
Is the accelerated expansion evidence of a forthcoming change of signature on the brane?
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We show that regular changes of signature on brane worlds in AdS5 bulks may account for some types
of the recently fashionable sudden singularities. Therefore, the possibility that the Universe seems to
approach a future sudden singularity at an accelerated rate of expansion might simply be an indication that
our brane world is about to change from Lorentzian to Euclidean signature. Both the brane and the bulk
remain fully regular everywhere. We present a model in which the weak and strong energy conditions hold
on the brane, in contrast with the standard cosmologies leading to the analogous kinematical behavior
(that is, with a diverging Hubble factor).
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Recently [1–3], the idea that brane-world models [4,5]
are a natural scenario for the regular description of a
change of the spacetime signature has been advocated.
One of the interesting, and intriguing, properties of these
signature-changing branes is that, even though the change
of signature may be conceived as a dramatic event within
the brane, both the bulk and the brane can be fully smooth.
In particular, observers living in the brane but assuming
that their Universe is Lorentzian everywhere may be mis-
led to interpret that a curvature singularity arises precisely
at the signature change [1,3].

In this note we show that a correct description of this
misinterpretation might explain an accelerated expansion
of the Universe, while keeping the energy density and the
rest of the physical variables regular and non-negative
everywhere; in particular, without violating the weak or
strong energy conditions. Explicit models are built where
the Hubble parameter certainly increases and eventually
diverges (for pure Lorentzian branes with finite Hubble
factor see [6]), but such that this corresponds to a pathol-
ogy of the proper time, which is about to disappear mutat-
ing into a spacelike coordinate at the change of signature.
The resulting accelerated expansion epoch does not need
dark, phantom, or any other exotic energy.

For our purposes here we only need to consider anti–
de Sitter (AdS5) bulks. Suitable coordinate systems allow
us to write the bulk line-element as

 ds2 � ��k� �2r2�dt2 � �k� �2r2��1dr2 � r2d�2
k;

where � is a positive constant related to the negative
cosmological constant of the spacetime by �5 � �6�2,
and d�2

k is the 3-dimensional metric of constant sectional
curvature k � 1, 0, �1..

Because of corollary 2 in [3], branes with a change of
signature require an asymmetric setup, so that we need to
glue a region of AdS5 with a region of another anti–

de Sitter space gAdS5 —with a different ~�5. All quantities

referring to gAdS5 will carry an overtilde. The gluing is
performed across appropriate hypersurfaces of AdS5 andgAdS5 which are mutually identified, thereby producing the
brane/shell �.

For simplicity we will only consider branes � with
spherical, plane, or hyperboloidal symmetry, i.e., a
symmetry-preserving matching [7]. Then, ignoring the
angular coordinates, the corresponding hypersurfaces are
given in parametric form by �: ft � t���; r � r���g and ~�:
f~t � ~t���; ~r � ~r���g. The matching implies [3] that the first
fundamental form on the brane reads

 ds2j� � N���d�2 � a2���d�2
k; (1)

where a��� is defined by r��� � ~r��� � a��� and N���
controls the embedding functions t��� and ~t��� via

 

_t �
�a

k� �2a2

�������������������������������������
_a2

a2 � N
�
k

a2 � �
2

�s
(2)

and a similar equation for ~t in terms of ~�, where � (and ~�)
are two signs and the dot stands for d=d�. N��� and a���
are arbitrary functions only restricted to satisfy that both
square roots, in (2) and its tilded version, are real.

From (1), the brane � changes signature if N changes
sign. The changes of signature happen at ‘‘instants’’ � �
�s whereN becomes, or stops being, zero. The set S � f�sg
of all such points is called the signature-changing set of �.
In general, the brane has a Lorentzian phase �L whereN <
0, an Euclidean phase �E defined by N > 0, and a null
phase �0 where N � 0.

The Lorentzian part �L describes a Robertson-Walker
spacetime with � related to the standard cosmic time T���
by

 

_T �
���������
�N
p

on �L: (3)

From the point of view of this Lorentzian phase, the
Lorentzian geometry becomes singular at S \ ��L. We
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want to describe the type of singularity that any observers
living on �L will believe to see there. Before that, however,
let us remark that this ‘‘singularity’’ concerns only the
‘‘Lorentzianity’’ of the brane, and can only be conceived
from the inner point of view of the Lorentzian phase �L.
Both the bulks and the brane � are totally regular every-
where for regular functions N��� and a���> 0.

In order to ascertain how the scientists living within �L

interpret the ‘‘singularity’’ at S \ ��L, one first needs to
compute the energy-momentum tensor ��� on the brane.
To this end one must use the appropriate generalized Israel
formula, which was presented in [8] and applied in [3] for
the case under consideration. ��� has a simple eigenvalue
%̂, a triple one p̂ associated to d�2

k, and the fifth vanishes.
%̂ reads explicitly [1,3]
 

�2
5

3
�1�%̂

�
2

_a2

k� a2�2 � N
�
�

�������������������������������������
_a2

a2 � N
�
k

a2 �
~�2
�s

�

�������������������������������������
_a2

a2 � N
�
k

a2 � �
2

�s
; (4)

where �2
5 is the 5-dimensional gravitational coupling con-

stant and �1 is a sign selecting which region bounded by �

in AdS5 is to be matched with which region bounded by ~�

in gAdS5; see [3,9]. %̂ and p̂ are related by

 

_̂%�
d
d�

�
log
j2 _a2

k�a2�2 � Nj�������
jNj

p �
%̂� 3

_a
a
�%̂� p̂� � 0; (5)

which has the interpretation of a continuity equation. For
signature-changing branes, ��� is affected [1,3] by a nor-
malization freedom related to the choice of volume ele-
ment on the brane. Irrespective of this, one can check that
���, %̂, and p̂ are regular everywhere for regular �. No
singularities arise at the signature change or elsewhere.

The question arises of how the observers living within
the Lorentzian phase of the brane may interpret these facts,
and the observations which they perform, if they believe
(erroneously) that their universe is Lorentzian everywhere.
It turns out that there are two different possibilities accord-
ing to their level of misinformation.

The first possibility arises if the scientists living in �L
know that the bulk universe is 5-dimensional and they live
on a 4-dimensional brane world, but they do not consider
signature changes as feasible. They will assume N < 0
everywhere, and choose the cosmic time T of (3) to de-
scribe the age of the universe, hence from (1)

 ds2j�L
� �dT2 � a2d�2

k: (6)

They will also naturally normalize %̂ and p̂ according to

 % � %̂
j2 _a2

k�a2�2 � Nj�������
jNj

p ; p � p̂
j2 _a2

k�a2�2 � Nj�������
jNj

p ; (7)

so that the conservation law (5) adopts its standard form

 

_%� 3
_a
a
�%� p� � 0: (8)

This normalization corresponds to the canonical
Robertson-Walker volume element. Therefore, % and p
are the energy density and pressure measured within �L.

However, things behave quite differently for signature-
changing branes in comparison with purely Lorentzian
ones regarding the ‘‘end of time’’ (‘‘beginning’’ for signa-
ture changes in the past). In signature-changing branes
these finales can have a nonvanishing a, with finite _a and
�a, but where a0 � da=dT diverges. Indeed, a0 � _a=

���������
�N
p

diverges necessarily when approaching the signature-
changing set S \ ��L given that _ajS � 0 (otherwise, since
N � 0 on S, (2) would imply _tjS � _~tjS � 0, which is
impossible [3]). Thence, the Hubble function H � a0=a
diverges necessarily at S \ ��L. This behavior cannot be
found in pure Lorentzian brane cosmologies.

Observe that (7) may seem to imply that % and p diverge
when approaching S \ ��L, where N ! 0. Actually, this is
not the case because one can prove that % vanishes at the
signature change, and that p can also be regular there in
many cases [3]. To see this, let us rewrite (4) in terms of the
physical quantity %:

 

�2
5

3
% � ��1

� ���������������������������
a02 � k

a2 � ~�2

s
�

���������������������������
a02 � k

a2 � �2

s �
; (9)

which, we remark, holds only on �L. From (9) it is easy to
find [3] the following bounds for the energy density:
�2

5

3 j%j�
�������������������
j ~�2��2j

p
: This inequality is strict for k�1, while

for k � 0 we have the stronger
�2

5

3 j%j � j
~�� �j. Now, (9)

implies also that % vanishes at the change of signature,

 lim
x!S\ ��L

% � lim
x!S\ ��L

3��1

2�2
5

~�2 � �2

jHj
� 0: (10)

This limit together with (8) leads to

 lim
x!S\ ��L

p � lim
x!S\ ��L

��1

4�2
5

�~�2 � �2�
a2

_aj _aj

_N���������
�N
p

which shows that p can be regular if _NjS � 0. Therefore,
by choosing appropriately the hypersurfaces in AdS5 andgAdS5 one can construct signature-changing branes with
both % and p finite and well-behaved everywhere on ��L.
As a matter of fact, signature-changing branes with ���
satisfying some desirable energy conditions can be built, as
we will show below.

Going to a more severe level of misinformation of the
scientists living within �L, assume not only that they are
uninformed about the possibility of signature changes, but
also that they even ignore they live in a brane of a 5-
dimensional bulk. They will again assume thatN < 0 holds
everywhere, and choose the cosmic time T to describe the
age of the universe so that the line element is given by (6).
In addition, they will also use their favorite gravitational
theory to describe the Universe and to compute its energy-
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momentum content. This will generally lead to an
‘‘energy-momentum tensor’’ which has nothing to do
with the genuine ��� on the brane.

If they consider general relativity (GR) as the correct
gravitational theory, they will compute the eigenvalues of
the Einstein tensor of the line element (6) on �L

 8	G%�GR� ��4 �
3

a2 �a
02 � k�;

8	Gp�GR� ��4 � �2
a00

a
�

1

a2 �a
02 � k�;

which obviously diverge at the ‘‘singularity’’ placed on the
signature-changing set S \ ��L. Here, �4 is the GR cosmo-
logical constant. Observe that this ‘‘singularity’’ would be
interpreted as a sudden singularity in the sense of [10]
(generalizing those in [11]), as the scale factor a remains
finite but a0 becomes unbounded. They have also been
termed as ‘‘type III’’ singularities [12] and ‘‘big freeze’’
[13]; see also [14]. These singularities require the violation
of the energy conditions [10], but of course this refers to
the energy conditions satisfied by %�GR� and p�GR�. Hence,
this violation, or equivalently the existence of phantom or
dark energy components, may be just an illusion caused by
a forthcoming change of signature in the brane.

The relationship between %�GR� and the true % on the
brane can be deduced from (9), and is given by [3]
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5

3
% � ��1�

����������������������������������������������
8	G

3
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�4

3
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s

�

����������������������������������������������
8	G

3
%�GR� �

�4

3
� �2

s
	;

8	G%�GR� ��4 � 3 ~�2 �
27

4�4
5%

2

�
~�2 � �2 �

�4
5

9
%2

�
2
:

It is interesting to see that, in this setting, the GR ‘‘singu-
larity’’ %�GR� ! 1 is manifestly due to the vanishing of the
proper energy density at the change of signature.

Let us show with an explicit example how a seemingly
sudden singularity can be described with a regular
signature-changing brane satisfying the strong energy con-
dition. For concreteness let us look for an equation of state
of the form p � C%
 with C> 0. To restrict the possible
values of 
 we need to study the behavior % and p near the
signature change.

Let us assume that N��� approaches zero at the signature
change located at � � �f as N � ��� �f�mM��� wherem
is an odd integer and M��� is a regular function, positive at
�f. Since _a��f� � 0 the limit (10)—coming from the
Lorentzian part (� < �f)—reduces to %
 ��f � ��m=2

where 
 means that both terms are equivalent infinitesi-
mals. In order to get a regular p we need m � 3, so that
_N��f� � 0. On the other hand, the conservation law (8)

leads to p
 ��f � ���m�2�=2, which implies p
 %�m�2�=m

near �f. Thus, if we want to keep a power law equation of
state all along �, we must set p � C%�m�2�=m. The conser-

vation law (8) integrates to

 % � Cm=2� �a�6=m � 1�m=2;

where �a � a=aS and the integration constant has been
chosen as aS � a��f� in order to enable a change of
signature. Inserting this into (9) we get, after some algebra,

 

_�a 2 �
M��f � ��m

4� �a4�1� �a�6=m��m
F� �a�; (11)

where � � �4
5C

m=9 and
 

F� �a� � � �a6�~�� ��2 � ��1� �a�6=m��m	� �a6�~�� ��2

� ��1� �a�6=m��m	 � 4�
k

a2
S

�a4�1� �a�6=m��m:

Solutions of (11) can be proven to satisfy that the square
roots in (2) and its tilded counterpart are real.

Equation (11) being quadratic, it contains two branches.
To choose the proper one, note that �a��f� � 1 by construc-
tion and F�1� � �~�2 � �2�2 > 0. Furthermore, at points of
�L near S, where � < �f, we need �a < 1 to keep a well-
defined %. Hence _�a > 0 near S and the positive square root
in (11) has to be chosen. The solution for �a��� depends
strongly on F� �a�, and, in particular, on its zeros and their
order. For k � 0, 1 the existence of two simple zeros of
F� �a� in �a 2 �0; 1� is ensured. Let us focus for simplicity on
the case k � 1, and let �a0 2 �0; 1� denote the zero of F� �a�
closest to �a � 1. We must ascertain if a solution exists
extending from �a � �a0 to �a � 1, i.e., that for a finite �0,
�a��0� � �a0 holds. Integrating (11), this amounts to show-
ing that, for some finite �0,

 4�
Z 1

�a0

�a2�1� �a�6=m��m=2����������
F� �a�

p d �a �
Z �f

�0

M�����f � ��md�;

with both integrals convergent. Since F
 � �a� �a0� near
�a0, the integral on the left trivially converges. The integral
on the right converges for any finite �0, provided M���
stays bounded. Thus, for a large class of positive functions
M��� (in particular for all those bounded away from zero) a
finite �0 fulfilling the equality does exist.

Let us assume that one such M��� has been chosen. The
corresponding solution �a��� satisfies _�a��0� � 0 by con-
struction. It is easy to check that ��a��0�> 0, which implies
that the negative branch of (11) must be taken for � < �0

(near �0). Using a similar argument as before, the solution
�a��� increases (as � decreases) until reaching again �a � 1
at some finite �b < �0 < �f. In principle, _�a might diverge
there, leading to a singular brane. This can be avoided if
and only if M � ��b � ��mP��� for some regular function
P��� positive in ��b; �f	. The simplest way to ensure this
behavior is to choose M��� even with respect to � � �0.
This implies the same even property for �a���. It should be
stressed, however, that this is just one among many
possibilities.

Let us stress that the explicit Lorentzian cosmological
model, described by a�T�, depends on N��� only through
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its behavior near its zeros. The free function P is irrelevant
as it can always be reabsorbed with a coordinate change
within the Lorentzian phase. This is already apparent in
(11), from which a simple calculation gives

 a00 � aS �a00 � ��1�m�1 aS
2

d
d �a

�
F� �a�

4� �a4�1� �a�6=m��m

�
(12)

where the dependence on P has vanished.
Regarding the behavior of the cosmic acceleration at the

signature change, we need to evaluate �a00 in the limit �a �
1. The calculation gives

 lim
�a!1
a00 � lim

�a!1

2aS�~�
2 � �2�2

��1� �a�6=m��m�1
� �1:

Thus a00�T� must be positive near the signature changes,
and the seemingly ‘‘sudden singularity’’ (of big-freeze
type) in the future is approached while in an increasingly
accelerated expansion epoch (see Fig. 1).

We have that a00�T� must be positive both around �0 and
�f, that is (i) at the beginning of the expansion epoch
(when the energy density attains its maximum), which
can account for an inflation era, and (ii) in the accelerated
expansion epoch previous to the final ‘‘big freeze.’’ On the
other hand, the very particular class of models with k�1
and equation of state p�C%
 that we have built cannot
present an epoch of decelerated expansion with a00�T�<0
in order to stop the initial inflation, as can be proven by
using (12). However, due to the large freedom in the
equation of state it seems likely that many models will
exist with a00 �0 for some period after the initial inflation
epoch.
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FIG. 1. The Lorentzian phase starts with a signature change at
�b, with a scale factor a � aS ( �a � 1) and vanishing density %
and pressure p. The model contracts until it reaches the mini-
mum scale a0 where % attains its maximum, which represents a
little bang (regular bounce) [15]. The model then ‘‘bounces’’ to
an expanding era with accelerated expansion (a00 > 0), in which
both % and p decrease, until another change of signature occurs
at a � aS, with %jS � pjS � 0. The density and pressure remain
non-negative everywhere on the Lorentzian phase. The picture
on the bottom right describes the whole brane (with its
Lorentzian, Euclidean, and null phases) embedded in the AdS5

bulks, with � � ��1 � 1 and ~� < �, so that %> 0 in �L.
Observe that %j�L

> 0 requires �5 < ~�5 < 0 so that the ‘‘eter-
nal’’ AdS5 is more stable. This is very reasonable physically [1].
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