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New boundary conditions for the ¢ = —2 ghost system
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We investigate a novel boundary condition for the bc system with central charge ¢ = —2. Its boundary
state is constructed and tested in detail. It appears to give rise to the first example of a local logarithmic
boundary sector within a bulk theory whose Virasoro zero modes are diagonalizable.
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I. INTRODUCTION

The bc system with Virasoro central charge ¢ = —2,
and the closely related symplectic fermion model, have
been studied extensively in the past, both in the bulk and on
the boundary (see e.g. [1-4] and references therein). Most
of the past work was driven by formal questions in the
context of logarithmic conformal field theory (logCFT), of
which the symplectic fermions provide the simplest pos-
sible example. By definition, the operator products of a
logCFT contain terms with logarithmic singularities such
as e.g.

W, (z, 2)W,(0, 0) ~ |z|22(D(0) + log|z|D(0)). ...

Whenever logarithmic terms appear, they imply that the
generator D = L, + L of dilatations cannot be diagonal-
ized. In our example above, for instance, the action of D on
the pair (®, @) is easily found: It is represented by a 2 X 2
matrix with 2A along the diagonal and D, = 1, D,; = 0.
Hence, D can only be brought into Jordan normal form. We
conclude that a nondiagonalizable generator D is a char-
acteristic feature of a logCFT. Models with this property
are necessarily nonunitary. Nevertheless, there exist many
such theories that are highly relevant for applications.

After this brief excursion into more general 1ogCFTs let
us come back to the bc system. Recently, it was pointed out
[5-7] that the bc system at ¢ = —2 plays a crucial role for
the solution of WZNW models on supergroups. In fact, it
enters through a Kac-Wakimoto type representation of
such theories. The latter reduces the solution of the
WZNW model on superspaces to that on the corresponding
bosonic base. An extension of such a free fermion repre-
sentation to the boundary sector requires one to impose
boundary conditions on the bc system. In the special case
of trivial gluing conditions for WZNW currents the rele-
vant boundary conditions for the bc system have not been
discussed in the existing literature. We shall fill this gap
below.

As the name indicates, the bc system involves two sets
of chiral bulk fields ¢, ¢ and b, b of conformal dimension
h,. = 0and h;, = 1, respectively. In the conventional setup,
we would glue c to ¢ and b to b along the boundary [8]. But
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for ¢ = —2 there exists another possibility: namely, to glue
b to a derivative of ¢ and vice versa. More precisely, we can
demand that

b(z) = noc(2), b(Z) = —pac(z) forz=12z (1)

These relations guarantee trivial gluing conditions for the
energy momentum tensor 7 = —bdc. It is not difficult to
check that the dynamics of the previous bc system is
described by the action

1 _ _
= — | @bic + boc] - 2 [ duco,e. @)
27 2T

The fields are defined on the upper half plane and varia-
tions of S vanish provided the ghosts have the usual hol-
omorphicity properties in the bulk and satisfy in addition
the gluing conditions (1) on the boundary. Our aim here is
to solve the theory that is defined by the action (2) and the
boundary condition (1). We shall set . = 1 throughout our
discussion. Formulas for the general case are easily ob-
tained from the ones we display below.

II. SOLUTION OF THE BOUNDARY THEORY

In order to construct the state space and the fields
explicitly, we introduce an algebra that is generated by
the modes c,, b, and two additional zero modes &5, &5
subject to the conditions

{Cn, bm} = n‘sn,—m! (3)

{&6, bo} = 1, {£§, cot = 1. 4

All other anticommutators in the theory are assumed to
vanish. The state space of our boundary theory is generated
from a ground state with the properties

c,l0)=b,l00=0 forn=0 (5)

by application of ‘“‘raising operators,” including the zero
modes &f and £§. On this space we can introduce the local
fields c, ¢, b, b through the prescription

b@) = b, (©)

nez
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@)= L+ golnz + &, 7
nzo 1
b(@) =D e,z = ez, ®)
n#0
- b, L
e@) ==> 7"+ bolnz — &. 9)
7o

It is not difficult to check with the help of Egs. (3) and (4)
that these fields satisfy the correct local anticommutation
relations

{b(2), c(w)} = 8(z — w), {b(2), c(w)} = 8(z — W)

in the interior of the upper half plane. They also fulfill our
boundary conditions (1) with u = 1.

For later use let us also spell out the construction of the
Virasoro generators in terms of fermionic modes,

L,= Z:bn,mcm: — b,co.
m#0

It is important to stress that—due to the term cyby—the
element L, satisfies L £5€5|0) = |0). Since L, vanishes on
all other ground states, it is nondiagonalizable. In other
words, our boundary theory is an example of a logarithmic
conformal field theory. The logarithms in this model, how-
ever, are restricted to the boundary sector since the bulk
Hamiltonian is diagonalizable (see below).

Computations of correlation functions in our boundary
theory require one to introduce a dual vacuum with the
properties

(Olc, = (0lb, =0 forn =0, (10)

(01€5£610) = 1. an

For the ¢ = —2 ghost system the ground states |0) and (0|
which are annihilated by the zero modes b, and ¢ are at
the same time SL(2, C) invariant vacua. Consistency with
the  commutation  relations  requires  (0|0) =
(OB, £53l0) = 0. Therefore, the simplest nonvanishing
quantity is (0|£5€5|0) for our boundary theory (see also
[3] for a more detailed discussion).

Finally, we would like to display the boundary state |N)
for our new boundary condition. Before we provide ex-
plicit formulas let us briefly recall that the bulk fields are
obtained as

C@=£+ Y L bR =Y b

n#0 nez

and similarly for their antiholomorphic counterparts. Note
that there are no modes ¢, ¢, and &5, €5 in the bulk of our
bc ghost system. This feature distinguishes the ¢ = —2
ghosts from the closely related symplectic fermions.
According to the standard rules, the boundary state for
our boundary theory must satisfy the following Ishibashi
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conditions [9]:
(by —C-DIN)=0, (¢, +b_,)IN)=0  (12)

for n # 0 and by|N) = by|N) = 0. As one may easily
check, the unique solution to these conditions is given by

% = exp<_ n;il%(c—mf—m + b—ml;—m)>|0> (13)

where |0) is a state in the bulk theory that satisfies con-
ditions of the form (5) for both chiral and antichiral modes.
There also exists a dual boundary state (N|, satisfying the
conditions

(NI(b, +¢-,) =0,  (Nllc,—b_,)=0 (14

for n # 0 and (N|b, = (N|b, = 0. These linear relations
are related to Egs. (12) by conjugation using that cj, =
—c_, forn # 0and b}, = b_,, etc. The dual boundary state
is given by the following explicit formula

W~ 21 i
= exp(m;m(cmcm + bmbm)) (15)

involving a dual closed string ground state (0| that obeys
conditions of the form (10) for modes of chiral and anti-
chiral fields and that is normalized by (0|£5£5l0) = 1 [see

comments after Eq. (11)].

III. CARDY CONSISTENCY CONDITIONS

Having constructed our new boundary theory, and, in
particular, its boundary state, we would now like to per-
form two Cardy-like consistency tests. To begin with, let us
verify that |N) satisfies world-sheet duality. We stress that
in this paper we consider a theory in which bulk and
boundary theory consist of Ramond sectors only, a choice
that we shall comment in more detail below. In such a
model, world-sheet duality relates quantities that are peri-
odic in both world-sheet space and time. The simplest such
quantity in our boundary theory would be
tr{ g% *1/12(—=1)F] which vanishes since bosonic and fer-
mionic states come in pairs on each level of the state space.
The same is certainly true for (N|gto™/12(—1)F|N), in
agreement with world-sheet duality. In order to probe finer
details of the theory, we need to consider quantities with
additional insertions of fields or zero modes. Here, we shall
establish the relation

tr ("' (= DF c(2)e(2)) = (NIg"* (= 1)/ c(£)e(€)IN),
(16)
where H® = Ly + 1/12, g = exp(2mit), £ = exp(—1 X

Inz), and F°=F + F, as usual. The closed string
Hamiltonian is given by

H¢ = Z [:b_,cp: + :b_,,E0: ]+ 1/6.
mezZ
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Validity of Eq. (16) is required by the definition of bound-
ary states (see e.g. [10]). Starting with the left-hand side, it
is rather easy to see that

(gt (=1)Fe(2)e(2) = —tr(gho V(= DFEED)

= 2mitn(q)* = —27n(3)*
(17)

In the computation we split off the term cyby from H° and
use it to saturate the fermionic zero modes. The rest is then
straightforward. We can reproduce the same result if we
insert our explicit formulas for the boundary states |N) and
(N| into the right-hand side of Eq. (16).

It is possible to perform another similar test of our
boundary theory using the usual trivial boundary condi-
tions of the ghost system. In this case, the field c(z) is
identified with its own antiholomorphic partner ¢(7) along
the boundary and likewise for the pair b and b. Let us recall
that the boundary state |id) and its dual (id| take the form
(8]

S oleonbn + b))~ £)I0

m=1

lidy = exp(

S (b, + bt} (8)

m=1

dl = oI5 — £0) exp(

where we use the same notations as before. For the ex-
change of closed string modes between |N) and (id| the
above formulas imply

(id|g"2H (= D)V c(&)IN) = idlg"/> (=1)'2F &|N)

= V2mg" /2] + 3
n=1

n(27)

Once more we had to insert the field ¢(z) in order to get a
nonvanishing result. For comparison with a world-sheet
dual, we need to quantize the ghost system on the upper
half plane with trivial boundary conditions on the positive
real axis and our nontrivial ones on the other half. A
moment of reflection reveals that the following combina-
tions

(19)

@)= iz(b(z) T i0c(2),

- &

X (2) = E(ib(Z) + dc(2))

diagonalize the monodromy, i.e. they obey the following
simple periodicity relations y=(e?7'z) = *iy~(z). Hence,
they take the following form [1]:

x@= > xrzh

-1
r€Z+;
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The modes y; satisfy the same canonical commutation
relations, {x;, x; } = ré,_;, as before. Formulas for the
Virasoro generators can easily be worked out. For us, it
suffices to display the zero mode L,

(20)

3
XEX=r T 2y

Loy=-— .
0 32

rezZ—(1/4)
The constant shift by 3/32 is needed in order to obtain
standard Virasoro relations with the other generators (see
also [11] for a closely related analysis of twisted sectors in
the bulk theory). The state space of our boundary theory
contains two ground states [} ) which are related to each
other by the action of a zero mode &¢. On this space we can
introduce the field ¢ through

. +
i X
c(z) = Jmée + — ALY
\/irEZZ(:l/AL) r
1 Xr
z .

\/QrEZ+(1/4) r

From the construction of the state space and our formula
for H° = L, + 1/12 we infer the following expression for
the mixed open string amplitude,

(g™ (=D e() = g PO T = g'/20r1/2)
n=0

_ w04(7/2)
\ n(r/2)"

which reproduces exactly the previous result (19) upon
modular transformation and concludes our investigation
of the new boundary theory. Let us remark that the same
partition function was found recently in [12] with the help
of boundary loop models.

IV. CONCLUSIONS AND OUTLOOK

The choice of our new gluing condition for the bc
system was motivated by the interest in branes on super-
groups. As we discuss in [13], generic maximally symmet-
ric branes in a WZNW model on a supergroup turn out to
satisfy Neumann-type boundary conditions in the fermi-
onic coordinates. This implies that all fermionic zero
modes must act nontrivially on the space of open string
states. In our toy model, the role of the fermionic coordi-
nates is played by ¢ and ¢. Hence, we needed to find
boundary conditions with a four-fold degeneracy of ground
states. For the standard boundary conditions of the bc
system, ¢ = ¢ along the boundary and hence only one
fermionic zero mode survives, giving rise to a 2-
dimensional space of ground states. In this sense, the usual
boundary conditions of the bc systems are localized in one
of the fermionic directions. Our boundary conditions come
with two nonvanishing zero modes fg and £{ (and their
dual momenta ¢y and bg). This property makes them a
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good model for maximally symmetric branes on super-
groups.

There exist various extensions of our theory that we
want to briefly comment about. In our analysis we focused
on the Ramond-Ramond sector of the bc ghost system in
the bulk. It is certainly straightforward to include a Neveu-
Schwarz—Neveu-Schwarz sector in case this is required by
the application. Furthermore, we can also replace the bulk
theory by its logarithmic cousin, the symplectic fermion
model. Since the formulas and results are very similar, we
refrain from giving more details. Boundary theories for
symplectic fermion theories have been studied extensively
in the past (see e.g. [4,14-20]). We would like to stress,
however, that our boundary condition seems to be new, also
in the context of symplectic fermions.

Let us be a bit more specific and relate our constructions
to the results in [4]. A comparison of the gluing conditions
shows that our state |id) is a close relative of the (N, =)
boundary condition of [4]. In fact, all boundary theories
considered in [4] glue dc to d¢ and b to b, with different
choices of signs. None of these models displays any en-
hancement of zero modes in the boundary spectrum. In this
sense, we would prefer to consider them all as being of the
same type (mixed Dirichlet-Neumann in the context of the
bc system). Using the notations of [4], our new boundary
theories arise when we glue y* to y~ and vice versa. Such
a choice gives rise to a nontrivial gluing automorphism on
the so-called triplet algebra and therefore it was excluded
from the analysis in [4].

PHYSICAL REVIEW D 77, 026003 (2008)

In the case of the bc ghost system, the boundary state
|N) has a rather novel feature: it describes a logarithmic
boundary theory in a nonlogarithmic bulk. Put differently,
the bc ghost system possesses a diagonalizable bulk
Hamiltonian H°¢. Nevertheless, the Hamiltonian H? of
our new boundary theory is nondiagonalizable. Hence,
logarithmic singularities can appear, but only when two
boundary fields approach each other. To the best of our
knowledge, such a behavior has never been encountered
before. It shows that conformal field theories may be
logarithmic even if none of its correlators on the sphere
contain logarithms.
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