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We determine the static potential for a heavy quark-antiquark pair from gluodynamics in curved space-
time. Our calculation is done within the framework of the gauge-invariant, path-dependent, variables
formalism. The potential energy is the sum of a Yukawa and a linear potential, leading to the confinement
of static charges.
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I. INTRODUCTION

One of the fundamental issues facing QCD at low energy
is a quantitative description of confinement. We observe at
this point that the distinction between the apparently re-
lated phenomena of screening and confinement is of con-
siderable importance in our present understanding of gauge
theories. In fact, gauge theories that yield a linear potential
are important to particle physics, since those theories may
be used to describe the confinement of quarks and gluons
and be considered as effective theories of QCD. As is well-
known, the confinement problem has been fairly well dis-
cussed under a number of different aspects, like lattice
gauge theory techniques [1] and nonperturbative solutions
of Schwinger-Dyson’s equations [2,3]. Recently, an ap-
pealing proposal to this problem was made by ’t Hooft
[4] which includes a linear term in the dielectric field that
appears in the energy density.

In this connection it becomes of interest, in particular, to
recall that QCD at the classical level possesses scale in-
variance which is broken by quantum effects. We further
observe that this phenomenon can be mathematically de-
scribed by formulating classical gluodynamics in a curved
space-time with nonvanishing cosmological constant [5,6].
Correspondingly, an effective low energy Lagrangian for
gluodynamics which describes semiclassical vacuum fluc-
tuations of the gluon field at large distances is obtained
[5,6].

In the light of the above observations, we also mention
that the Cornell potential [7] which simulates the features
of QCD is given by

 V � �
�
r
�
r

a2 ; (1)

where a is a constant with the dimensions of length. In
accordance with the ’t Hooft proposal, confinement is
associated to the appearance of a linear term in the dielec-
tric field D (that dominates for low jDj) in the energy

density [4]:

 U�D� � �strjDj; (2)

the proportionality constant being the coefficient of the
linear potential, that is, �str �

1
a2 . Hence we see that the

confinement phenomena breaks the scale invariance as the
Cornell potential explicitly shows by introducing the scale
a.

Very recently [8,9], we have approached the connection
between scale symmetry breaking and confinement in a
phenomenological way using the gauge-invariant but path-
dependent variables formalism, which is an alternative to
the Wilson loop approach. More specifically, we have
shown the appearance of the Cornell potential (1) as well
as the ’t Hooft relation (2) after spontaneous breaking of
scale invariance in both Abelian and non-Abelian cases.
Certainly, this study gives us an opportunity to compare
our results with that of gluodynamics in curved space-time
[5,6]. To this end, we will work out the static potential for
the theory under consideration along the lines of Ref. [8,9].
As a result, it is found that the potential energy is the sum
of a Yukawa and a linear potential, leading to the confine-
ment of static charges. This static potential clearly shows
the key role played by the quantum fluctuations. In general,
this picture agrees qualitatively with that encountered in
our previous phenomenological model [9]. It is important
to realize that the gluodynamics in curved space-time
studied here, compared with our previous model which
includes a

�������������������
Fa��F

a��p
term coupled to the Yang-Mills

Lagrangian density, involves the contribution of quantum
fluctuations. Hence we see that our phenomenological
model incorporates automatically the contribution of these
quantum fluctuations to the vacuum of the model. In this
way we establish a new correspondence between these two
non-Abelian effective theories. The above connections are
of interest from the point of view of providing unifications
among diverse models as well as exploiting the equiva-
lence in explicit calculations.
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II. INTERACTION ENERGY

We now examine the interaction energy between static
pointlike sources for gluodynamics in curved space-time.
To do this, we will compute the expectation value of the
energy operator H in the physical state j�i describing the
sources, which we will denote by hHi�. However, before
going to the derivation of the interaction energy, we will
describe very briefly the model under consideration. The
initial point of our analysis is the dilaton effective
Lagrangian coupled to gluodynamics [5]:
 

L �
j"V j

m2

1

2
e�=2�@���2 � j"V je��1� ��

� e��1� ��
1

4
Fa��F

a��; (3)

where the real scalar field (dilaton) � of mass m describes
quantum fluctuations, and �j"V j is the vacuum energy
density. Let us also mention here that the stable minimum
is in � � 0, according to the work of Ref. [10].

Since we are interested in estimating the lowest-order
correction to the static potential, we will retain only the
leading quadratic term in the expression (3). Thus, the
density Lagrangian (3) simplifies to
 

L � �
1

4
Fa��F

a�� �
j"V j

2m2 �@���
2

� �
�
j"V j �

1

4
�Fa���

2

�
� j"V j: (4)

Following our earlier procedure [8,9], integrating out the
�-field induces an effective theory for the Aa�-field. Once
this is done, we arrive at the following effective Lagrangian
density:
 

Leff � �
1

4
Fa��

�
1�

m2

�

�
Fa��

�
m2

32j"V j
�Fa���2

1

�
�Fa���2 � j"V j: (5)

Next, in order to linearize this theory, we introduce the
auxiliary field �. It follows that the expression (5) can be
rewritten as
 

Leff � �
1

4
Fa��

�
1�

m2

�

�
Fa�� �

1

2
�@���2

�
1

4

m���������
j"V j

p ��Fa���
2 � j"V j: (6)

Once again, by expanding about a background� � �0, we
obtain

 L eff � �
1

4
Fa��

1

"

�
1�

"m2

�

�
Fa�� � j"V j; (7)

where 1
" � 1� m�������

j"V j
p �0. It is worthwhile remarking at this

point that the field configuration �0 must be constant, so
that the terms in _�2 and �r��2 do not add positive con-

tributions to the energy. Actually, we must have that �0 is
zero. To understand why �0 must be zero, we examine its
contribution to the density energy, �00; with space-time
independent �0, we have

 �00 �
1

2

m
j"V j

�0�Ea �Ea �Ba � Ba�; (8)

where Ea and Ba are, respectively, the electric and mag-
netic fields. To minimize such a term, we see that �0 must
be zero and the minimum of energy turns out to be �j"V j,
as was discussed in Ref. [5]. In such a case, the expression
(7) reduces to

 L eff � �
1

4
Fa��

�
1�

m2

�

�
Fa�� � j"V j; (9)

To obtain the corresponding Hamiltonian, we must carry
out the quantization of this theory. The Hamiltonian analy-
sis starts with the computation of the canonical momenta
�a� � ��1� m2

� �F
a0�, and one immediately identifies the

primary constraint �a0 � 0 and �ai � ��1� m2

� �F
a0i.

Standard techniques for constrained systems then lead to
the following canonical Hamiltonian:
 

HC �
Z
d3x

�
1

2
�ai

�
1�

m2

�

�
�1

�ai
�

�
Z
d3x

�
1

4
Faij

�
1�

m2

�

�
Faij

�

�
Z
d3xf�ai�@iAa0 � gf

abcAc0A
b
i �g: (10)

The persistence of the primary constraints �a0 � 0 leads
to the following secondary constraints: �a�1��x� � @i�ai �
gfabcAbi�c

i � 0. It is easy to check that there are no
further constraints, and that the above constraints are first
class. In accordance with the Dirac method we obtain the
extended Hamiltonian (that generates translations in time)
by adding all the first class constraints with arbitrary co-
efficients to the Hamiltonian defined by Eq. (10). We write
therefore H � HC �

R
dx�ca0�x��

a
0�x� � c

a
1�x��

a�1��x��,
where ca0�x� and ca1�x� are arbitrary functions.
Furthermore, since �0a�0 always, and _Aa0�x��
	Aa0�x�;H
�c

a
0�x�, the dynamical variables A0a and their

conjugate �0a may now be eliminated from the theory.
Thus one avoids the conflict with the canonical commuta-
tion relations. We therefore drop the term in �0a and define
a new arbitrary coefficient ca�x� � ca1�x� � A

a
0�x� and so

write the Hamiltonian as
 

H �
Z
d3x

�
1

2
�a

�
1�

m2

�

�
�1

�a
�

�
Z
d3x

�
1

2
Ba
�

1�
m2

�

�
Ba
�

�
Z
d3xfca�x��@i�

ai � gfabcAbi�c
i �g: (11)

According to the usual procedure we introduce a supple-
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mentary condition on the vector potential such that the full
set of constraints becomes second class. A particularly
useful and interesting choice is given by [11]

 �a�2��x� �
Z 1

0
d��x� ��iA�a�i ��� ��x� ��� � 0; (12)

where � �0 � � � 1� is the parameter describing the
spacelike straight path xi � �i � ��x� ��i, on a fixed
time slice. Here � is a fixed point (reference point), and
there is no essential loss of generality if we restrict our
considerations to �i � 0. As a consequence, the only non-
trivial Dirac bracket is
 

fAai �x�;�
bj�y�g� �	ab	ji	

�3��x�y��
Z 1

0
d�



�
	ab

@
@xi
�gfabcAci �x�

�
xj	�3���x�y�:

(13)

In passing we note the presence of the last term on the
right-hand side which depends on g.

Now we move on to compute the interaction energy
between pointlike sources in the theory under considera-
tion, where a fermion is localized at the origin 0 and an
antifermion at y. As mentioned before, in order to accom-
plish this purpose we will calculate the expectation value of
the energy operator H in the physical state j�i. From our
above discussion we see that hHi� reads
 

hHi� �
1

2
tr
�

�

��������
Z
d3x

�
�a

�
1�

m2

�

�
�1

�a
����������

�

�
1

2

�
�

��������
Z
d3xBa

�
1�

m2

�

�
Ba

���������
�
: (14)

At this stage we recall that the physical state can be
written as [11]

 j�i �  �y�U�y; 0� �0�j0i; (15)

where

 U�y; 0� � P exp
�
ig
Z y

0
dziAai �z�T

a
�
: (16)

As before, the line integral is along a spacelike path on a
fixed time slice, P is the path-ordering prescription, and j0i
is the physical vacuum state. As in [11], we again restrict
our attention to the weak coupling limit.

From the above Hamiltonian analysis we then easily
verify that the static potential is divided into two parts:
an Abelian part V�1� (proportional to CF) and a non-
Abelian part V�2� (proportional to the combination
CFCA). Thus hHi� takes the form

 hHi� � hHi0 � V
�1� � V�2�; (17)

where hHi0 � h0jHj0i. The V�1� and V�2� terms are given
by

 V�1� � �
g2

2
tr�TaTa�

Z
d3x

Z y

0
dz0i	

�3��x� z0�


1

r2
x �m

2r
2
x

Z y

0
dzi	�3��x� z� (18)

and
 

V�2� �
1

2
N

�
0

��������
Z y

0
dz0kAck�z

0�z0i
Z 1

0
d�	�3���z0 �x�


1

r2
x�m2r

2
x

Z y

0
dzlAel �z�z

i
Z 1

0
d
	�3��
z�x�

��������0
�
;

(19)

where N � g4tr�fabcTbfadeTd� and the integrals over zi

and z0i are zero except on the contour of integration.
Here, the V�1� term gives a Yukawa-type potential plus

self-energy terms. In effect, expression (18) can also be
written as

 V�1� �
g2

2
tr�TaTa�

Z y

0
dz0i@

z0
i

Z y

0
dzi@izG�z; z0�; (20)

where G is the Green function

 G�z; z0� �
1

4�
e�mjz�z0j

jz� z0j
: (21)

Employing Eq. (21) and remembering that the integrals
over zi and z0i are zero on the contour of integration,
expression (20) reduces to the familiar Yukawa potential
after subtracting the self-energy terms. In other words,

 V�1� � �
g2

4�
CF

e�mL

L
; (22)

where jyj � L and tr�TaTa� � CF.
We now turn our attention to the calculation of the V�2�

term, which is given by

 V�2� �
1

2
N 0

Z y

0
dzl

Z y

0
dz0kDlk�z; z0�


Z z0

0
dui

Z z

0
dvi��r2�uG�u; v�; (23)

where N 0 � g4 tr�fabcTbfadcTd�, and G is the Green
function. Here Dlk�z; z0� stands for the propagator, which
is diagonal in color space and taken in an arbitrary gauge.

It is appropriate to observe here that the above term is
similar to the one found in non-Abelian axionic electro-
dynamics [12]. Nevertheless, in order to put our discussion
into context it is useful to summarize the relevant aspects
of the analysis described previously [12]. Thus, our first
undertaking is to write the Green function (21) in momen-
tum space

 G�u; v� �
Z d3k

�2��3
eik��u�v�

k2 �m2 : (24)

With this at hand, we can reduce Eq. (23) to
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 V�2� �
1

2
N 0

Z y

0
dzl

Z y

0
dz0kDlk�z; z0�


Z z0

0
dui

Z z

0
dvi

Z d3k

�2��3
k2 e

ik��u�v�

k2 �m2 : (25)

We may further simplify Eq. (25) by doing the k, ui, and
vi integrals, that is,

 V�2� �
g4

8�
CFCA�

Z y

0
dzl

Z y

0
dz0kjzjDlk�z; z0�; (26)

where � � 1
4�

	
�2 �m2 ln

�
1� �2

m2

�

, and � is a cutoff.

As mentioned above, Dlk�z; z0� is the propagator, which is
diagonal in color and taken in an arbitrary gauge. In such a
case, we choose, for example, Dlk�z; z0� in the Feynman
gauge. Hence expression (26) reduces to

 V�2� �
g4

8�2 CFCA�
Z y

0
dzl

Z y

0
dz0kglk

jzj
�z� z0�2

: (27)

This allows us to derive the non-Abelian contribution

 V�2� �
g4

8�2 CFCA�L: (28)

From Eqs. (22) and (28), the corresponding static po-
tential for two opposite charges located at 0 and y may be
written as

 V � �
g2

4�
CF

e�mL

L
�

g4

8�2 CFCA�L; (29)

where jyj � L. This potential displays the conventional
screening part, encoded in the Yukawa potential, and the
linear confining potential. It is worthwhile noticing that the
result (29) leads to a Coulomb-type potential in the limit of
large m. This then implies that expression (29) has the
Cornell form.

III. FINAL REMARKS

We have studied the equivalence between two non-
Abelian effective theories. To this end we have computed
the static potential for a QCD effective theory which
represents the propagation and interaction of gluons and
dilaton. As a consequence of this the potential energy is the
sum of a Yukawa and a linear potential, leading to the
confinement of static charges. In a general perspective, this
picture agrees qualitatively with that encountered in our
previous phenomenological model [9]. We also mention
that this result is in agreement with the studies of Ref. [13].

In this way we have provided a new connection between
effective models. The above analysis reveals the key role
played by the quantum fluctuations in order to obtain
confinement.
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