regard this variation as an estimate of the
parametric uncertainty within our model, with the lower
value corresponding to the estimate of the 
 trajectory
from the meson masses. In the following we refer to the
result with 	0 � 1 GeV�2 and CTEQ6.5S set �0 as our
default prediction.

If instead of taking (21) we set fs�x� equal to the profile
functions fu�x� or fd�s� obtained in [68], the form factor
lies within the bands in the figure, except in the region
where jFs1�t�j has its maximum. In that region, the differ-
ence of Fs1�t� obtained with the different profile functions

just mentioned is at most 5%. As a further alternative, we
have made the ansatz (20) at scale � � 1:3 GeV, which is
the starting scale of the CTEQ parametrizations. Taking the
profile function (21) with 	0 � 1 GeV�2, we again obtain
values within the bands of Fig. 4, except for deviations of
up to 5% around the maximum of jFs1�t�j. Clearly, the
largest spread in predictions for Fs1�t� within our model is
due to the different parton densities used as input. To
further explore this, we have taken the parametrizations
from the CTEQ6 study [26] at� � 2 GeV, which provides
a wider range of shapes as we have seen in Fig. 3. The
resulting curves for Fs1�t� are shown in the right panel of
Fig. 4. We recall that sets �1 and �2 in [21] and sets B�
and B� in [26] were chosen to minimize or maximize the
moment hx�s� �s�i. They are hence not preferred, although
consistent with the data fitted in [21,26].

We see that in all cases the form factor Fs1�t� is quite
small and fully compatible with the estimates (14) and (15)
extracted from experiment. We remark that for most of our
curves, a linear behavior Fs1�t� / t as in (15) is not a good
approximation for �t much above 0:1 GeV2.

It is instructive to compare our results with another small
nucleon form factor, namely, the Dirac form factor Fn1 �t� of
the neutron. Figure 5 shows data together with the default
fit from [68], which we already mentioned in connection
with the profile functions fu�x� and fd�x�. The same pa-
rametrization multiplied by �0:5 is shown as a dotted
curve in Fig. 4. We recall at this point that

 Fn1 �t� �
2
3F

d
1 �t� �

1
3F

u
1 �t� �

1
3F

s
1�t�; (24)

where the labels on the right-hand side indicate the quark
flavor contributions to the Dirac form factor Fp1 of the

FIG. 4 (color online). The strange Dirac form factor obtained from the sum rule (4) with the model ansatz in (20) and (21). Central
curves are for 	0 � 1 GeV�2 and bands for 0:85 GeV�2 <	0 < 1:15 GeV�2. The corresponding parton densities are (from top to
bottom): CTEQ6.5S sets�2,�0,�1 in the left panel and CTEQ6 sets B� , B, C, B� in the right panel. The data point is our estimate
(14) of Fs1, and the dotted curve corresponds to the parametrization of Fn1 discussed in the text.
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proton. The fit in [68] neglected the strange contribution in
Fn1 and in Fp1 . We see in Fig. 4 that our estimates for Fs1 are
at most half as large in magnitude as Fn1 for �t �
0:2 GeV2, so that at that point � 1

3F
s
1 contributes at most

1=6 to the neutron form factor. For higher �t we find that
Fs1�t� decreases faster than Fn1 �t�, which we will explain
shortly. Only at small t do we find a stronger influence of
the strangeness contribution. If our estimate is correct, this
is of relevance for the flavor analysis of the Dirac radius of
the neutron, which in more familiar terms can be expressed
through the electric radius and a contribution from the
magnetic moment,

 hr2in1 � 6
d
dt
Fn1 �t�

��������t�0
� 6

d
dt
Gn
E�t�

��������t�0
�

3�n

2m2
n

� hr2inE � 0:127 fm2: (25)

Concerning the proton form factor, we find that the values
of Fs1�t� shown in Fig. 4 amount to at most 3% of Fp1 �t� at
any t.

A. The shape of Fs1�t�

Let us now discuss the general features of Fs1�t� that
emerge with our model ansatz, where we have

 Fs1�t� �
Z 1

0
dx�s�x� � �s�x�� etfs�x�; (26)

 

d
dt
Fs1�t� �

Z 1

0
dx�s�x� � �s�x�� fs�x� e

tfs�x�: (27)

For the neutron form factor the situation is slightly more
complicated even if we neglect the strangeness contribu-

tion, since the fit in [68] required different profile functions
for u and d quarks. Since their difference is only moderate,
the discussion of Fn1�t� is however quite similar.

With fs�x� being a decreasing function, the factor etfs�x�

increasingly suppresses small x values in the integral (26)
when�t becomes larger. For increasing�t the form factor
Fs1 is therefore connected with s� �s at increasing values of
x. With the profile function (21) we obtain the Drell-Yan
relation p � 1

2 �1� �� between the powers describing the
asymptotic power laws Fs1  ��t�

�p for t! �1 and s�
�s �1� x�� for x! 1 [68,70]. The difference s� �s of
sea quark distributions falls off faster with x than the
valence distributions u� �u and d� �d, which are relevant
for Fn1 , so that one generally expects jFs1�t�j to decrease
faster than jFn1 �t�j with �t. As Figs. 4 and 5 show, this is
indeed the case in our model.

In Fig. 6 we show the integrands of Fs1 and dFs1=dt in
(26) and (27). The integrands are multiplied with x in the
plots, so that with the logarithmic scale for x we obtain the
form factor or its derivative as the area under the corre-
sponding curve. For t � 0 the integrand of Fs1 is s�x� �
�s�x�, which gives a zero integral because of quantum
number constraints. The integrand for the derivative
dFs1=dt has an extra factor fs�x�, which enhances small x
values relative to larger ones. At t � 0 one therefore has
dFs1=dt < 0 at t � 0 if s� �s is negative at small x and
positive at large x. This is the case for the CTEQ fits
[21,26] except for sets �1 and B� . As �t increases,
the factor etfs�x� suppresses small x values in (27), and
for sufficiently large �t the derivative dFs1=dt has the
opposite sign than at t � 0. For some t one hence obtains
a maximum or minimum of Fs1�t�. The value of �t where
this happens is larger for parametrizations of s� �s which
have the zero crossing at larger x, as one can check by
comparing Figs. 3 and 4.

Figure 6 also shows the integrands for Fn1 and dFn1=dt
for the default fit in [68]. The discussion for the sign of the
derivative dFn1=dt and the presence of a minimum of Fn1 �t�
proceeds in analogy to the case of the strangeness form
factor. Since the zero crossing of 2

3 �d�
�d� � 1

3 �u� �u�
occurs at much larger x than the one of s� �s in the
CTEQ6.5S parametrizations, whereas the respective pro-
file functions are similar, jFn1 �t�j assumes its maximum at
significantly larger �t than jFs1�t�j.

Let us at this point mention the PDFs extracted in [72].
In contrast to the analyses by CTEQ [21,26] and MSTW
[25], the strangeness asymmetry x�s� �s� in [72] has a zero
at 0:4 & x & 0:5 and a maximum at x 0:7. Taking this
distribution with the same profile functions fs�x� explored
above, we obtain a form factor Fs1�t� with a very flat
maximum Fs1  0:0025 for 1 GeV2 & �t & 2 GeV2 and
a slow decrease with �t. In this case, the bulk of the form
factor integral (26) comes from very large x, where we
deem our model for the profile function fs�x� associated
with sea quarks very insecure. Since the study [72] used

FIG. 5 (color online). Data for the neutron Dirac form factor
and fit from [68]. The dotted line corresponds to our default
prediction for Fs1, obtained with 	0 � 1 GeV�2 and CTEQ6.5S
set �0. The curve is rescaled such that its minimum coincides
with the one of Fn1 .
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inclusive cross sections for � and �� DIS but no dimuon
production data to constrain s� �s, we do not regard such a
scenario as strongly motivated. This example illustrates
however that within our model framework, strong changes
in s� �s result in qualitatively different forms of Fs1�t�,
which may eventually be ruled out by data.

The relations between the x dependence of s� �s and the
t dependence of Fs1�t� discussed in this subsection follow
from the general features of our ansatz in (20) and (21) and
will also hold for more complicated forms. The neutron
form factor Fn1 �t� and the combination 2

3 �d�
�d� � 1

3 �u�
�u� of valence distributions, which are both much better
known than their strangeness counterparts, provide an
example where these relations are indeed seen and cor-
roborate our prediction for the behavior of Fs1�t� with a
given form of s�x� � �s�x�.

B. A modified ansatz
Our ansatz in (20) is special in that it assumes a t

dependence in the form of a global factor multiplying
s�x� � �s�x�. It implies that the difference s�x; b� � �s�x; b�
of impact parameter densities has a Gaussian shape in b
and, in particular, does not change sign for given x. One
may wonder whether this ansatz is too restrictive. The
physical picture of meson cloud models for instance sug-
gests that the typical transverse position of s is smaller than
for �s, since the �s originates from a kaon, which due to its
smaller mass tends to be at larger distances than the
hyperon containing the s. If this effect is strong enough,
one may have a node of s�x; b� � �s�x; b� in b.

It is however important to realize that at � � 2 GeV,
where we formulate our model, the individual distributions
of s and �s are not valencelike as they would be in a model

FIG. 6 (color online). Upper plots: the scaled integrands of Fs1�t� and dFs1�t�=dt in (26) and (27), obtained with our default
prediction. Lower plots: the corresponding scaled integrands for Fn1 �t� and dFn1 �t�=dt, obtained with the default fit in [68]. The values
of t in the right panels are as for the corresponding curves on the left.
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valid at low resolution scale. For sets�0,�1 and�2 of the
CTEQ6.5S parametrization at � � 2 GeV we find

 x�s� �s� � 0:2 x�0:2 (28)

in the region 10�5 < x< 10�4, which is to be compared
with (23). For x < 10�2 the ratio �s� �s�=�s� �s� does not
exceed 1% in absolute size. It is natural to assume that the
bulk of s and �s in that region is generated through gluon
splitting g! s�s as described by perturbative evolution.
This mechanism does not introduce an asymmetry in the
transverse distribution of s and �s. When introducing a more
general ansatz for Hs �H �s than (20) we should hence
make sure that the strong cancellation between s and �s at
small x takes place not only in the forward limit but also at
nonzero t. With this in mind, we explore a variant of (20),
given by

 Hs�x; t� �H �s�x; t� � s�x�etfs�x� � �s�x�et �fs�x� (29)

with

 fs�x� � 	0�1� x� log
1

x
� Ax�1� x�2;

�fs�x� � 	0�1� x� log
1

x
� �Ax�1� x�2;

(30)

where the prefactor x in front of A and �A guarantees the
cancellation just discussed, as long as�tA and�t �A are not
too large. In the following we take values 2 GeV�2 and
4 GeV�2 for either A or �A. With 	0 � 1 GeV�2 this,
respectively, corresponds to a change of fs�x� or �fs�x� by
a factor 1.2 and 1.4 at x � 0:2, which one may view as a
typical momentum fraction for s and �s in a model at low
scale, where nonperturbative effects could generate an

asymmetric distribution in impact parameter. In the left
panel of Fig. 7 we show the corresponding impact parame-
ter densities s�x; b� � �s�x; b� and see that they indeed have
nodes in b when A or �A is equal to 4 GeV�2.

The form factors obtained with this ansatz are shown in
Fig. 8. For �A> 0, where �s is concentrated at larger impact
parameters than s, we find that Fs1 is increased in size but
not much changed in shape compared with our default
prediction with A � �A � 0. In contrast, we find that for
sufficiently large A> 0 the form factor Fs1 changes sign at
some finite �t. We can understand this at the level of the
form factor integrand: for fs�x�> �fs�x� the exponential
factors in (29) give a stronger suppression in the first term,
so that at large enough x and �t one can have Hs�x; t�<
Hs�x; t� despite s�x�> �s�x�. This is illustrated in the right
panel of Fig. 7.

As discussed above, the meson cloud picture suggests
that s has smaller rather than larger typical impact parame-
ters than �s, so that we do not see a particular physics
motivation for our examples with A > 0. However, they
show that certain nontrivial correlations between the x and
b dependence of the s and �s distributions can have quite
drastic effects onFs1�t�, which may be observable in experi-
ments with sufficient sensitivity and kinematic coverage.

C. Other form factors

With our model (20) for Hs �H �s we can also evaluate
the Mellin moment As3;0�t� �

R
1
�1 dx x

2Hs�x; t�, which is a
form factor of an operator with two covariant derivatives
between the strange-quark field and its conjugate. The
factor x2 strongly suppresses small x values, and with the
CTEQ parametrizations for s� �s the integral is dominated

FIG. 7 (color online). Left: the difference in the impact parameter distributions for strange quarks and antiquarks at x � 0:2. The
distributions are multiplied with 2�b, so that the area under each curve gives s�x� � �s�x�. Right: the integrand (26) of the strange Dirac
form factor at �t � 0:5 GeV2. The curves are for the ansatz in (29) and (30) with 	0 � 1 GeV�2 and different values of A and �A
(given in units of GeV�2). For the parton densities we take CTEQ6.5S set �0 at � � 2 GeV.
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by an x region where the integrand has a definite sign. As a
consequence jAs3;0�t�j decreases monotonically with�t. Its
value at t � 0 is tiny, ranging from�10�4 to 4	 10�4 for
the CTEQ6 and CTEQ6.5S parametrizations at � �
2 GeV. Exceptions are the values �6	 10�4 and 10�3

for CTEQ6B� and CTEQ6B� , respectively.
We do not attempt here to model the strangeness con-

tributions to the energy-momentum and axial form factors,
As2;0�t� and FsA�t�, which according to (9) and (10) are,
respectively, related to s� �s and �s� ��s. These distri-
butions mix with gluons under evolution, which invalidates
simple ansätze based on Regge trajectories for their
small-x behavior. This also holds at finite t [73]. Since
even the t dependence of Hu �H �u and Hd �H �d is barely
constrained at present, we see no clear guidance for how to
model profile functions of Hs �H �s and ~Hs � ~H �s. We
expect however that these distributions have no zeroes in
x, which certainly holds for their values at t � 0 according
to current PDF parametrizations. We therefore predict the
corresponding form factors to decrease monotonically in
absolute size, with values at t � 0 given by the moments in
Tables II and III.

V. SUMMARY

We have discussed several measures of strangeness in
the nucleon. Strange quarks and antiquarks are not particu-
larly rare in the proton: their contribution hx�s� �s�i to the
nucleon momentum is only suppressed by about a half
compared with the one from light flavor antiquarks, hx� �u�
�d�i. Their contribution h�s� ��si to the spin of the proton
is not well determined at present, but there are no indica-
tions that it is very much suppressed compared with h� �u�
� �di.

More subtle quantities are asymmetries between strange
quarks and antiquarks, most notably the asymmetry be-
tween the parton densities s�x� and �s�x�, and the strange
Dirac and Pauli form factors Fs1�t� and Fs2�t�. A two-
dimensional Fourier transform of Fs1�t� yields the differ-
ence of spatial distributions for s and �s in the transverse
plane, whereas s�x� � �s�x� gives the difference of their
distribution in longitudinal momentum. The two asymme-
tries are connected via generalized parton distributions at
zero skewness, for which we have made a model ansatz in
order to explore this connection quantitatively. Using as
an input different sets of s� �s distributions extracted by
the CTEQ Collaboration, we find values of Fs1�t ’
�0:1 GeV2� between �0:006 and 0.012, in good agree-
ment with current experimental constraints. Many theoreti-
cal analyses of the electromagnetic nucleon form factors
neglect the strangeness contributions. With our estimates
this is at most a 3% effect for Fp1 �t�. However, jFs1�t�jmight
amount to as much as 1=6 of Fn1�t� at �t � 0:2 GeV2. For
higher �t the relative contribution quickly decreases,
whereas for lower �t it may even be larger.

The general features of our model ansatz for generalized
parton distributions lead to correlations between the x
dependence of s� �s and the shape of Fs1�t�. The best fits
in the PDF extractions [21,25,26] yield forms where s� �s
is negative for small x and positive for large x. With our
ansatz, this gives a negative derivative dFs1�t�=dt at t � 0
and a maximum of the form factor at some value of �t.
With a zero crossing of s� �s at x between 10�2 and 10�1,
we find this maximum at �t between 0:2 GeV2 and
0:4 GeV2. Analogous correlations are seen to hold be-
tween the combination 2

3 �d�
�d� � 1

3 �u� �u� of valence
quark distributions and the neutron form factor Fn1 �t�,
which we take as support for our predictions. Finally, a
rapid decrease of s� �s with x reflects itself in a faster
decrease of Fs1�t� compared with Fn1 �t� for large �t. It will
be interesting to confront these predictions with future data
from parity violating electron-nucleon scattering.
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FIG. 8 (color online). The strange form factor obtained with
the ansatz specified in Fig. 7. The curve for A � �A � 0 corre-
sponds to our default prediction in the previous subsections.
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