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Analyzing closed string tachyon condensation will improve our understanding of spacetime in string
theory. We study the string spectrum on a Banados-Teitelboim-Zanelli black hole spacetime supported by
Neveu-Schwarz-Neveu-Schwarz flux, which provides a calculable example where we would expect to find
a quasilocalized tachyon. We find that there is a winding tachyon when the black hole horizon is smaller
than the string scale, as expected. However, due to effects of the Neveu-Schwarz-Neveu-Schwarz B field,
this tachyon is not localized in the region where the spatial circle is string scale. We also discuss the
relation to the Milne orbifold in the limit near the singularity.

DOI: 10.1103/PhysRevD.77.026010 PACS numbers: 11.25.�w, 04.70.Dy, 11.25.Tq

I. INTRODUCTION

The study of tachyons in string theory provides an
interesting window into aspects of nonperturbative dynam-
ics. The dynamics of open string tachyon condensation is
relatively well understood, but the corresponding story for
closed string tachyons is far from complete. We have a nice
picture for localized closed string tachyons at orbifold
singularities such as C=ZN [1] (cf., [2] for a review), where
by virtue of the tachyon dynamics being confined to a
small region in spacetime, one has control over the con-
densation process. Recently, there has been interest in
studying quasilocalized closed string tachyons [3], which
have been argued to arise in several interesting contexts.
The basic idea is that for a string on a circle of size smaller
than the string length ‘s, with antiperiodic boundary con-
ditions for fermions, there are tachyonic winding modes. If
the size of this circle varies over some base space, one
heuristically expects a tachyon which is confined to the
region where the size of the circle � ‘s. Such configura-
tions arise when we consider strings propagating on a
Riemann surface in corners of moduli space where handles
degenerate [3], in simple time-dependent spaces [4], or in
charged black string geometries [5,6]. The condensation of
such tachyons is argued to provide insight into issues such
as spacetime fragmentation/topology change, black hole
evaporation, and spacelike singularity resolution [4,7,8].
(In the last context, the tachyon condensate provides a
realization of the final state proposal of [9].)

Most of the discussion of quasilocalized tachyons so far
has been based on this kind of approximate analysis, as the
examples considered were too complicated for the
string spectrum to be calculated explicitly. In this paper,
we consider in detail the string spectrum on a Banados-
Teitelboim-Zanelli (BTZ) black hole (� S3 � T4) [10,11].
The arguments used previously imply that the BTZ black
hole has a winding tachyon when the horizon size

���
k
p
r� �

‘s [5], and that this tachyon will be confined to the region
near the horizon, where the spatial circle is smaller than the
string scale. Indeed, this geometry arises as the near-
horizon limit of the black string examples considered in
[5,6].

In BTZ, we can calculate the perturbative string spec-
trum exactly, and test this heuristic analysis. The BTZ
black hole is an orbifold of AdS3 by an identification under
a boost. We consider the AdS3 � S3 � T4 geometry sup-
ported by Neveu-Schwarz-Neveu-Schwarz (NS-NS) flux,
corresponding to the F1-NS5 system in Type II string
theory compactified on1 T4. The world-sheet theory is a

conformal field theory (CFT) with a dSL�2;R�k � dSU�2�k
supercurrent algebra, with the level k being set by the NS-
NS flux, or alternatively by the number of effective strings
in six dimensions. The bosonic string on the BTZ orbifold
has been previously studied in [12–16]. We exploit and
extend these results to determine when there is a winding
string tachyon in the BTZ geometry.

We find that there is indeed a twisted sector tachyon in
the spectrum, which for the superstring appears precisely
when

���
k
p
r� �

���
2
p
‘s. In the superstring, the tachyon in odd

twisted sectors will survive the Gliozzi-Scherk-Olive
(GSO) projection if the spin structure on spacetime im-
poses antiperiodic boundary conditions on fermions
around the spatial circle [17]. This is in accord with the
expectations from the qualitative argument.

The major surprise of our analysis is that the tachyon
wave functions are not localized! We find that the tachyon
has nontrivial support all the way out to the anti–de Sitter
(AdS) boundary, with a wave function very similar to
that for a bulk tachyon. The NS-NS flux plays a key role
in this delocalization. It is directly related to the existence
of ‘‘long string’’ states in this geometry, which can grow
arbitrarily large due to the cancellation of the string tension
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1We can alternately consider compactification on K3. The
internal space will play no role in our analysis, and we will
concentrate on T4 for simplicity.
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by the coupling to the background B field [18]. This
delocalization will make it more difficult to understand
the condensation of these tachyons. However, one might
hope that the AdS asymptotics might result in the tachyon
condensation only appreciably changing the geometry in
some compact region.

We also study the Milne limit, where we zoom in on the
region near the singularity. This limit is analogous to the
flat-space limit of the elliptic orbifolds of [19]. We find that
with an appropriate scaling, physical states survive in both
twisted and untwisted sectors in the limit. We argue that
from the T-dual point of view, these twisted sectors seem
to be localized near the singularity, in agreement with
the expectations of [4]. We leave a detailed understanding
of the relation of the twisted sectors we find here to
previous work on the Milne orbifold [20–22] for future
investigation.

In the next section, we briefly outline the relevant as-
pects of string theory on AdS3 and the BTZ black hole. We
then discuss the computation of the twisted sector tachyon
for the bosonic string in Sec. III, and for the superstring in
Sec. IV. We conclude with some remarks on open issues in
Sec. V. Our conventions for SL�2;R� are contained in
Appendix A. We review the flat-space limit of the elliptic
orbifold in Appendix B. We briefly discuss aspects of the
thermal AdS partition function in Appendix C.

II. PRELIMINARIES

To set the stage for discussing string theory on the BTZ
background, we collect some useful information regarding
the Wess-Zumino-Witten (WZW) model with target space

AdS3 and the dSL�2;R� current algebra. Further details
regarding our conventions can be found in Appendix A.

A. AdS3

Bosonic string theory on AdS3 with NS-NS flux is
described by an SL�2;R� WZW model (see, e.g., [23] for
a nice discussion). The action for the WZW model is the
conventional one:
 

SWZW �
k

8��0
Z
d2�Tr�g�1@agg�1@ag�

�
ik

12�

Z
Tr�g�1dg ^ g�1dg ^ g�1dg�: (2.1)

The level k of the WZW model is not quantized, since
H3�SL�2;R�;R� � 0. Later, when we discuss the super-
string, we will quantize k, since the level of the SL�2;R�
current algebra will be tied to that of an SU�2� current
algebra (for strings on AdS3 � S3). For purposes of dis-
cussing the AdS3 geometry, the SL�2;R� group manifold is
conveniently parametrized in terms of global coordinates
(t, �, �) as2

 g �
cos� cosh�� sin� sinh� sin� cosh�� cos� sinh�
� sin� cosh�� cos� sinh� cos� cosh�� sin� sinh�

� �
; (2.2)

which leads to the metric

 ds2 � �0k��cosh2�d�2 � d�2 � sinh2�d�2� (2.3)

and NS-NS twoform

 B � �0ksinh2�d� ^ d�: (2.4)

Henceforth, we will set �0 � 1, so we work in units of the
string length. The AdS length scale is then ‘ �

���
k
p

.
The WZW model (2.1) is invariant under the action

 g�z; �z� ! !�z�g�z; �z� �!� �z��1; (2.5)

which leads to a set of conserved world-sheet currents3

 Ja � kTr��a@gg�1�: (2.6)

This choice of currents ensures that in the flat-space limit
k! 1, Ja reduce to the translational currents. The con-
formal Ward identity implies the operator product expan-

sions (OPEs)

 Ja�z�Jb�w� �
k
2

�ab

�z� w�2
�
i	abcJc�w�
�z� w�

; (2.7)

with a similar expression for the right-movers.4 The OPE
can be translated into commutation relations by using the
mode expansions

 Ja�z� �
X1

n��1

Janz�n�1; (2.8)

leading to

 	J3
n; J3

m
 � �
k
2
n
n�m;0; 	J3

n; J�m 
 � �J�n�m;

	J�n ; J
�
m 
 � �2J3

n�m � kn
n�m;0:
(2.9)

Here we have used J� � J1 � iJ2. This choice corre-
sponds to the elliptic basis of SL�2;R� used for AdS3 or

2This choice corresponds to the Euler angle parametrization of
SU�1; 1�. The isomorphism between SL�2;R� and SU�1; 1�
given by g 2 SL�2;R� ) h � t�1gt 2 SU�1; 1� where t � 1�
i�1.

3We are using the �a generators for SL�2;R�; see Appendix A
for our conventions.

4Our conventions for the dSL�2;R� are analogous to those used
in [19]. As discussed there we need to redefine the right-moving
currents to ensure that the standard conventions for raising and
lowering operators is respected. We assume henceforth that the
appropriate redefinition has been applied to the right-movers.
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spacelike quotients thereof [19], and is useful if we want to
diagonalize J3�z�.

The world-sheet Virasoro generators are
 

L0 �
1

k� 2

�
�J1

0�
2 � �J2

0�
2 � �J3

0�
2

� 2
X1
m�1

�J1
mJ1

m � J2
mJ2

m � J3
mJ3

m�

�
;

Ln�0 �
2

k� 2

X1
m�1

�J1
n�mJ

1
m � J

2
n�mJ

2
m � J

3
n�mJ

3
m�;

(2.10)

with commutation relations:

 	Ln; Lm
 � �n�m�Ln�m �
c

12
n�n2 � 1�
n�m;0 (2.11)

and

 	Ln; J
a
m
 � �mJ

a
n�m: (2.12)

The central charge c is given in terms of the level k as

 c �
3k
k� 2

: (2.13)

Note that the contribution to L0 from the zero modes of the
currents is proportional to the quadratic Casimir c2 of
SL�2;R�.

The spectrum of strings on global AdS3 contains the
untwisted, or short string, states in the representations of
the current algebra Ĉ�j � Ĉ�j , j � 1

2� is and D̂�
j � D̂�

j for
1
2 < j< k�1

2 . These current algebra representations are
highest weight representations of the current algebra built
from the corresponding SL�2;R� representations by acting
with current algebra lowering operators. The C�j are con-
tinuous representations of SL�2;R�, while D�

j are, respec-
tively, highest and lowest weight discrete series
representations. The continuous representations corre-
spond to the bosonic string tachyon; this follows from
the fact that the quadratic Casimir is �j�j� 1�. The spec-
trum on global AdS3 will also contain twisted sector states
obtained by acting on these short string states with spectral
flow, as described in [23]. In [24], it was shown that this
spectral flow could be reexpressed in terms of twisting with
respect to a twist operator which imposes the periodicity in
global coordinates. In our case, we will have instead
twisted sectors corresponding to the BTZ orbifold.

B. BTZ

We will study the nonrotating BTZ black hole,5 which is
an orbifold of AdS3 by a hyperbolic generator of SL�2;R�
[11]. To describe this orbifold, we use a different parame-
trization of the group. Describing the AdS space in BTZ

coordinates amounts to writing the SL�2;R� group element
in Euler angles [12]:

 g � e�2i’0�3
e�2i�0�1

e�2i 0�3

�
e’

0
0

0 e�’
0

 !
r

��������������
r2 � 1
p��������������

r2 � 1
p

r

 !
e 

0
0

0 e� 
0

 !
;

(2.14)

where r � cosh�0. In these coordinates, the target space
metric of the WZW model (2.1) is

 ds2 � k
�
��r2 � 1�dt2 �

dr2

r2 � 1
� r2d�2

�
; (2.15)

where� � �’0 �  0�, t � �’0 �  0�. The background NS-
NS twoform can be written in a suitable gauge as

 B � k�r2 � 1�d� ^ dt: (2.16)

The orbifold action which generates a nonrotating BTZ
black hole is then simply ���� 2�r�. Note that r� is
dimensionless and MBH � r2

�. Unlike (2.2), the coordi-
nates in (2.14) do not cover the full spacetime; they are
valid outside the event horizon r � 1, where the proper
size of the � circle is 2�

���
k
p
r�.

This choice of basis for the generators can now be
translated into the current algebra. The BTZ coordinates
correspond to choosing a hyperbolic basis for the current
algebra, in which the generator J2 is diagonalized, as the
generators of spacetime time translation and rotation are
[14]

 Qt � J2
0 �

�J2
0; Q� � J2

0 �
�J2
0: (2.17)

Since these involve J2
0 , we are interested in real eigenvalues

of J2
0 . The commutation relations for the current algebra in

the hyperbolic basis read

 	J2
n; J

2
m
 �

k
2
n
n�m;0; 	J2

n; J
�
m 
 � �iJ

�
n�m;

	J�n ; J�m 
 � 2iJ2
n�m � kn
n�m;0;

(2.18)

where we have used J� � J1 � J3. Note that J�m have J2
0

charge �i. The issues associated with this are discussed in
detail in6 [12,14]. The corresponding OPEs are (cf. (2.7))

 J��z�J��w� �
k

�z� w�2
�

2iJ2

�z� w�
;

J2�z�J2�w� �
k=2

�z� w�2
; J2�z�J��w� � �

iJ�

�z� w�
:

(2.19)

It will also be useful for later discussion to record the
explicit form of the currents in the BTZ coordinates. In
the parametrization (2.14) we find that the currents (2.6)

5This is a simpler example since the action of the orbifold is
left-right symmetric. The generalization to the rotating case
involves an asymmetric orbifold.

6See [25] for an excellent discussion of the representations in
the hyperbolic basis.

WINDING TACHYONS ON A BANADOS-TEITELBOIM- . . . PHYSICAL REVIEW D 77, 026010 (2008)

026010-3



take the form

 J1 � ik�cosh2’0@�0 � 2 sinh2’0 cosh�0 sinh�0@ 0�;

(2.20)

 J3 � ik�sinh2’0@�0 � 2 cosh2’0 cosh�0 sinh�0@ 0�;

(2.21)

 J2 � ik�@’0 � �cosh2�0 � sinh2�0�@ 0�; (2.22)

where we write r � cosh�0. Similarly, the antiholomorphic
currents are written as

 

�J 1 � ik�cosh2 0 �@�0 � 2 sinh2 0 cosh�0 sinh�0 �@’0�;

(2.23)

 

�J 3 � ik�� sinh2 0 �@�0 � 2 cosh2 0 cosh�0 sinh�0 �@’0�;

(2.24)

 

�J 2 � ik� �@ 0 � �cosh2�0 � sinh2�0� �@’0�: (2.25)

Bosonic strings in the BTZ background were originally
studied in [12,13] and more recently in [14]. The latter
analysis reproduced the spectrum by applying the spectral
flow operation introduced in [23] to generate the twisted
sectors. Our aim is to more explicitly identify the tachyon
in these twisted sectors. We will also extend the analysis of
the orbifold to the superstring.

III. THE BOSONIC STRING

As we have seen above, the BTZ black hole is obtained

by a quotient of dSL�2;R� by a hyperbolic element. In the
BTZ coordinates (2.14), the quotient is simply the identi-
fication ���� 2�r�. We want to understand the
twisted sectors associated with this orbifold, and see under
what circumstances we will find a tachyon in the twisted
sectors.

A. Twisted sectors of the BTZ orbifold

The periodic identification along @� which generates the
BTZ orbifold restricts the states to have quantized values
of Q�. By (2.17), this restricts the J2

0 �
�J2
0 eigenvalue:

 r��J2
0 �

�J2
0� 2 Z; (3.1)

where J2
0 refers to the eigenvalue of the corresponding

operator on the states. In addition to this restriction on
the untwisted sectors, the orbifold action will introduce
appropriate twisted sectors. Following [24], we find it
convenient to determine the twisted sectors by imposing
the constraint (3.1) on an enlarged set of vertex operators.
We implement this by first introducing an appropriate twist
operator tn, and then projecting onto the states which are
mutually local with respect to this twist operator. The
twisted sector vertex operators are then obtained by taking

the set of operators including the twist operator which are
mutually local and closed under OPE.

To construct twisted sectors, it is convenient to work
with a parafermionic representation of the current algebra
(analogous to the construction of [19] in the elliptic case).7

To begin with we bosonize the J2 current in terms of a free
field X;

 J2 � �i

���
k
2

s
@X; (3.2)

where X�z�X�w� � � ln�z� w�, and introduce parafer-

mions to represent the remaining dSL�2;R�k=dU�1� algebra
by

 J� � ��e�
��������
�2=k�
p

X; (3.3)

with

 ���� �
k

�z� w�2��2=k�
; ���� � �z� w�2=k: (3.4)

For chiral primary operators of the current algebra, there is
a parafermionic representation

 �j��w� � �j��w�e
�i

��������
�2=k�
p

�X; (3.5)

where � is the J2 eigenvalue, which determines the space-
time energy. Note that in the hyperbolic basis � and j are
unrelated. The primary operators have conformal dimen-
sion

 h��j�� � �
j�j� 1�

k� 2
(3.6)

where c2 � �j�j� 1� is the Casimir of the global
SL�2;R� symmetry generated by the zero modes of the
currents. For the continuous representations c2 �

1
4 ; it is

bounded from above, c2 �
1
4 , for the discrete representa-

tions. Nontachyonic modes are required to have c2 �
1
4

which corresponds to the Breitenlohner-Freedman (BF)
bound in AdS3. From (3.5) and (3.6) it follows that

 h��j�� � �
j�j� 1�

�k� 2�
�
�2

k
: (3.7)

In this parafermionic representation, the restriction (3.1)
can be imposed by introducing twist operators

 tn � eir�
��������
�k=2�
p

n�X� �X� for n 2 Z; (3.8)

7This choice of representation is inspired by the analysis of
[19], where the orbifolds AdS3=ZN involving identifications of
AdS3 (and extensions to include the orbifold also acting on the
internal CFT) under the spatial rotation isometry @� were
studied. In fact the parafermion OPEs written in (3.4) are the
same as in the parafermionic representation of the elliptic form
of dSL�2;R�k. In that case the J3 current is bosonized in terms of
a free field; see Appendix B for some details.
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and requiring that physical vertex operators are mutually
local with respect to these twist operators.

Given the twist operator it is easy to write down the
vertex operators for primary states in the nth twisted sector.
They are just given by the composite operator arising from
the product of the untwisted sector primary with the twist,
i.e.,

 �n
j� ��
� �j�

��j ��e
�i

��������
�2=k�
p

	����k=2�nr��X�� ����k=2�nr�� �X
;

(3.9)

where �j�, �j �� are the chiral parafermions from the
untwisted sector primaries. These operators have dimen-
sions

 h��n
j� ��
� � �

j�j� 1�

�k� 2�
�
�2

k
�
��� kr�n=2�2

k

� �
j�j� 1�

�k� 2�
� �r�n�

kn2r2
�

4
;

�h��n
j� ��
� � �

j�j� 1�

�k� 2�
�

��2

k
�
� ��� kr�n=2�2

k

� �
j�j� 1�

�k� 2�
� ��r�n�

kn2r2
�

4
:

(3.10)

In [14], these twisted sectors were discussed using the
language of spectral flow developed in [23]. For global
AdS, the spectral flow is equivalent to the introduction of
an appropriate twist operator, as discussed in [24].
However, for the BTZ orbifold, we think the twist operator
language is more appropriate, as the twisting does not
correspond to an automorphism of the full current algebra.
The symmetries associated with J� are broken by the
orbifold (J� are not mutually local with respect to tn), so
these operators will have different moding in the twisted
sectors. This twisting is still related to a spectral flow: if we
focus on the algebra of the surviving symmetries, which is

the dU�1� algebra generated by J2 and the Virasoro algebra,
the spectral flow

 

~J 2
n � J2

n �
k
2
w
n;0; ~Ln � Ln � wJ

2
n �

k
4
w2
n;0

(3.11)

for arbitrary w is an automorphism of this algebra. Taking
w � nr�, �w � �nr� for integer n recovers the charges of
the twisted sector states described above. However, this
restricted algebra is no longer spectrum generating.

The full vertex operators are formed by taking descend-
ants of the primary operators (3.9) and combining them
with some vertex operator from the internal CFT. The
physical state conditions �L0 � 1� j physi � � �L0 � 1� j
physi � 0 will then be

 �
j�j� 1�

�k� 2�
�
�2

k
�
��� kr�n=2�2

k
� hint � N � 1;

(3.12)

 �
j�j� 1�

�k� 2�
�

��2

k
�
� ��� kr�n=2�2

k
� �hint � �N � 1;

(3.13)

where hint, �hint are the dimensions of the operator from the
internal CFT, and N, �N are oscillator numbers for the
current algebra. We assume that the internal CFT is unitary,
so hint, �hint � 0.

Finally, we should consider the relation of �, �� to space-
time energy more carefully. It is clear that J2

0 �
�J2
0 corre-

sponds to momentum around the compact circle, but there
are two possible contributions to J2

0 �
�J2
0, coming from

spacetime energy or winding around the compact circle.
That is, there is an ambiguity in the definition of Qt in the
twisted sectors, analogous to the ambiguity in the defini-
tion of Q� discussed in [14]. If we apply the naive formula
(2.17), the twisted sector operators have energy

 E � �� ��� kr�n; (3.14)

since the eigenvalue of J2
0 is �� kr�n=2 and the eigen-

value of �J2
0 is ��� kr�n=2, for a twisted sector vertex

operator (3.9). However, thinking of our orbifold as analo-
gous to an ordinary translation orbifold to generate a
compact circle, this twist contribution to the J2

0 , �J2
0 eigen-

value is more naturally interpreted as the usual winding
contribution to pL�, pR�. Therefore we do not think it is
appropriate to interpret it as a contribution to the spacetime
energy of the mode. We therefore propose to identify
instead

 Qt � J2
0 �

�J2
0 � kr�n (3.15)

as the generator of spacetime time translation, so that the
spacetime energy of the mode (3.9) is simply �� ��. As
explained in [14], this shift corresponds to adding the
divergence of an antisymmetric tensor to the Noether
current; this does not change the conservation law, but
shifts the value of the charge in topologically nontrivial
sectors.

This issue becomes clearer when we study the flat-space
limit. In Sec. III C), we will see that (3.15) gives the usual
notion of spacetime energy in the translational orbifold. It
should be noted that the appropriate choice is actually
gauge dependent. We will return to this issue in
Sec. III E) where (2.17) is a more appropriate choice of
generators in the chosen gauge.

B. Tachyons in BTZ

Having determined the spectrum of twisted sector op-
erators in the BTZ orbifold, we want to determine which of
them corresponds to a tachyon in the spacetime. We first
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need to consider carefully the question of how a tachyon is
defined. A mode is tachyonic if it has sufficiently negative
spacetime mass-squared. We want to apply this condition
by thinking of our orbifold as analogous to a translational
orbifold, and looking for modes which have appropriately
negative mass-squared8 in the directions orthogonal to the
orbifold.

We are twisting with respect to J2
0 , so we view the

Casimir

 J1
0J

1
0 � J

3
0J

3
0 �

1

2
�J�0 J

�
0 � J

�
0 J
�
0 � (3.16)

for the other two components of the current as representing
the directions orthogonal to the orbifold. Note that
although J�0 individually do not commute with J2

0 , this
Casimir will, so we can work with a basis of vertex
operators which are eigenvectors for this Casimir. In the
parafermionic representation, the eigenvalue of this
Casimir is a multiple of the dimension of the parafermionic
part of the vertex operator (3.7), so what we want to do is to
view the parafermionic part of the operator as representing
the contribution from the orthogonal dimensions. This is
not strictly true in a naive sense, since the bosonic field X
introduced to bosonize J2 is not simply a target space
coordinate on the circle. Nonetheless, we think this is a
natural interpretation. We would then decompose (3.10)
into the dimension of the parafermionic operator, (3.7), and
a contribution

 

��� kr�n=2�2

k
(3.17)

associated with the compact circle.
For general operators, there is a problem, as this latter

term depends on the spacetime energy Qt as well as the
momentum Q� on the compact circle. This dependence on
Qt is a complicating factor, so we will focus for now on
identifying tachyon operators with Qt � 0, that is, � � ��.
If there is a field with mass-squared violating the BF
bound, it will have a mode with zero energy, so this
analysis should still be sufficiently general to find all
spacetime tachyons, at least in the region outside the
horizon. In this case, � � Q�=2, and we can interpret
(3.17) as p2

L, the usual contribution of the momentum
and winding on a compact circle to the conformal dimen-
sion. Thus in this case, an appropriate criterion to identify a
tachyon is that the Casimir of the representation in the
space orthogonal to the orbifold direction should be � 1

4 .
That is, we claim that the appropriate criterion for a twisted
or untwisted sector mode with � � �� to be tachyonic is

that the parafermionic part of the operator has positive
dimension greater than 1

4�k�2� .
We see that unlike in the case of the elliptic orbifolds

analyzed in [19], we can only get tachyons from operators
in the continuous representations, even when we are con-
sidering the twisted sectors. For (3.7) to be greater than

1
4�k�2� , we need the full quadratic Casimir �j�j� 1� to
violate the BF bound. The discrete representations of
SL�2;R� at best saturate the bound. The essential differ-
ence between the elliptic and hyperbolic cases is the sign of
the second term in (3.7).

We want to construct physical states which are ta-
chyonic. The dimensions of operators in the internal CFT
will be positive, so to be able to satisfy the physical state
condition, we need to require in addition that the total
dimensions of the SL�2;R� vertex operator (3.9) are h,
�h � 1.9 With our restriction to � � ��, this condition is
most easily satisfied for zero momentum, � � �� � 0,
when

 h � �h � �
j�j� 1�

�k� 2�
�
kn2r2

�

4
�

1
4� s

2

k� 2
�
kn2r2

�

4
; (3.18)

where we have used the j value for a principal continuous
representation, j � 1

2� is. The condition h � 1 thus trans-
lates (for large k) to

���
k
p
r� < 2. Thus, we conclude that

there will be tachyons in the twisted sectors if and only if���
k
p
r� < 2. The vertex operator corresponding to the most

tachyonic mode is �n
j00 with j � 1

2� is. Note that in the

contrary case
���
k
p
r� > 2, we see no tachyon in the spectrum

for � � ��.
The bound

���
k
p
r� < 2 is in good agreement with what we

expect based on the heuristic argument comparing this
space to a Scherk-Schwarz compactification. In the next
subsection, we will study the near-horizon limit, and re-
cover the usual Scherk-Schwarz analysis [17] as a limit of
the present discussion.

C. Flat-space limit of BTZ

There are two interesting flat-space limits which we can
consider by sending the AdS curvature to zero. First, we
can zoom in on the near-horizon region keeping the part of
the spacetime outside the horizon, and second we zoom in

8As we are dealing with an asymptotically AdS geometry, the
appropriate condition for a tachyon is that the mass-squared
violates the Breitenlohner-Freedman bound, which for AdS3 is
m2 � � 1

4 .

9In the more familiar case of orbifolding in the internal CFT, a
tachyon is also identified with a relevant operator, but the argu-
ment is different: there, the dimension of operators in the CFT
which includes the time direction could be negative, but we
require it to be positive to have a tachyon, and therefore need
h � 1 for the internal CFT. Here, h is the dimension of an
operator in the BTZ CFT, which includes the time direction, so
we need h � 1 to be able to satisfy the physical state condition
for any choice of operator in the internal CFT. Note however that
not any relevant operator in this BTZ CFT corresponds to a
tachyon: only those which satisfy the additional condition that
(3.16) is sufficiently positive do.
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on the singularity. For the moment we will concentrate on
the first case and return to the second later. In this limit, the
generator we are orbifolding along goes over to a trans-
lation generator in flat space, and our orbifold reduces to
the usual Scherk-Schwarz compactification.

In the first limit, we need to take k! 1 holding the
horizon radius in AdS units R �

���
k
p
r� fixed. Let us define

coordinates

 x2 �
���
k
p
�; � �

���
k
p ��������������

r2 � 1
p

�
���
k
p

sinh�0; (3.19)

in which the metric becomes:

 ds2 � ��2dt2 � d�2 � �dx2�2 �O

�
1

k

�
: (3.20)

Note that x2 is a periodic coordinate, x2 � x2 � 2�R. The
metric (3.20) is just two-dimensional Rindler times a cir-
cle. Further defining coordinates x1 � � cosht, x3 �
� sinht, the metric becomes

 ds2 � ��dx3�2 � �dx1�2 � �dx2�2: (3.21)

The currents are to leading order simply Ja � i
���
k
p
@xa,

�Ja � i
���
k
p

�@xa which are translational currents in the flat
metric.

However, to understand the time translation and momen-
tum generators in the near-horizon region, we need to be
more careful, and keep track of subleading terms in J2, �J2.
Recall that the rotation generator Q� � J2

0 �
�J2
0; hence p2

will have a finite value in the near-horizon limit if �� ������
k
p

. On the other hand, the energy is E � �� ��, so it is
finite if �� ��� 1. We therefore need to consider the terms
in J2 which are O�1� to see the t-translation generator.
Retaining terms to subleading order, we find

 J2 � i
���
k
p
@x2 � i�2@t; (3.22)

 

�J 2 � i
���
k
p

�@x2 � i�2 �@t: (3.23)

Thus in this flat-space limit,

 J2 � �J2 � i
���
k
p
�@� �@�x2 � i�2�@� �@�t; (3.24)

and we can see quite clearly that there are two contribu-
tions, one O�

���
k
p
� associated with winding, and one O�1�

associated with time translation. This shows why we need
to take a winding part out of J2

0 �
�J2
0 to obtain Qt in (3.15).

It might seem surprising that these currents (3.22) and
(3.23) are conserved holomorphic and antiholomorphic
currents; in flat space, the Lorentz invariance only implies

 

�@��2@t� � @��2 �@t� � 0; (3.25)

not separate conservation of the left- and right-moving
parts. In fact, it is the total J2 which is conserved, not
each term separately. To see why the currents (3.22) and
(3.23) are conserved, we need to work with the equations of
motion to subleading order, including a term coming from

the B field. In the near-horizon limit, it is convenient to
work with the B field in the gauge (2.16). In the near-
horizon limit we then have a B-field

 B �
1���
k
p �2dx2 ^ dt: (3.26)

This makes a subleading contribution to the x2 equation of
motion

 @ �@x2 �
1

2
���
k
p �@��2 �@t� � �@��2@t�� � 0: (3.27)

Together with the conservation law following from Lorentz
invariance (3.25), this indeed implies the conservation of
J2, �J2 to the indicated order.

Now, it is clear that in this flat-space limit, a tachyon is a
mode which has a negative mass-squared in the subspace
spanned by x3, x1. That is, if we consider a vertex operator
of zero momentum in the x2 direction, with winding n, and
write the conformal dimension as

 h � �h � C�
n2R2

4
; (3.28)

then the operator is a tachyon ifC is positive,10 as this is the
Casimir in the x3, x1 directions. In AdS3, if we start with an
untwisted sector operator with � � �� � 0, and apply n
units of twist, the conformal dimension of the resulting
twisted sector state is

 h � �h � �
j�j� 1�

�k� 2�
�
kn2r2

�

4
: (3.29)

Comparing (3.28) and (3.29), we see that the state corre-
sponds to a tachyon in the twisted sector if and only if it
comes from a tachyon—a continuous representation—in
the untwisted sector, precisely as we argued in the previous
section. Thus, we see that in this near-horizon limit, the
space is approximately flat, with one direction periodically
identified, and the twisted sector tachyons identified in the
previous section go over precisely to the usual Scherk-
Schwarz winding tachyons in the flat space. This shows
how the approximate Scherk-Schwarz analysis can be
recovered from our exact analysis.

D. (Non)localization of tachyon

One of our main aims is to say something about the
localization of this winding tachyon. It is difficult to ana-
lyze this precisely, as we need to understand the spacetime
dependence of the twisted sector vertex operators. We have
seen in the previous section that the tachyons all come
from operators in the continuous representations of
SL�2;R�. In [12], the radial profile of the vertex operator

10Of course, in taking the flat-space limit we are no longer
sensitive to the finite k piece coming from the BF bound. The
criterion espoused in Sec. III B), h��j�� �

1
4�k�2� , simply re-

duces to the positivity of the Casimir in the two dimensions.
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wave function for untwisted sectors was analyzed in terms
of hypergeometric functions. From this analysis, we can
see that as expected, the untwisted sector tachyon of the
bosonic string is not localized in the radial direction.

It is not completely straightforward to extend this analy-
sis to the twisted sectors, as the twisted sector vertex
operators �n

j00 differ from the untwisted vertex operator

by a phase factor e�i�
��
k
p
=2�r�n�X� �X�, and the field X is not

simply related to the target space coordinates. However,
using the definition of X (3.2) and the currents in BTZ
(2.22) and (2.25), we can see that @X / �r2@�� �r2 �
1�@t�, so we would expect that there is no exponential
damping with the radial direction r coming from the twist
field. So the radial profile of the wave function is roughly
the same as the untwisted vertex operator. As a result, it
appears that the twisted sector tachyons are also not
localized!

This conclusion can be further supported and understood
by considering the analysis in the T-dual description of the
CFT. The winding mode then becomes an ordinary mo-
mentum mode, and the analysis in the T-dual geometry can
be performed at a supergravity level. Note however that in
the full geometry the � circle has a size determined by the
radial coordinate r, and therefore the T-dual has a varying
dilaton that becomes strongly coupled deep inside the bulk.
This would invalidate working with tree level string theory.
Nonetheless, this T-dual analysis provides some indication
of the behavior of the vertex operator wave functions, and
gives some more intuitive understanding of the failure of
the mode to be localized. See [26] for a related discussion
in the context of the two-dimensional black hole.

The T-dual of the BTZ black hole was worked out in
[27]. The geometry is

 ds2 � �
k�r2 � 1�

r2 dt2 �
2

r2 �r
2 � 1�dtd��

d�2

r2k

�
kdr2

�r2 � 1�
; (3.30)

the dilaton is

 e�2� � kr2
�r

2; (3.31)

and the B field vanishes in this T-dual description. The
coordinate � parametrizes the T-dual circle, and has peri-
odic identifications �� �� 2�=r�. The determinant of
the metric is g � �1=r2, and the inverse metric is

 g�1 �

� 1
k�r2�1�

1 0
1 k 0
0 0 �r2�1�

k

0B@
1CA: (3.32)

We want to consider a mode with one unit of momentum
on �, which is T-dual to the first winding mode. As a warm-
up, we can consider the geodesics. The geodesic equation
reduces to

 _r 2 � E2 �
�r2 � r2

��

k
��m2 � kL2 � 2kEL�; (3.33)

where E, L are the conserved quantities associated to @t,
@�, and m is the particle’s rest mass. We can see that the
effect of the angular momentum is to effectively shift the
mass-squared by a finite amount; in particular, the effect is
independent of radius. The r dependence comes solely
from red-shifting of the radial momentum. Considering
the wave equation for a scalar field T of mass m, if we
set T � f�r�ei!teiL�, we have

 r@r

�
�r2 � 1�

kr
@rf

�
�

�
!2

k�r2 � 1�
� 2!L� kL2

�
f � m2f;

(3.34)

and again the angular momentum acts just as a shift on the
effective mass. In both cases, the essential point is that the
inverse metric component g�� � k, so the contribution of
this momentum is independent of radius. Since L � nr�
for integer n, this is precisely reproducing the contribution
from the winding modes in the original description. If we
consider a mode with ! � 0, the effective mass ~m2 �
m2 � kL2 corresponds to the mass of the mode in a
Kaluza-Klein reduced two-dimensional theory. Hence,
the tachyonic modes are those for which ~m2 < ~m2

BF, and
they behave in exactly the same way for L � 0 and L � 0:
the winding tachyons have the same radial wave function
as a nonwinding tachyon with the same value of ~m2.
Hence, our winding tachyons are not localized in the
near-horizon region.

This T-dual analysis makes it clear that the failure of the
tachyon to be localized is due to the coupling to the B field
in the original spacetime. If we considered a BTZ geome-
try with no B field (for example, the S-dual D1-D5 geome-
try), the T-dual metric is

 ds2 � �k�r2 � 1�dt2 �
kdr2

�r2 � 1�
�
d�2

kr2 ; (3.35)

and it is clear that momentum modes will be localized: for
example, the geodesic equation is

 _r 2 � E2 �
�r2 � 1�

k
��m2 � L2kr2�: (3.36)

Here we expect that the winding modes of the fundamental
string in the BTZ geometry are localized within an AdS
scale of the horizon.

The B field makes it possible for winding modes to
propagate to large r because there is a cancellation between
the positive energy from the tension of the string and a
negative contribution to the energy from the coupling
between the string world sheet and the background B field.
This is the same effect that is responsible for the existence
of long strings in the AdS3 world-sheet theory. If we have
any winding mode which is delocalized on the AdS scale, it
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has no potential barrier from moving out all the way to the
boundary.

This failure of the tachyon to be localized is a striking
result. A negative consequence is that it will likely be
difficult to control the deformation of the spacetime caused
by tachyon condensation. However, we expect the endpoint
of tachyon condensation to be just the global AdS3 geome-
try, which would indicate that the tachyon condensation
process only modifies the geometry significantly in the
interior of the spacetime. If this is correct, it may still be
possible to analyze the tachyon condensation.

E. Milne limit

The other flat-space limit of interest is near the singu-
larity. Getting a better understanding of the tachyon in this
time-dependent region is important to understand its effect
on singularity resolution. In this region, the geometry looks
locally like a Milne orbifold of flat space; the generator we
are orbifolding along will go over to a boost generator,
rather than a translation generator. In [4], it was argued that
there would be a tachyon localized in the region near the
singularity, where the circle is becoming small. However,
this seems to contradict the study of the Milne orbifold in
[20,21], where it was found that there are no physical states
in twisted sectors. On the other hand, it has been argued
that there will be physical states in a different quantization
of the string [22]. We have physical twisted sector states in
the full BTZ geometry; it is clearly interesting to ask what
happens to them in this limit.

This limit is analogous to the flat-space limit of the
elliptic orbifold in [19]. To make this analogy clear, we
give a brief discussion of that case in Appendix B. The
scalings required to get a regular solution in this limit are
different from in the previous case. We must take k! 1
with r� fixed to get a finite-size identification. The appro-
priate coordinates in the limit are x2 �

���
k
p
�t� i�=2�, � ����

k
p
r �

���
k
p

cosh�0, so we need to take
���
k
p
t and

���
k
p
r fixed.

Then the metric becomes

 ds2 � �d�2 � �2d�2 � �dx2�2 �O�1=k�; (3.37)

where � is still a periodic coordinate, ���� 2�r�. If
we define coordinates x3 � � cosh�, x1 � � sinh�, the
metric becomes

 ds2 � ��dx3�2 � �dx1�2 � �dx2�2; (3.38)

and the currents are to leading order simply Ja � i
���
k
p
@xa,

�Ja � i
���
k
p

�@xa. Thus, the orbifold is reducing to the usual
Milne orbifold in this limit.

If we took the B field in the gauge (2.16) and scaled it in
this way, the constant term would blow up. Therefore, we
must first make a gauge transformation to rewrite the B
field as

 B � kr2d� ^ dt; (3.39)

which becomes

 B �
1���
k
p �2d� ^ dx2: (3.40)

This vanishes in the limit, but will contribute subleading
terms to the equation of motion, as in the previous flat-
space analysis. We again need to keep track of the sub-
leading terms in J2, �J2, as we need to consider the terms
which are O�1� to see the �-translation generator. To
subleading order,

 J2 � i
���
k
p
@x2 � i�2@�; (3.41)

 

�J 2 � i
���
k
p

�@x2 � i�2 �@�: (3.42)

Again, the Lorentz invariance only implies

 

�@��2@�� � @��2 �@�� � 0; (3.43)

and we need a subleading term in the equations of motion
coming from the B field. The x2 equation of motion,
including this subleading term, is

 @ �@x2 �
1

2
���
k
p �@��2 �@�� � �@��2@��� � 0: (3.44)

Together with the above equation, this indeed implies the
conservation of J2, �J2 to the indicated order.

The important point, however, is that the gauge trans-
formation of the B field will affect the relation between
J2

0 �
�J2
0 and the spacetime energy.11 In this gauge, we

should define the spacetime energy by (2.17) rather than
(3.15). This is clearer from the T-dual perspective. The B
field gives rise to an electric field under dimensional re-
duction; in the T-dual (3.30), this is the Kaluza-Klein
electric field coming from the metric, and the above gauge
transformation is implemented by a coordinate transforma-
tion

 �0 � �� kt; t0 � t: (3.45)

A mode of the scalar field T with energy! and momentum
L with respect to the original coordinates will have

 L0 � L; !0 � !� kL (3.46)

with respect to these coordinates. Recalling that L � nr�,
this is precisely the difference between (3.15) and (2.17), so
!0 corresponds to the energy (3.14).

Since we hold � and
���
k
p
t fixed as we take k!1, we

should take Q� � J2
0 �

�J2
0 � 1 and Qt � J2

0 �
�J2
0 �

���
k
p

.
The J2

0 ( �J2
0) eigenvalue for the twisted sectors is ��

kr�n=2 ( ��� kr�n=2), so this implies that

11We thank Eva Silverstein for discussions which clarified this
point.
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 �!
1

2
�p� �

���
k
p
p2 � kr�n�;

��!
1

2
�p� �

���
k
p
p2 � kr�n�

(3.47)

as k! 1.
The vertex operators (3.9) will then have regular limits

as k! 1. Because the J2, �J2 parts are translation in x2 (to
leading order) in this limit, the boson parts go over to just a
momentum mode vertex operator in the x2 direction. That
is, from (3.41) and (3.42), we see that to leading order, X ���

2
p
x2
L�z�, �X 

���
2
p
x2
R��z�, and (3.9) becomes

 �n
j� ��
 �j��j ��e

�ip2x2
: (3.48)

The parafermion parts represent the dependence on the x1,
x3 directions. For the untwisted sector operators, (3.47)
implies �, ���

���
k
p

, and the parafermions will have finite
dimensions in the limit if j�

���
k
p

as well. This reproduces
the ordinary untwisted sector vertex operators in the limit.
Note that h��j�� � �h��j ��� � ���

2 � ��2�=k! 0 in the
limit.

For the twisted sector operators, one might be concerned
because the twist operator (3.8) is becoming ill-defined in
this limit. This does not prevent us from constructing
regular twisted sector states in the limit. We can regard
the twist operator as just a mathematical device to obtain
the physical twisted sector states. However, this does have
an interesting consequence: the twisted sector states of the
orbifold geometry do not arise by twisting the untwisted
sector states surviving the projection. This is because we
need different values for j for each sector to get regular
parafermion operators in the limit.12 For the parafermion
parts of the twisted sector operators to remain regular in the
Milne limit, we need to take

 j!
1

2
�
i
2
��k� 1�r�n�

���
k
p
p2 � �� (3.49)

for some constant �,13 so that

 h��j�� !
1

2
r�n��� p��; (3.50)

 

�h��j ��� !
1

2
r�n��� p��: (3.51)

With this scaling, the parafermions should have a regular
limit as k!1. These are distinct from the parafermions
arising in the untwisted sector operators. In particular, we

see that

 h��j�� � �h��j ��� ! r�np�: (3.52)

This looks like what we would expect for operators carry-
ing n units of winding and p� units of momentum on a
spatial circle, and indicates that the Milne limit of the BTZ
twisted sectors can be interpreted as describing twisted
sectors on the Milne orbifold. This identification is further
supported by the fact that the currents J� which reduce to
i
���
k
p
@x� � i

���
k
p
@�x1 � x3� have the correct monodromies

to (3.54) be twisted sectors of the Milne orbifold. Unlike
the flat-space limit of the elliptic orbifolds reviewed in
Appendix B, we can choose j so as to get a regular limit
for all the twisted sectors. Thus, the spectrum in the Milne
limit includes both the usual untwisted sectors and physical
twisted sector states constructed by the above scaling.

Since we have physical twisted sector states, it would be
interesting to know which of them are tachyonic. Our
previous analysis will not be helpful here, as we restricted
our consideration to states with � � ��, whereas the twisted
sector modes which have a regular limit have ��� ��
kr�n. Clearly here identifying the tachyons will involve
disentangling the contribution to the conformal dimension
from winding around the � circle. In this limit as the
winding is hidden in the parafermion parts of the operator,
we do not see how to isolate the winding contribution.
Perhaps some other representation of the vertex operators
will be more helpful here.

For similar reasons, we have difficulty in understanding
how localized these twisted sector modes are. We can
attempt to address this question again from the T-dual
point of view. Taking the wave Eq. (3.34) and inserting
the change of basis (3.46), we have

 

r@r

�
�r2 � 1�

kr
@rf

�
�

1

r2 � 1

�
!02

k
� 2r2!0L0 � kr2L02

�
f

� m2f: (3.53)

Thus, we can see that for modes with !0 �
���
k
p

and L0 � 1,
near r � 0 there is a positive contribution to the effective
mass-squared which goes like kr2L02. This should effec-
tively restrict these modes to the region where

���
k
p
r� 1,

near the singularity, as expected by [4].
An important goal for the future is to understand the

relation to the analysis of [20–22]. In [21], it was argued
that a modular-invariant partition function for the Milne
orbifold could be expressed in terms of a spectrum which
only includes untwisted sector states. In [22], it was argued
that the same partition function could be given a different
interpretation, which involved scattering states in twisted
sectors. Our results are closer to those of the latter analysis,
but this is surprising to us, as the approach we have adapted
on BTZ is a standard quotient construction, and does not
appear to involve any analogue of the nonstandard quanti-

12This is similar to the situation arising in the flat-space limit of
the elliptic orbifold AdS3=ZN , as reviewed in Appendix B.

13The factor of (k� 1) multiplying r�n is introduced for
convenience, to cancel a subleading term coming from expand-
ing the (k� 2) denominator in h��j�� � �j�j� 1�=�k� 2� �
�2=k2. This would be simply k in the superstring case.
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zation advocated in [22]. Note that we are assuming that
parafermionic operators with the dimensions (3.50) and
(3.51) exist; if no such regular operators could be con-
structed, we would be back with [21]. From the BTZ point
of view, we would not expect there to be any problem with
the construction of these parafermion operators, but it
should be checked explicitly. These issues clearly deserve
further investigation.

F. Remarks about the spacetime algebra

It is well known that asymptotically AdS3 spacetimes
have an enlarged asymptotic symmetry group, which forms
two copies of a Virasoro algebra [28]. As a first step
towards relating our perturbative world-sheet study of
strings on BTZ to the description in terms of a dual CFT
living on the boundary of the spacetime, it would be useful
to see how this enlarged asymptotic symmetry group
emerges from the world-sheet point of view. For global
AdS3, this was addressed in [29], where it was shown that
the spacetime SL�2;R� � SL�2;R� isometries obtained
from the world-sheet currents could be extended to con-
struct the spacetime Virasoro generators Ln by exploiting a
special field ,14 which has zero conformal dimension and
the right charge to fill out the isometry algebra into a
complete Virasoro algebra. This construction is easy to
generalize to elliptic orbifolds of AdS3 as discussed in
[19]; for AdS3=ZN one just keeps the Virasoro generators
Ln which are multiples of N. These give again a complete
Virasoro algebra. The BTZ spacetime is asymptotically
AdS, so it should be possible to extend the construction
to this case as well. This case is a little more subtle, since

we do not have a global dSL�2;R�k to provide clues; the

orbifold action leaves only a dU�1� algebra. Also, the alge-
bra will not arise as a restriction of the Virasoro algebra of
the covering space in this case, as none of those generators
commute with the orbifold action. As a result, all that we
can do is to suggest the form that the Virasoro generators
should take.

We assume that the construction will proceed in much
the same way as in the AdS3 case [29], identifying a
physical vertex operator that has dimension zero and J2

charge 1, to play the role of the field . The monodromies
of the currents in the nth twisted sector are

 J2�e2�iz� � J2�z�; J��e2�iz� � e�2�r�nJ��z�;

(3.54)

which could be realized by giving the free boson X (3.2)

monodromy X�e2�iz� � X�z� � 2�r�n
��
k
2

q
. This would im-

ply that the monodromies of the untwisted sector vertex
operators are

 �j��e2�iz� � e2�ir�n��j��z�: (3.55)

The spacetime L0 generator is L0 � �r�
H
dzJ2�z�,

where we have introduced a normalization factor r�,
which is required to make the charges work out correctly,
but perhaps also seems natural from the spacetime point of
view. With this normalization, the spacetime symmetry
generators L0 �

�L0 will generate angular momentum
with respect to the 2� periodic coordinate �=r�.15 We
want the Ln to have L0 charge n, and we need to integrate
a well-defined (trivial monodromy) world-sheet operator
of conformal dimension one. We see that �0�m=r�� has the
right properties to be identified as �BTZ�

m, so an appro-
priate ansatz is
 

Ln � �r�
I
dz	f1�n�J2�0�n=r�� � f2�n�J��0�n=r��i�

� f3�n�J��0�n=r��i�
; n 2 Z: (3.56)

Note the factors of �i in the vertex operators, which are
required to cancel the J2 charges of J�. The functions fi�n�
are to be fixed by the requirement that the algebra of the
Lns closes correctly into a Virasoro algebra.

Morally, this is how the spacetime Virasoro algebra
should arise from the world-sheet point of view. To check
this in detail, we would need to know the OPEs of the
primary operators �0� to evaluate the commutators and
work out the appropriate choices for the coefficients, which
we leave as an interesting exercise for the future. We
postpone further discussion of the relation of our world-
sheet analysis to the dual CFT point of view to the dis-
cussion in Sec. V.

IV. THE SUPERSTRING

We would now like to extend our discussion to the
superstring. This will eliminate the bulk tachyon of the
bosonic theory; as noted before, our winding tachyons are
not well localized, so it is still difficult to obtain control of
the decay of our spacetime, even after eliminating the bulk
tachyon. However, we consider it useful to verify that there
is a GSO projection which eliminates the tachyon in the
untwisted sector but retains it in twisted sectors. For BTZ,
there are two possible choices of spin structure, and we will
see that the tachyon in odd twisted sectors survives the
GSO projection if we take an antiperiodic spin structure on
spacetime. Also, the world-sheet theory has some interest-
ing technical features. We will consider Type II string
theory on BTZ� S3 � T4 for simplicity.

A. The superstring WZW model

The superstring on AdS3 is described by a dSL�2;R�k
super-WZW model [29]. We begin by reviewing some

14The field  is the weight zero part of the ��  system
involved in writing a Wakimoto representation of SL�2;R�.

15The normalization was fixed in the AdS case by considering
the global SL�2;R�.
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aspects of this model in the hyperbolic basis, which is
adapted to the orbifold we want to consider. The world-

sheet WZW model with dSL�2;R�k current algebra has
generators16 Ja at level k. This can be decomposed into a

bosonic dSL�2;R�k�2 at level ~k � k� 2, whose generators
we denote as ja, and a set of free fermions. Our conven-
tions for the supercurrent algebra are

 Ja � ja �
i
k
	abc 

b c; (4.1)

with

  a�z� b�w� �
k
2

�ab

�z� w�
; ja�z� b�w� � 0; (4.2)

and as before

 ja�z�jb�w� �
~k
2

�ab

�z� w�2
� i

	abcjc

�z� w�
; (4.3)

so

 Ja�z�Jb�w� �
k
2

�ab

�z� w�2
� i

	abcJ
c

�z� w�
: (4.4)

The world-sheet N � 1 supercurrent in these conventions
is then given as

 G�z� �
2

k

�
gab ajb �

i
3k
	abc a b c

�
: (4.5)

Our conventions for the dSL�2;R� are 	123 � 1 and �ab �
diag�1; 1;�1�.

The internal CFT which has target space S3 � T4 will
have more of a role in the superstring than previously, as
we need to work out the appropriate spin fields. The S3 part
is a world-sheet N � 1 SU�2�k WZW model while the T4

is a free N � 1 super-conformal field theory. The dSU�2�k
algebra is generated by (again Ka are the total currents and
the ka represent the bosonic contribution)

 Ka � ka �
i
k
	abc�

b�c; (4.6)

with

 �a�z��b�w� �
k
2

gab

�z� w�
; ka�z��b�w� � 0;

ka�z�kb�w� �
~k
2

gab

�z� w�2
� i

	abckc

�z� w�
;

(4.7)

where now ~k � k� 2, so

 Ka�z�Kb�w� �
k
2

gab

�z� w�2
� i

	abcK
c

�z� w�
; (4.8)

and the world-sheet supercurrent is

 G�z� �
2

k

�
gab�

akb �
i

3k
	abc�

a�b�c
�
: (4.9)

Of course, the major difference is that the metric is positive
definite: gab � diag�1; 1; 1�.

Bosonization of the free fermions: To write down spin
fields it is useful to bosonize the fermions. Since we wish to
work in the hyperbolic basis we want to diagonalize J2 for

the dSL�2;R� current algebra. From the definition of the
total current (4.1), we see that the fermionic current in-
volved in J2 is made up of  1 3 so we want to bosonize
this combination into a single free boson. The natural
extension of the story for the elliptic basis of [29] would
be to consider the following bosonization rules:
 

@H1 � J2 � j2 � �
2i
k
 1 3;

i@H2 � K2 � k2 � �
2i
k
�1�3;

i@H3 � �
2i
k
 2�2;

i@H4 � �i�
1�2;

i@H5 � �i�
3�4;

(4.10)

where the �i are the free fermions for the T4 part of the
story, and the bosons Hi�z� are all canonically normalized

 Hi�z�Hj�w� � �
ij log�z� w�: (4.11)

For future reference we also give the expression for the
fermions directly in terms of the bosonic fields,

  3 � �i

���
k
p

2
�eiH1 � e�iH1�;

 1 � i

���
k
p

2
�eiH1 � e�iH1�;

(4.12)

which imply that

  � �  1 �  3 � �i
���
k
p
e�iH1 : (4.13)

The superparafermions: As in the discussion of the bosonic
string we find it useful to work with a superparafermion

representation of the dSL�2;R�k and the dSU�2�k current

algebras. Concentrating on the dSL�2;R�k current algebra
we introduce a bosonic representation for the currents,

 J2�z� � �i

���
k
2

s
@X: (4.14)

As before, we also have a bosonic representation for the
bosonic current,

16In this section the total current including the fermionic
contribution will be denoted as Ja; since we will no longer
talk about the bosonic theory this notation should hopefully
cause no confusion.
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 j2�z� � �i

���
~k
2

s
@X; (4.15)

and the bosons X and X are both canonically normalized,
so X�z�X�w� � � log�z� w�. Clearly, by virtue of (4.1)
we have

 iH1 �

���
k
2

s
X �

���
~k
2

s
X: (4.16)

It is useful to introduce another canonically normalized
boson, H 1�z�, which is orthogonal to X, so that we can
write

 H1 � i

���
2

k

s
X �

���
~k
k

s
H 1; X �

���
~k
k

s
X � i

���
2

k

s
H 1:

(4.17)

Note that in the flat-space limit k! 1, X � X and H 1 �
H1.

The remainder of the currents j� are written by intro-
ducing parafermions

 j� � j1 � j3 � ��e�
��������
�2=~k�
p

X � ��e�
������
2=k
p

�X�i
��������
�2=~k�
p

H 1�;

(4.18)

using the fact that j� carry imaginary j2 charge �i re-
spectively. The fermions which are bosonized as in (4.12)
can be written in terms of the bosons X, H 1 as

  � �  1 �  3 � �i
���
k
p
e�iH1

� �i
���
k
p
e��i

��������
�~k=k�
p

H 1�
��������
�2=k�
p

X�: (4.19)

Note that this implies that the fermions carry imaginary J2

charge. In the hyperbolic basic one linear combination of
the J2 charge measures the spacetime energy. Fermions in
this basis therefore have imaginary spacetime energy! This
is a consequence of the transformation properties of the
spacetime fermions and vector fields under the hyperbolic
generator of SL�2;R�.

Finally, we can write down the supercurrent in terms of
the parafermion representation used above,

 

���
k
p
G�z� � i��ei

��������
�k=~k�
p

H 1 � i��e�i
��������
�k=~k�
p

H 1 �
���
2
p
i 2@X:

(4.20)

As in the elliptic basis, the boson X associated with the
total current only appears differentiated in the expression
for the supercurrent. This implies that the supercurrent will
be mutually local with respect to the twist operator we will
introduce to implement the orbifold.

The spin fields: The simplest set of spin fields we can
write down are

 S� � e�i=2�	IHI ; (4.21)

where the HI are the canonically normalized bosons in-

troduced in (4.10). Note that the spin fields only involve
H1, and not H 1. To determine the OPE with the world-
sheet supercurrent G�z� given in (4.20) is straightforward.
The most singular terms in the OPE come from the three-
fermion piece—this has to cancel to ensure that the
G�z�S��w� OPE has as its leading singularity a square
root branch cut. This calculation works along the same
lines as in [29], with the �z� w�3=2 singularity being
cancelled by an interplay between the contributions from

the dSL�2;R�k part and the dSU�2�k part. This leads to the
condition derived by [29],

 

Y3

I�1

	I � 1: (4.22)

Furthermore the S��z�S��w� OPE is local provided

 

Y5

I�1

	I � 1: (4.23)

To do this calculation it is useful to write down a paraf-

ermionic representation for the dSU�2�k theory as well; up
to some signs and factors of i one defines (Y, Y, H 2, H2)
which are analogous to the set of bosons (X, X, H 1, H1)
described above. For details see [19]. The conditions (4.22)
and (4.23) define the set of spin fields on AdS3 � S3 � T4.
Note that while our focus is on a particular choice of
internal CFT, the considerations here can be easily gener-
alized to a more general internal space as in [30].

Vertex operators: The NS ground states are

 T jj0 � e�’�SL�2�
j� �SU�2�

j0m eiq�Y; (4.24)

where �SL�2�
j� is a primary operator of the dSL�2;R� current

algebra considered in the bosonic string discussion (3.5),

�SU�2�
j0m is a primary of the dSU�2� algebra associated with

the S3, eiq�Y represents the winding and momentum on the
T4, and ’ is the bosonized super-reparametrisation ghost.
These operators have dimension

 h �
�j�j� 1�

k
�
j0�j0 � 1�

k
�
q � q

2
: (4.25)

The first excited states in the NS sector are constructed by
adding a world-sheet fermion to this operator, so for ex-
ample

 V i
jj0 � e�’�i�SL�2�

j� �SU�2�
j0m eiq�Y: (4.26)

The R ground states are constructed by adding a spin field,

 Y R � e�’=2S�SL�2�
j� �SU�2�

j0m eiq�Y: (4.27)

A detailed discussion of which states survive in the Becchi-
Rouet-Stora-Tyutin cohomology, and of the charges asso-
ciated with the R states, can be found in [24]. Since we are
interested in the tachyons, we will be content with observ-
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ing that the only physical vertex operators involving con-
tinuous representations of SL�2;R� are NS ground states.

B. The BTZ orbifold

We can now consider the orbifold of the dSL�2;R�k
super-WZW model to construct the BTZ spacetime in the
superstring. We begin by presenting a twist field that
implements the BTZ orbifold projection and then go on
to discuss the GSO projection involved in the superstring,
showing that for antiperiodic spin structure, the projection
retains the tachyon in odd twisted sectors.

In the superstring, it is natural to construct the twist field

for the BTZ orbifold from the total dSL�2;R�k current X, as
in the elliptic case [19]. We therefore consider

 tn � eir�n
������
k=2
p

�X� �X�: (4.28)

As mentioned previously, the supercurrent G�z� (4.20) is
mutually local with respect to this twist operator, so the
orbifold will preserve the world-sheet supersymmetry.17

This performs the same twist as before on the bosonic
currents. The additional part of the twist involving the field
H1 which bosonizes the spinor fields can be understood as
implementing the correct transformation properties for the
spacetime spinor and vector indices (which are carried by
the world-sheet fermions) under the SL�2;R� generator
that we are orbifolding by.

The spin fields will not be mutually local with the twist
operator (4.28): the tn�z�S��w� OPE has a logarithmic
branch cut. Thus, spacetime supersymmetry is completely
broken by the orbifolding, as we would expect. We can
construct spacetime fermions by combining S��w� with a
bosonic vertex operator with an imaginary value for �� ��,
producing a compensating branch cut to give a Ramond-
Neveu-Schwarz (R-NS) vertex operator which is mutually
local with respect to tn. These correspond to the modes of
the spacetime fermions which are invariant under the com-

bined action of the translation and an dSL�2;R� rotation of
the spinor indices.

We can now implement the orbifold and obtain the
twisted sector states. Naively, we should proceed as in
the bosonic case, imposing mutual locality with respect
to the twist operator (4.28) and including all the twisted
sector states required to achieve closure of the OPE.
However, there is a small subtlety: in the superstring, the
states in untwisted sectors are not mutually local until we
impose the GSO projection. They can have square root
branch cuts in the OPE. Therefore, at this stage we may

need to allow square root branch cuts in the OPE with tn.
Having constructed a general set of twisted sectors in this
way, we will seek a GSO projection which gives a mutually
local spectrum.

For the NS-NS states, the OPE with the twist operator
(4.28) will give

 tnT
�T �

1

�z� w�r�n��� ���
; (4.29)

so demanding mutual locality of these operators with
respect to the twist operator imposes r���� ��� 2 Z, as
in the bosonic case, quantizing the momentum around the
circle. For the R-NS states, the OPE with the twist operator
gives

 tnYR
�T �

1

�z� w�r�n	��� �����i=2�

: (4.30)

As explained earlier, the factor of i here comes from the
transformation properties of spacetime spinors under the
hyperbolic generator which we orbifold along. Requiring
mutual locality with respect to tn will then impose r�	���
��� � i

2
 2 Z, which corresponds to choosing modes of the
spacetime spinor which are invariant under the orbifold
action. However, in the BTZ spacetime, there are two
possible choices of spin structure; since the @� circle is
not contractible, fermions can be either periodic or anti-
periodic around this circle. Considering antiperiodic fer-
mions corresponds to imposing r�	��� ��� � i

2
 �
1
2 2 Z,

giving a square root branch cut in the OPE with tn. For the
Ramond-Ramond (R-R) states, the OPE with the twist
operator gives

 tnYR
�YR �

1

�z� w�r�n	��� ����i

; (4.31)

and we should impose mutual locality to obtain r�	���
��� � i
 2 Z, corresponding to choosing modes of the
spacetime fields which are invariant under the orbifold
action. The analysis for the excited NS-NS states is similar.

Twisted sector states are constructed by taking the com-
posite operators arising from the product of the tn with the
invariant untwisted sector operators. For the NS-NS
ground states, the twisted sector operators are

 

T n
j;j0 � e�’e� �’�SL�2�

j�
��SL�2�
j ��

�SU�2�
j0m

��SU�2�
j0 �m eiq�Yei �q� �Y

� eir�n
������
k=2
p

�X� �X�: (4.32)

To calculate the dimensions of these operators, it is useful
to rewrite them in terms of parafermions or superparafer-
mions, but we will not do so explicitly here; the construc-
tion closely parallels the elliptic case discussed in [19]. The
dimensions of these operators are

17One might also argue as in [19] that the boundary Virasoro
algebra (i.e., the spacetime theory currents) is generated from the
total currents Ja and not the bosonic currents ja. For the hyper-
bolic dSL�2;R�k unlike the elliptic case we do not have a clean
expression for the spacetime algebra, but one expects the struc-
ture to be maintained.
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 h �
�j�j� 1�

k
�
j0�j0 � 1�

k
�
q � q

2
�
�2

k

�
��� kr�n=2�2

k
; (4.33)

 

�h �
�j�j� 1�

k
�
j0�j0 � 1�

k
�
q � q

2
�

��2

k

�
� ��� kr�n=2�2

k
: (4.34)

We adopt the same definition of a tachyon as in the bosonic
case, so a mode with � � �� is considered tachyonic if and

only if �j�j� 1� � �2 > 1
4 , so that the dSL�2;R� super-

parafermion part of the operator is of sufficiently positive
dimension. As in the untwisted sector, only the NS-NS
ground states can be both physical states and tachyonic; in
the other sectors, the positive contribution to the conformal
dimension from the fermions or spin fields makes it im-
possible to satisfy the physical state condition for �j�j�
1� � �2 > 1

4 . For large k, we can find tachyons which
satisfy the physical state condition h � �h � 1

2 only if���
k
p
r� <

���
2
p

.
Turning to the GSO projection, we assume that we make

the standard projection in the untwisted sector, projecting
out the ground states in the NS-NS sector, and defining a
mutually local set of operators in the untwisted sector. In
the case where the R-NS vertex operators are mutually
local with respect to tn, corresponding to the periodic
spin structure on spacetime, this extends trivially to the
twisted sectors, projecting out the NS-NS ground states in
every sector. By contrast, when the R-NS vertex operators
have a square root branch cut with respect to tn, corre-
sponding to the antiperiodic spin structure on spacetime,
the NS-NS ground states in odd twisted sectors are mu-
tually local with respect to the states we keep in the
untwisted sector, so they will be retained under GSO
projection. In summary, when we choose an antiperiodic
spin structure for the fermions on spacetime, the tachyons
which survive the GSO projection are (4.32) for the odd
twisted sectors.

In the flat-space limit of Sec. C, this GSO projection
reduces to the usual Scherk-Schwarz GSO projection on
the translational orbifold, so we recover the usual flat-space
analysis in this limit. In the Milne limit of Sec. E, the twist
operator (4.28) becomes ill-defined, as previously noted.
However, since the vertex operators have regular limits, we
should be able to consider either choice of GSO projection
in this limit. Thus, there should exist a GSO projection on
the Milne orbifold corresponding to an antiperiodic spin
structure on the orbifold, in which we keep the NS-NS
ground states in odd twisted sectors.

Finally, let us remark on the asymptotic symmetry alge-
bra for the superstring. As in the bosonic theory, the
asymptotic symmetries of asymptotically AdS3 spaces

are enlarged to two copies of the Virasoro algebra. From
the dual CFT point of view, we would expect this to now be
embedded in a superconformal algebra. In [24], the exten-
sion of the spacetime supersymmetry to obtain the full set
of asymptotic superisometries from the world-sheet point
of view was sketched. In the present case, the spacetime
supersymmetry is broken, but we would expect the BTZ
geometry will have the same asymptotic superconformal
symmetry algebra, since the spacetime is still asymptoti-
cally AdS3, and hence has asymptotic Killing spinors. It
should be possible to construct this asymptotic superisom-
etry algebra from the world-sheet point of view following
[24] and our discussion of the Virasoro algebra in
Sec. III F), but we will not explore this further here. It
would be interesting to understand the relation of our
construction to the asymptotic superisometry algebra con-
structed from a supergravity point of view (along the lines
of [28]) by [31].

V. DISCUSSION

We have studied the closed string tachyons on the BTZ
black hole with NS-NS flux, by treating it as an orbifold of
AdS3. We used a parafermion representation of the current
algebra. We found that for the superstring, there is no
closed string tachyon if we choose the spacetime spin
structure which imposes periodic boundary conditions for
fermions on the spatial circle. For the spin structure with
antiperiodic boundary conditions, we showed that there is a
tachyon in odd twisted sectors if the proper size of the
circle at the event horizon is small enough. We focused on
operators with � � ��, which corresponds to zero space-
time energy in the usual gauge, and argued that the appro-
priate definition of a tachyon for such operators was that
the conformal dimension of the parafermionic part of the
operator should be positive. In the superstring, this condi-
tion can be satisfied if

���
k
p
r� <

���
2
p
‘s.

Surprisingly, this tachyon is not localized in the region
where the spatial circle is small. The wave functions for
twisted sector states have the same radial falloff as for the
corresponding untwisted sector states. This is due to cou-
pling to the background B field, which cancels the positive
energy coming from stretching the string as the circle
becomes large. That is, the tachyon is a long string
mode, and as such, can propagate out to infinity. It would
be interesting to examine the asymptotically flat black
strings constructed from the F1-NS5 system, which ap-
proach this geometry in the near-horizon limit: our results
suggest that the tachyonic winding strings in these back-
grounds should be localized near the black string, but on a
scale set by the charges, rather than in the much smaller
region where the size of the circle they wrap is of order the
string scale.

Since the failure of this tachyon to be localized is
associated with the presence of NS-NS flux, one might
hope to construct an example in which it is localized by
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considering instead a BTZ black hole with R-R flux. We
should note first that this is considerably more difficult than
the present case, as the WZW methods we have used here
will not be available. It is possible that one can use the D1-
D5 world-sheet CFT [32] and show that the BTZ geometry
in that system indeed has a tachyon when the horizon size
is less than the string scale, and that the tachyon wave
function is supported within an AdS radius. It may also be
possible to make some progress by studying the supergrav-
ity spectrum in the T-dual geometry. However, one can
also observe that the BTZ black hole with R-R flux is
S-dual to the case we have considered here, so even if
the winding tachyons of the fundamental string on that
background are localized near the horizon, one would
expect it to have instabilities to the condensation of wind-
ing D-strings, S-dual to the fundamental strings we have
considered, and by our analysis, this D-string instability
will not be localized in the near-horizon region.

One could also consider simpler single-charge black
string solutions, where the near-horizon region is not a
BTZ black hole. Here we have no reason to expect that
the winding tachyon will not be localized in the near-
horizon region, as suggested by an approximate analysis.
One might take our results as counselling caution in over-
reliance on such approximate arguments, however. A more
careful analysis in such cases will be quite difficult.

There are a number of directions for further investiga-
tion arising from this work. Although our tachyon is not
localized, it is clearly important to try to understand its
condensation. The natural endpoint for condensation of the
twisted sector tachyons on BTZ is the global AdS3 space-
time. Since this only requires a change in the geometry in
the interior of the spacetime, there is some hope that we
can gain some insight into the tachyon condensation pro-
cess. Perhaps tachyon condensation produces O�1�
changes in the geometry everywhere, which are negligible
compared to the O�r2� behavior of the background metric
at large distances.

It is also important to understand in detail the relation
between the Milne limit of our spectrum and the spectra
calculated directly in flat space in [21,22]. In particular, it
would be useful to have a more explicit description of the
Milne limit of the twisted sector vertex operators. It may be
that adopting a different realization of the current algebra,
such as the Wakimoto representation used in [13,29],
would be helpful.

It would also be interesting to extend our analysis to
other orbifolds of AdS3. First, we could extend our work to
the rotating BTZ black hole, which would involve consid-
ering an asymmetric orbifold, which acts differently on
left- and right-movers. In this case, it would be difficult to
rigorously establish modular invariance, but one can sim-
ply extend our analysis by introducing an appropriate twist
operator, and hope that the resulting spectrum is modular
invariant. The main example of interest is the supersym-

metric BTZ black hole, which corresponds to orbifolds of
AdS3 by a parabolic generator. If we choose the
supersymmetry-breaking spin structure on this spacetime,
we expect to have a winding tachyon. This case is analo-
gous to the quotient of AdS5 considered in [7], and near the
singularity, it will approach the null orbifold of flat space,
so there are interesting connections to explore here.
Another interesting extension would be to consider the
‘‘swedish geons’’ [33], which are BTZ-like orbifolds of
AdS3 with a single exterior region. These can potentially
provide examples where the tachyon condensation can lead
to disconnected target space geometry with intricate topol-
ogy, essentially providing a rich set of examples to probe
baby universes in string theory.

The other central issue for future development is to
understand the description of this tachyon and its conden-
sation in the dual CFT on the boundary of the spacetime.
We have tried to make some first steps in this direction by
exploring the construction of the asymptotic isometry al-
gebra from the world-sheet point of view. However, there
are significant barriers to going further: First, we do not
understand the theory on the F1-NS5 worldvolume, so
there is no first principles construction of the dual CFT.
Second, we do not know how to interpret the twisted
sectors, which correspond to long strings wrapping the
spatial circle in the boundary, from the dual CFT point of
view. This is a problem even in pure AdS3. From a tech-
nical point of view, in [29] it was shown that the spectral
flowed vertex operators have unconventional transforma-
tion properties with respect to the Virasoro algebra of the
dual CFT. It will be an interesting problem for the future to
make progress on the interpretation of the construction of
the spacetime Virasoro algebra and the behavior of physi-
cal twisted sector vertex operators from this perspective.
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Note added.—After this paper was completed, we
learned that tachyons in BTZ have also been investigated
from a Euclidean perspective in [35,36].

APPENDIX A: THE SL�2;R� LIE ALGEBRA

The group SL�2;R� is the group of 2� 2 matrices with
unit determinant and the elements taking real values. The
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Lie algebra of SL�2;R� is given by the commutation
relations:

 	Ta; Tb
 � 	abcTc; (A1)

where 	123 � 1, and the index is lowered with the metric
�ab � diag�1; 1;�1�. Explicitly, one can choose a repre-
sentation in terms of Pauli matrices:

 T1 �
1

2
�3; T2 �

1

2
�1 T3 � �

i
2
�2: (A2)

We will however find it convenient to work with a different
set of generators �a � iTa in terms of which we can
express (A1) in a more familiar form,

 	�a; �b
 � i	abc�
c; (A3)

similar to the SU�2� commutation relations. This version is
more appropriate because when SL�2;R� � SL�2;R� oc-
curs as the isometry algebra of AdS3, we are interested in
real eigenvalues for the generators �a. For the elliptic basis,
which is natural when thinking of the group as SU�1; 1�, we
take ~�3 � �3 and ~�� � �1 � i�2, so one has the commu-
tation relations

 	~�3; ~��
 � �~��; 	~��; ~��
 � �2~�3: (A4)

On the other hand, if we think of the SL�2;R� description,
it is more natural to use the hyperbolic basis, T� � T1 �
T3, in terms of which the commutation relations are

 	T2; T�
 � �T�; 	T�; T�
 � 2T2: (A5)

Note that T� are not related to ~��, despite the similarity in
the commutators. Again, even when working in the hyper-
bolic basis, we use the �a, not Ta. The quadratic Casimir of
SL�2;R� is

 c2 � ���3�2 � ��1�2 � ��2�2: (A6)

APPENDIX B: FLAT-SPACE LIMIT OF THE
ELLIPTIC ORBIFOLD

In studying the Milne limit of our orbifold, we found it
useful to compare to the flat-space limit of the elliptic
orbifold studied in [19]. Since the flat-space limit is not
discussed very explicitly in that reference, we give some
formulae here to enable comparison with Sec. E. The
elliptic orbifold is the quotient of global AdS3 (2.3) by
the ZN group generated by �! �� 2�=N. In [19], this
was studied by bosonizing J3,

 J3 � �

���
k
2

s
@X; J� � ��e�

��������
�2=k�
p

X; (B1)

and adopting a parafermionic representation for the current
algebra primaries,

 �jm �m � �jm �me
��������
�2=k�
p

�mX� �m �X�: (B2)

The dimensions of the parafermions �jm �m are

 h � �
j�j� 1�

�k� 2�
�
m2

k
; �h � �

j�j� 1�

�k� 2�
�

�m2

k
: (B3)

The orbifold can then be implemented by introducing a
twist operator

 tw � e�q=N�
��������
�k=2�
p

�X� �X�: (B4)

This gives twisted sector operators

 �q
jm �m � �jm �me

��������
�2=k�
p

	�m��k=2��q=N��X�� �m��k=2��q=N�� �X
: (B5)

For q 2 ZN , these are ‘‘fractional spectral flowed’’ opera-
tors associated with the orbifold. For q 2 NZ, these are the
long string states in the global AdS3 covering space (2.3).

To take the flat-space limit, we let k! 1, holding x3 ����
k
p
t, r �

���
k
p
� fixed. The metric becomes

 ds2 � ��dx3�2 � dr2 � r2d�2; (B6)

so the orbifold goes over to the usual flat-space orbifold in
this limit. If we define x1 � r cos�, x2 � r sin�, we have
Ja � i

���
k
p
@xa and �Ja � i

���
k
p

�@xa. Since we hold � and
���
k
p
t

fixed, we should take Q� � J3
0 �

�J3
0 � 1 and Qt � J3

0 �
�J3
0 �

���
k
p

. This implies that

 m!
1

2

�
p� �

���
k
p
p3 � k

q
N

�
;

�m!
1

2

�
�p� �

���
k
p
p3 � k

q
N

�
:

(B7)

In the flat-space limit, X  �i
���
2
p
x3
L�z�, �X  i

���
2
p
x3
R��z�, and

the boson part of the operator (B5) becomes just a momen-
tum mode in the x3 direction,

 �q
jm �m  �jm �me�ip3x3

: (B8)

We also need to require that the parafermion part has a
regular limit. For the untwisted sectors, this requires j����
k
p

. For the twisted sectors, we need

 j!
1

2

�
k
q
N
�

���
k
p
p3 � �

�
(B9)

for some constant �. However, recall that there is a bound
on j: we only allow current algebra representations with
1
2 < j < k�1

2 [23]. This is consistent with the required scal-
ing (B9) only for q < N. Hence, in the flat-space limit, the
twisted sector operators for q 2 ZN have a regular limit,
and should give us the usual twisted sectors for the flat-
space orbifold, but the long string states with q � N go off
to infinite conformal dimension as we take the limit. Thus,
we regain precisely the expected flat-space spectrum.

APPENDIX C: COMMENTS ON THE AdS3
PARTITION FUNCTION

In this paper, we have approached the calculation of the
twisted sector spectrum on BTZ through a vertex operator
construction. It would be more satisfying to construct a
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modular-invariant partition function for the string theory
on BTZ and extract the spectrum for this partition function.
In fact, the appropriate partition function has already been
constructed for the bosonic string: Since Euclidean BTZ is
the same spacetime as thermal AdS3, the thermal AdS3

partition function calculated in [34] can be reinterpreted as
a BTZ partition function. Alas, technical difficulties have
prevented us from extracting the spectrum from this parti-
tion function. In this appendix, we will explain why this
route is obstructed. Identifying the tachyon from the
Euclidean BTZ partition function is also discussed in
[35,36].

First, let us recall the relation between the two space-
times. We have the Euclidean metric

 ds2 � k�cosh2�d�2 � d�2 � sinh2�d�2�: (C1)

Interpreting � as time and � as the spatial circle gives us the
global AdS3 metric; a further identification �� �� � gets
us to thermal AdS3. On the other hand we can take � to be
the temporal direction and � as the spatial circle. This is
then the Euclidean BTZ black hole, as the temporal circle
shrinks smoothly to zero (at � � 0); a simple coordinate
change cosh� � r maps this back to usual BTZ coordi-
nates (2.15). Formally, given a T2 parametrized by (�, �),
we want a hyperbolic three-manifold which has the T2 as
its boundary. Which circle of the torus we choose to make
contractible in the bulk geometry determines the space-
time. By choosing to make a particular combination of the
boundary one-cycles contractible in the bulk we can con-
struct a full SL�2;C� family of black holes [37]. The
different geometries are related by an SL�2;C� transfor-
mation of the boundary complex structure. Note that this is
a modular transformation from the point of view of the dual
boundary CFT. From the world-sheet point of view,
Euclidean BTZ and thermal AdS3 are the same spacetime,
given different interpretations corresponding to different
ways in which we can analytically continue to a Lorentzian
spacetime.

Hence, the thermal AdS partition function calculated in
[34] can also be interpreted as the BTZ partition function.
The contribution to the torus partition function from the
thermal AdS factor is, for a fixed world-sheet modular
parameter [34,38],18

 

ZAdS��;�; �� �
�

������������
k� 2
p

2�
�����
�2
p

�
X
n;m

e�k�
2jm�n�j2=4��2�2�=�Un;m�2=�2

j#1��;Un;m�j
2 (C2)

with

 Un;m��� �
i

2�
��1� i���n ���m�: (C3)

To obtain the full partition function, we need to add inter-
nal and ghost contributions, and sum over the fundamental
domain for the world-sheet modular parameter. The sum
over n above can be traded for a sum over copies of the
fundamental domain, allowing us to write the full partition
function as
 

ZAdS��;�� �
Z 1

0

d�2

�2

Z 1=2

�1=2
d�1e

4��2�1��1=�4�k�2����

�
X
h; �h

D�h; �h�qh �q �hZAdS��;�; ��; (C4)

whereD�h; �h� are the degeneracies in the internal CFT, and
ZAdS��;�; �� should be understood as now only involving
a sum on m. In [34], the spectrum on AdS3 was extracted
from this partition function by expanding in terms of single
string energy eigenstates. To do so, we write the free
energy as

 F��;�� � �
1

�
Z��;��

�
1

�

X
string2H

log�1� e��Estring�i�‘string��

�
X1
m�1

f�m�;m��; (C5)

where

 f��;�� �
1

�

X
string2H

e���Estring�i�‘string� (C6)

and H is the single string Hilbert space. This would allow
us to read off the spectrum. The calculation is relatively
straightforward, as the sum on m in (C5) can be identified
with the sum on m in (C2).

To perform the same calculation in BTZ, we would want
to write

 F��BTZ; �BTZ� � �
1

�BTZ
Z��BTZ; �BTZ�

�
X1
m0�1

f�m0�BTZ; m
0�BTZ�; (C7)

where �BTZ is the inverse temperature of the black hole,
and f��BTZ; �BTZ� is as in (C6). The problem with the
calculation is that we can no longer identify the sum on m0

in (C7) with the sum on m in (C2). Let us consider for
simplicity the case of zero chemical potential, � � 0.
Then reinterpreting the thermal AdS3 space as the
Euclidean BTZ black hole gives �BTZ � 4�2=�, �BTZ �
0. Thus, the sum on m0 in (C7) is a sum in m0=�, whereas
the sum on m in (C2) is a sum on m�. To extract the BTZ

18In writing this expression we have corrected a typo in [34].
We would like to thank James Lucietti for discussions on this
issue.
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spectrum, we need to rewrite (C2) in terms of a sum on
integer=�.

First, note that it is not possible to achieve the desired
rewriting by a world-sheet modular transformation. The
two descriptions are related by a modular transformation in
the boundary theory, but not from the world-sheet point of
view. In the world sheet, we are considering the same
Euclidean target space; we are only changing our interpre-
tation of it.

What we need to do is to make a Poisson resummation
over (n, m) in (C2); this will replace the sum over m� by a

sum over p=� for an integer p. We have not been able to
carry out this Poisson resummation because of the theta
function #1��;Un;m� appearing in the denominator of (C2).
One can expand this factor in a power series, and perform
the Poisson resummation term by term, but it is then not
possible to resum the power series to obtain the desired
information. Thus, although the partition function in prin-
ciple contains all the information we want, we have had to
take a vertex operator approach to identify the tachyons on
the Lorentzian BTZ black hole.
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