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The spontaneous breaking of translational invariance in noncommutative self-interacting scalar field
theory in two dimensions is investigated by effective action techniques. The analysis confirms the
existence of the stripe phase, already observed in lattice simulations, due to the nonlocal nature of the
noncommutative dynamics.

DOI: 10.1103/PhysRevD.77.027703 PACS numbers: 11.10.Nx, 11.30.Qc

The existence of a phase with conventional long range
order, or spontaneous symmetry breaking (SSB) for two-
dimensional (2D) systems with continuous symmetry
group, is precluded by the Coleman-Mermin-Wagner
(CMW) theorem, which has been formulated specifically
for spin models in [1] and for quantum fields in [2]. In these
low-dimensional systems the infrared divergences related
to the spin waves or Goldstone modes are so strong that the
long range order is destroyed, so that the typical order
parameter (or scalar field expectation value) vanishes.
However, in 2D, as for instance in the XY model, it is still
possible to have a Kosterlitz-Thouless phase transition [3]
driven by the presence of topological defects and a quan-
tum field theory which displays an ‘‘almost’’ long range
order [4].

For quantum fields, the CMW theorem relies on the
hypothesis of locality. In fact there are known exceptions
such as the Liouville theory [5,6]. Another interesting case
which is certainly relevant for this problem is the non-
commutative formulation of the quantum field theory be-
cause in this framework the above hypothesis is not
respected.

In the noncommutative theory the canonical commuta-
tor among space-time coordinates is �x�; x�� � i���and
the product of field operators is nonlocal, being defined by
the Moyal product [7]. For example for the scalar ��4

theory the noncommutative interaction Lagrangian is LI �
�
4!�

4�where the Moyal (star) product is defined by (i; j �
1; :; 4) [7]
 

�4��x� � ��x� ���x� ���x� ���x�

� exp
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���@
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xi@

�
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� ���x1���x2���x3���x4��

��������xi�x
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The Moyal product induces an infrared-ultraviolet (IR-
UV) connection which deeply modifies the structure of the
theory with respect to the commutative case. In fact, it is
still unclear whether a consistent noncommutative field
theory exists in the continuum limit, although recent lattice
simulations suggest that a consistent noncommutativeU�1�
gauge theory can be defined [8] with possible phenomeno-
logical implications [9–12].

An interesting aspect of noncommutative scalar theories
is that, in 4D, SSB is possible only in an inhomogeneous
phase , i.e. where the vacuum expectation value of the field
is position-dependent [13]. This phase is called the stripe
phase for the peculiar x dependence of the order parameter
h��x�i0. This unexpected result, conjectured and discussed
on the basis of the IR-UV connection in [13], has then been
obtained by an effective action technique [14,15] and con-
firmed by lattice simulations [16].

The stripe phase involves the spontaneous breaking of
translational invariance which, in 2D, should be forbidden
according to the CMW theorem. Gubser and Sondhi [13],
on the basis of a Brazovski-like local effective Lagrangian
[17] which is quartic in momentum and represents a good
description of the noncommutative effects near the mini-
mum of the particle self-energy, generated by the IR-UV
connection, exclude the 2D stripe phase, in agreement with
the CMW theorem. Indeed, they find that the infrared
behavior of the 2D noncommutative theory is even more
pathological than that observed in the commutative case.

On the other hand, it has been reported in [18] that, in 2D
lattice simulations of noncommutative scalar ��4 theory,
the translational invariance is spontaneously broken and
another numerical experiment, [19], with a more efficient
algorithm, essentially confirms the existence of the 2D
stripe phase. Therefore the validity of the CMW theorem
for noncommutative theories is still under investigation
and in this paper we carry on this analysis, by resorting
to the same functional technique already used in [14],
which corresponds to an Hartree-Fock computation of
the effective action. Within this approach which, in the

*paolo.castorina@ct.infn.it
†dario.zappala@ct.infn.it

PHYSICAL REVIEW D 77, 027703 (2008)

1550-7998=2008=77(2)=027703(4) 027703-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.027703


commutative case, confirms the validity of the CMW theo-
rem [20], and according to the approximations considered
in the following, it is shown that the stripe phase exists also
in 2D, due to noncommutativity.

By following [14], let us verify that, for noncommutative
��4 theory in 2D, there is no spontaneous symmetry
breaking with a constant order parameter. The action is

 I��� �
Z
d2x

�
1

2
@��@���

1

2
m2�2 �

�
4!
�4�

�
(2)

and, by assuming a translational invariant propagator

 G�x� y� �
Z d2p

�2��2
e�ip�x�y�

p2 �M2�p�
; (3)

the Cornwall-Jackiw-Tomboulis [21] effective action in
the Hartree-Fock approximation in momentum space is
given by [14]
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where D�p� is the free propagator with mass m and q ^
p � q��

��p�.
In Euclidean space the coupled minimization equations,

��=�� � 0 and ��=�G � 0, for a constant background
�0, can be written as

 M2�q� � �2 	
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where, in Eq. (5), the bare mass m has been replaced by �,
according to the renormalization:

 m2 � �2 �
�
3

Z d2p
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1

p2 	 �2 ; (7)

and we have defined
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�
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The parameter � has the role of infrared cutoff.
The noncommutative phase factor connects the infrared

and ultraviolet regions and therefore one needs a self-
consistent approach. Let us start by noting that, due to
the strongly oscillating phase factor, for q! 1 the last
integral in the right-hand side of Eq. (5) takes its contribu-
tion from the region p
 0 and therefore we can set

 lim
q!1

M2�q� ! M2
asy; (9)

where the constant M2
asy does not depend on q, provided

that

 

Z d2p
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1

p2 	M2�p�
(10)

is finite (as we shall check self-consistently).
Then, in the infrared region (small q) where the men-

tioned integral gets contributions only from large values of
the variable p, we can approximate M2�p� with its asymp-
totic value given in Eq. (9) and we get

 lim
q!0
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For ��� of maximal rank and eigenvalues ��, it turns out
[13] that

 

Z d2p

�2��2
1

p2 	M2
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eiq^p �
1

2�
K0�Masyjqj�� (12)

where K0 is the modified Bessel function which, for jqj !
0, has the asymptotic behavior

 K0�Masyjqj�� ! � ln�Masyjqj�=2�: (13)

Therefore , for any value of �,

 lim
q!0

M2�q� ’ � ln�Masyjqj�=2� (14)

which is inconsistent with the second minimization equa-
tion

 M2�0� �
�
3
�2

0 (15)

for any finite value of �0 [22].
This shows that the class of solutions considered so far

cannot fulfill the minimization equations derived above.
The simplest generalization consists in releasing the con-
straint of a translationally invariant vacuum expectation
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value of the field which, as seen in [14] provides a viable
solution in the four-dimensional problem. In fact we look
for solutions in the form of oscillating field

 ��x� � A cos�Q � x� (16)

where A is a scalar and Q a bidimensional vector, which
would require a nontranslational invariant full propagator
G. However, as discussed in [14], a self-consistent ap-
proach in evaluating the effective action is obtained, for
small Q, by a translational invariant ansatz ([see Eq. (3)]
where, however, the function M�p� takes into account the
asymptotic, infrared and ultraviolet, behaviors of the gap
equation with the nonuniform background. The standard
homogeneous case, Q � 0, is recovered by neglecting the
noncommutative effects that is by considering the so called
planar limit, ��2 ! 1 , where � is an ultraviolet cutoff.
From this point of view a small Q (in cutoff units) is
associated with large, but finite, values of ��2 that we
shall assume in the remaining part of the paper.
A, Q, and M�p� must be determined by the extremiza-

tion of the action in Eq. (4). Without loss of generality we
can choose a specific direction for the vector Q, e.g.: Q1 �
0, Q2 � Q and then the extremum equations for the action
read:
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12

Z d2p

�2��2
�p1�Q� sin�p1�Q�

p2 	M2�p�
� 0 (19)

Since the self-consistent approach requires small Q and
in the planar theory limit, i.e. for large �, Q must approach
zero in such a way that �Q 1 (in cutoff units), then in
Eq. (19) one can approximate M2�p� ’ M2

asy to obtain

 Q2 �
�

24�
Masy�QK1�Masy�Q� (20)

where K1�x� is the modified Bessel function. Also by this
simplification, there is no way to solve analytically the
coupled equations for A and M�p� and therefore we con-
sider a Raileigh-Ritz approach, i.e. a parametric ansatz for
M�p� and an evaluation of the effective action for different
values of the parameters.

According to the previous analysis, the ansatz forM�p� ,
consistent with the infrared and ultraviolet behaviors of the
gap equation, is given by

 M2�p� � M2
0 �

�
12�

ln
�
jpj
Q

�
jpj<Q (21)

and

 M2�p� � M2
0 jpj � Q (22)

where M0 is a constant. Therefore Q is obtained by
Eq. (19) with Masy � M0.

We compute the effective action for the specific field
configuration given in Eq. (16) and subtract the constant
corresponding to the same effective action evaluated at
A � 0, M2�p� � �2 and ��2 ! 1 (planar limit). In
Figs. 1 and 2 we plot the subtracted effective action W as
a function of A, for � � 0:1, � � 10, � � 10�5 and, in
Fig. 1, for�2 � �0:1 and three different values ofM0: 0.1,
0.34, 0.6, while in Fig. 2 for�2 � 0:1 andM0: 0.1, 0.22, 0.4
(with all dimensionful quantities expressed in units of the
UV cutoff �). For the parameters � and M0 used in the
figures, the corresponding value of Q, derived from
Eq. (20), is about Q
 2:610�2, which is consistent with
the condition �Q 1 in cutoff units, discussed above.

These examples show that for sufficiently negative �2 a
minimum of W is observed at A � 0, whereas, by suffi-
ciently increasing�2 to positive values, the minimum ofW
is shifted to A � 0. In each figure we have plotted the
effective action for three values of M0, and the curves
labeled with (b) correspond to the optimal value M0 which
provides the lowest value of W. By reducing or increasing
M0 with respect to this optimal value, one finds that the

0 1 2 3 4
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0.1

W
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b
c

FIG. 1. The normalized effective action for �2 � �0:1 and:
(a) M0 � 0:1, (b) M0 � 0:34, (c) M0 � 0:6.

0 0.2 0.4 0.6 0.8 1
A

-0.06

-0.055

-0.05

-0.045

W

a
b
c

FIG. 2. The normalized effective action for �2 � 0:1 and: (a)
M0 � 0:1, (b) M0 � 0:22, (c) M0 � 0:4.
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minimum of W is increased. We have checked that the
behavior shown in the figures is stable against changes of
the infrared regulator, i.e. for any value of� there is a value
of �2 below which the minimum of W is located at A � 0.
Furthermore, the structure displayed in Figs. 1 and 2 not
change when varying � and � in a wide range of values.

This can also be partially shown analytically. Indeed, by
handling the coupled minimum equations for A, Q and
M�p�: (17)–(19), one can show that

 

�
8
A2 � Q2 	M2�Q� (23)

and therefore a solution exists if M2�Q� � 0 , that is if the
gap equation has a real solution.

Although it does not provide a formal proof, the pre-
vious analysis strongly supports the conclusion that the
translational invariance is spontaneously broken for the
noncommutative scalar field theory in 2D, i.e. there is a
minimum of the effective potential for A � 0, Q � 0, and
M0 � 0.

As recalled in the introduction a similar phenomenon
occurs in the Liouville theory with Lagrangian

 L �
1

2
�@����@��� �

m2

	2 exp�	�� (24)

with 	> 0 and m2 > 0. In [5] it has been suggested that
the spontaneous breakdown of spatial translational invari-
ance occurs in this model and that one can build a con-
sistent perturbation theory on a static, position-dependent
background. Moreover the existence of these nontransla-
tionally invariant states has been tested by Monte Carlo
simulations [6].

In [13] the validity of CMW theorem for the noncom-
mutative scalar theory in 2D has been shown for a complex
scalar field, where the O(2) invariance implies zero modes,
as seen by using the Brazovskii-like local effective
Lagrangian

 LB �
1
2k1j�@

2 	 p2
c��j

2 	 1
2k2�

2 	 1
4k4�

4 (25)

where k1, k4 > 0, k2 < 0, and pc is the momentum where
the self-energy has a minimum.

This Lagrangian is a good approximation near the mini-
mum and it is quartic in momentum. Therefore, if there are
zero modes, the infrared behavior of the fluctuations is
worse than the standard 2D case, hence enforcing the
validity of CMW theorem. However, for a single scalar
field the nontranslationally invariant configuration that
gives the zero modes, if any, is not easy to build and in
this case there is no evidence that the CMW theorem is still
valid.

In conclusion, our opinion is that the theoretical problem
of the CMW theorem for noncommutative 2D theory is
still open but, for a single scalar field and without consid-
ering an effective Lagrangian, the indication given in this
paper confirms the lattice results that the translational
invariance is spontaneously broken due to the noncommu-
tative dynamics.
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