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An algorithm recently presented by Lake to obtain all static spherically symmetric perfect fluid
solutions is extended to the case of locally anisotropic fluids (principal stresses unequal). As expected,
the new formalism requires the knowledge of two functions (instead of one) to generate all possible
solutions. To illustrate the method some known cases are recovered.
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I. INTRODUCTION

As is well known, static spherically symmetric perfect
fluid distributions in general relativity are described by a
system of three independent Einstein equations for four
variables (two metric functions, the energy density, and the
isotropic pressure). Thus, additional information in the
form of an equation of state or a heuristic assumption
involving metric and/or physical variables has to be pro-
vided in order to integrate the system. This situation sug-
gests the possibility of obtaining any possible solution,
giving a single generating function. A formalism to obtain
solutions in this way has been recently presented by Lake
[1] (see also [2]).

The purpose of this work is to extend the above-
mentioned formalism to the case of locally anisotropic
fluids.

The motivation for doing so is provided by the fact that
the assumption of local anisotropy of pressure, which
seems to be very reasonable for describing the matter
distribution under a variety of circumstances, has been
proved to be very useful in the study of relativistic compact
objects (see [3–13] and references therein).

In the next section we shall present the general equations
and the formalism to obtain the solutions, then we shall
apply the method to analyze some specific cases.

II. THE EINSTEIN EQUATIONS FOR STATIC
LOCALLY ANISOTROPIC FLUIDS

In curvature coordinates the line element reads

 ds2 � �e��r�dt2 � e��r�dr2 � r2d�2 � r2sin2�d�2 (1)

which has to satisfy the Einstein equations. For a locally
anisotropic fluid they are
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where primes denote derivative with respect to r, and �, Pr,
and P? are the proper energy density, radial pressure, and
tangential pressure, respectively.

A. The algorithm

From (3) and (4) it follows:
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Then, introducing the variables

 e��r� � e
R
�2z�r��2=r�dr (6)

and

 e�� � y�r� (7)

and feeding back into (5) we get
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with ��r� � 8��Pr � P?�.
Integrating (8) we obtain for �:
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whereC is a constant of integration. Then, using (6) and (9)
in (1) we get
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Thus any solution describing a static anisotropic fluid
distribution is fully determined by means of the two gen-
erating functions � and z.

It will be convenient to express the physical variables in
terms of metric and generating functions, in order to im-
pose conditions leading to physically meaningful solu-
tions. Thus we have
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where the mass function m�r� is defined as usual by

 e�� � 1�
2m�r�
r

: (14)

Physically meaningful solutions must be regular at the
origin, and should satisfy the conditions � > 0, � >
Pr; P?. If stability is required then � and Pr must be
monotonically decreasing functions of r.

To avoid singular behavior of physical variables on the
boundary of the source (�), solutions should also satisfy
the Darmois conditions on the boundary. Implying �Pr�� �
0 and

 e�� � e��� � 1�
2M
r�

(15)

with m� � M, and r� denotes the radius of the fluid
distribution.

B. The locally isotropic case

If we impose the isotropic condition on pressure

 � � 8��Pr � P?� � 0 (16)

in (10) we obtain
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which is the same result obtained in [1], with z�r� �
��r�0 � 1

r .

III. SOME EXAMPLES

We shall next apply the algorithm to reproduce some
known situations.

A. Conformally flat anisotropic fluids

Instead of giving two generating functions, we may
provide one generating function and an additional ansatz.
Thus, for example, in the spherically symmetric case we
know that there is only one independent component of the
Weyl tensor. Therefore the conformally flat condition re-
duces to a single equation which reads
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Equation (18) has been integrated in [14], giving:
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which, in terms of z becomes
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On the other hand, from (4) and (18) it follows:

 � � r
�
1� e��

r2

�
0

: (21)

Thus the system is completely determined (in this case)
provided a single generating function z is known.

B. Bowers–Liang solution

This solution corresponds to an anisotropic fluid with a
homogeneous energy density distribution � � �0 � const:
[15], and is given by
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The two generating functions for this metric are
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with h � 1� 2C � const. The case h � 1 reproduces the
well-known Schwarzschild interior solution, whereas the
case h � 0 describes the Florides solution [16].

C. Anisotropic solutions with a nonlocal equation of
state

An interesting family of solutions may be found from
the assumption that the energy density and the radial
pressure are related by a nonlocal equation of state of the
form [17]

 Pr�r� � ��r� �
2
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Z r
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or, using (12)
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From (11) and (27) it follows that these solutions are
defined by the generating function z of the form:

 z �
rm0 � 3m� 2C� r

r�r� 2m�
: (28)
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