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We investigate resolutions of heterotic orbifolds using toric geometry. Our starting point is provided by
the recently constructed heterotic models on explicit blowup of Cn=Zn singularities. We show that the
values of the relevant integrals, computed there, can be obtained as integrals of divisors (complex
codimension one hypersurfaces) interpreted as (1, 1)-forms in toric geometry. Motivated by this we give a
self-contained introduction to toric geometry for nonexperts, focusing on those issues relevant for the
construction of heterotic models on toric orbifold resolutions. We illustrate the methods by building
heterotic models on the resolutions of C2=Z3, C3=Z4, and C3=Z2 � Z02. We are able to obtain a direct
identification between them and the known orbifold models. In the C3=Z2 � Z02 case we observe that, in
spite of the existence of two inequivalent resolutions, fully consistent blowup models of heterotic
orbifolds can only be constructed on one of them.
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I. INTRODUCTION

One of the main aims of string phenomenology is to
build a string model reproducing, at low energies, the
standard model of particle physics, or a supersymmetric
extension of it. This issue has been faced from different
perspectives, in particular, we remind the reader of models
built using free-fermion models [1–3], intersecting D-
branes in type II string theory [4–7], Gepner models
[8,9], and compactifications of the heterotic string. In the
latter case, in order to obtain four dimensional models with
at most N � 1 supersymmetry, i.e. in order to have a chiral
spectrum, one needs to compactify on a Calabi-Yau space
[10] (see also [11–16] for recent progresses in this direc-
tion), or on a singular limit of it: an orbifold. Orbifolds are
particularly convenient, since they allow fully calculable
string compactifications, in terms of combinations of free
conformal field theories [17,18]. Given this calculability, it
is possible to produce a vast but controllable landscape of
models, and scan among them for realistic ones. Indeed,
this approach has been proven to be successful, and models
extremely close to the minimally supersymmetric standard
model (MSSM) have been built [19–26].

Orbifolds are special points in the full moduli space of
the heterotic string on Calabi-Yau manifolds. In order to
have a better control on the theory away from these special
orbifold points, it is crucial to have a better understanding
of model building on the corresponding smooth compacti-
fication spaces. As the theory is completely calculable at
the orbifold point, one may also hope, that one can learn
about its properties in the moduli space in the vicinity of
this singularity. The underlying theme of this paper is

precisely to study the interplay between the heterotic string
theory at the orbifold points of the moduli space and on
generic Calabi-Yau spaces.

A concrete way to probe the moduli space surrounding
orbifold points is to consider blowups of orbifold singular-
ities in an effective supergravity coupled to super Yang-
Mills description. The idea is to first study the resolution of
isolated singularities and after that obtain a description of a
compact Calabi-Yau by gluing various orbifold resolutions
together. The construction of explicit blowups is unfortu-
nately not easy. The most known example is the Eguchi-
Hanson resolution [27] of the C2=Z2 orbifold singularity.
Generalizations to Cn=Zn were discussed in the mathe-
matical literature [28], see also [29,30]. The construction
and the application of explicit blowups of these singular-
ities to heterotic model building has been investigated in
[31,32]. In particular, it was shown that all C2=Z2 and
C3=Z3 heterotic orbifold models could be recovered by
considering U(1) bundle gauge backgrounds on the blowup
[32]. This construction was used to explicitly verify that in
blowup multiple anomalous U(1)’s are possible [33,34],
even though heterotic orbifold models always have at most
a single anomalous U(1). The way out of this apparent
paradox is that a twisted state, with a nonvanishing vacuum
expectation value (VEV), can be reinterpreted as a model
dependent axion, that can cancel nonuniversal anomalies
[35]. This, in particular, helped to resolve confusion [36–
38] concerning the heterotic/type I duality on Z3 orbifolds.

Explicit blowups of Cn=Zn singularities were possible
because both these orbifolds and their blowups have a large
isometry group. However, for four dimensional string
model building, these blowups can only be used to model
C2=Z2 and C3=Z3 singularities, while MSSM-like model
building seems to require more complicated orbifolds, like
T6=Z6�II or T6=Z12�I. (See e.g. [19–26].) The singular-
ities of these orbifolds are more complicated and might not
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allow for a simple explicit blowup construction. On the
other hand, the topological properties of such resolutions
can be conveniently described by toric geometry, see e.g.
[39]. In this paper we explain how using toric geometry one
can construct heterotic models on resolutions on arbitrarily
complicated orbifold singularities.

For a general mathematical introduction to the subject of
toric geometry we refer the reader to e.g. [40–44]. Ap-
plications of toric geometry to orbifold resolutions have
also recently been discussed in [45,46]. The presentation of
the toric geometry in this paper gives an exposition of
simple toric techniques, which can be used to understand
the topological properties relevant for model building. For
this program we explain the construction of toric varieties
that represent the resolution of orbifolds. The divisors,
complex codimension one hypersurfaces, encode the to-
pology of the resolution. We explain that one can interpret
divisors as (1, 1)-forms, and integrate them over the reso-
lution. This allows us to use divisors as field strengths, i.e.
first Chern classes, of U(1) complex line bundle gauge
backgrounds. These backgrounds can then be used to con-
struct consistent heterotic models on the resolution. To
cross-check this procedure we first reproduce all results
obtained using the explicit blowup of Cn=Zn. After that we
extend the analysis to more complicated orbifolds, for
which to our knowledge no explicit blowup has been
written down.

To present our results the paper has been structured as
follows: In Sec. II we first review the explicit blowup of the
Cn=Zn orbifold. After that we introduce toric geometrical
techniques to reobtain the integrals computed on the ex-
plicit blowup as integrals of certain divisors over the
corresponding toric variety. In Sec. III we first give a
general account of the analysis of orbifold singularities
using toric geometry, and explain how this can be applied
to heterotic model building on orbifold resolutions. We
illustrate the various methods by two examples: The reso-
lution of C2=Z3, the simplest example of blowup with two
exceptional divisors, is described in subsection III B. The
next subsection is devoted to the resolution of C3=Z4. For
both these resolutions we explain how we can construct
consistent models on them, and derive the conditions that
ensure they have a direct orbifold interpretation as well.
For the C3=Z4 resolution we construct models that satisfy
possible Bianchi identities, and we confirm that they give
rise to models free of non-Abelian anomalies in four
dimension, which all can be matched to heterotic orbifolds.
Section IV investigates orbifolds that do not possess a
single unique resolution. We propose minimal require-
ments of defining integrals avoiding inconsistencies with
the linear equivalence relations. The issues that arise when
the resolution is not unique, are exemplified by discussing
the two inequivalent resolutions of C3=Z2 � Z02 in
subsection IV B. In the final subsection IV C we compute
heterotic models on one of the resolutions, and argue that

no fully consistent model can be built on the other. In
Sec. V we summarize our conclusions.

II. TORIC DESCRIPTION OF EXPLICIT BLOWUPS
OF ORBIFOLD SINGULARITIES

A. Blowup of Cn=Zn orbifold

In [32] we have given a detailed description of how to
explicitly obtain a blowup of the Cn=Zn orbifold with
possible U(1) bundles. Here we will only recall those
results which will be relevant for our subsequent discus-
sion; for details the reader may consult [31,32]. The Cn=Zn
orbifold is defined by the Zn action

 �� ~Z� � � ~Z; �� e2�i�; ��
1

n
diag�1; . . . ;1�; (1)

on the orbifold coordinates ~Z. This defines a space with a
singularity, having deficit angle of 2��1� 1=n�. The ge-
ometry of the nonsingular blowup is described by the
Kähler potential K given by

 K �X� �
Z X

1

dX0

X0
M�X0�; M�X� �

1

n
�r� X�1=n; (2)

where X � �1� �zz�njxj2 is an SU�n� invariant, and the z
and x are the coordinates of the space. In detail, the z form
a set of inhomogeneous complex coordinates of CPn�1,
and x the coordinate parametrizing the complex line over
CPn�1. Finally, r is the resolution parameter, defined such
that in the limit r! 0 one retrieves the orbifold geometry.

From the Kähler potential all geometrical quantities can
be derived in the standard way, in particular, the curvature
2-form reads

 R �
r

r� X

e �e� �ee� 1
n

���
r�X

��e�������
r�X
p

�e��������
r�X
p n �ee� n�1

n
���
r�X

 !
: (3)

Here e and � are the holomorphic vielbein 1-forms of
CPn�1 and its complex line bundle. It can be shown that
R is traceless, which is consistent with the Calabi-Yau
property of having vanishing first Chern class. In other
words the Kähler potential (2) defines the Ricci-flat metric
on the blowup showing explicitly that it is a noncompact
Calabi-Yau [32]. In addition, this geometry admits a U(1)
gauge background, that satisfies the Hermitian Yang-Mills
equations on this Ricci-flat noncompact Calabi-Yau
blowup, with field strength 2-form:

 iF �
�

r
r� X

�
1��1=n�

�
�ee�

n� 1

n2

1

r� X
���
�
: (4)

Because both the geometry and its U(1) gauge back-
ground are given explicitly, integrals of them can be com-
puted straightforwardly. In particular, we obtain

 

Z
CP2

trR2

�2�i�2
� �n

Z
CP12C

trR2

�2�i�2
� n�n� 1�; (5)

and
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Z
CPp

�
iF
2�i

�
p
� �n

Z
CPp�12C

�
iF
2�i

�
p
� 1: (6)

The integrals over CPp are taken at X � 0 integrating over
p of the n� 1 inhomogeneous coordinates of CPn�1, with
the others set to a fixed value, say, 0. The integral over
CPp�12C corresponds to the integral over all values of
x 2 C and over p� 1 inhomogeneous coordinates.

These and other integrals were relevant to determine the
heterotic blowup models that satisfy the integrated version
of the Bianchi identity

 dH � trR2 � tr �iF V�
2; (7)

where iF V � iFVIHI defines the embedding of the U(1)
gauge background in the SO(32) or E8 � E8 gauge group.
Integrating the Bianchi identity over the full blowup of
C2=Z2 and requiring that it vanishes, leads to the consis-
tency condition V2 � 6. In the three dimensional case the
integral in the Bianchi identity over either CP2 or CP22C
lead to the same consistency condition V2 � 12 for the
blowup of C3=Z3. Both conditions in two and three com-
plex internal dimensions are compatible with the corre-
sponding modular invariance conditions, �2v�2 � 2 mod 4
and �3v�2 � 0 mod 6, of the heterotic string, respectively.

Moreover, in [32] we confirmed that the integral or half-
integral solutions of this equation, gives rise to all blowups
of all of the known modular invariant T4=Z2 and T6=Z3

heterotic orbifold models (except the Z3 models with un-
broken SO(32) and E8 � E8 gauge groups). We identified
the gauge background F V with the orbifold action on the
gauge degrees of freedom A�� ~Z� � UA�~Z�U�1, withU �
exp�2�ivIHI� characterized by vI. For this we computed
the integral over the contour � of the phase of x at x! 1
at fixed values of the CPn�1 coordinates z:

 vIHI �
Z
�
AV � �

1

n
VIHI: (8)

The equivalence sign ‘‘�’’ indicates that the identification
of the orbifold gauge shift vector v, and the blowup pa-
rameter V that characterizes the U(1) bundle embedding in
the gauge group, is up to lattice vectors in the Spin(32)
lattice.

In addition we could use these integrals to compute the
complete chiral spectrum of the blowups using index the-
orems. We found that the spectra were identical to the
orbifold spectra in the blow down limit up to singlets and
vectorlike states. The fact that we were able to obtain the
blowups of all heterotic orbifold models and the chiral part
of the spectra gives us confidence that, even though we are
(partly) integrating over noncompact cycles, the integrals
can nevertheless be trusted and used in a naive way in index
theorems. In particular, we do not have to use extensions of
index theorems for spaces with boundaries, when comput-
ing on the blowup of noncompact Cn=Zn orbifolds and
comparing this with the properties of compact T2n=Zn

orbifolds. The reason that this procedure works is that we
in the end compare with the spectrum of a compact orbi-
fold. This requires that we glue various resolutions to-
gether. In this process the boundary contributions cancel.

B. Resolution of Cn=Zn using toric geometry

The purpose of this subsection is to understand the
topology of the resolution of Cn=Zn using toric geometry.
In particular, we show how the integrals (5) and (6) can be
obtained using this machinery. Our description explains the
basic methods to obtain the results relevant for (heterotic)
string model building.

As explained below Eq. (1) the orbifold Cn=Zn has a
deficit angle. To obtain a nonsingular resolution
Res�Cn=Zn�, we define a set of local coordinates

 Z1 � z1x
1=n; . . . ; Zn � znx

1=n; (9)

from the homogeneous coordinates z1; . . . ; zn, x 2 C. The
orbifold action (1) is then extended by the transformation
x! e�2�ix. As it stands we describe the n local coordi-
nates using n� 1 homogeneous coordinates; we therefore
need to define a C� � C� 0 ‘‘toric’’ action on the homo-
geneous coordinates, that leave the local coordinates inert.
This requirement fixes the C� action uniquely to

 C �: �z1; . . . ; zn; x� 	 ��
�1z1; . . . ; ��1zn; �

nx�; (10)

� 2 C�. The resolution of Cn=Zn is defined by the toric
variety

 Res �Cn=Zn� � �Cn�1 � F�=C�; (11)

where the exclusion set F has been subtracted to ensure
that the resolution is not singular. In particular, the C�

action should act nontrivially, hence at least the origin,
fz1 � . . . � zn � x � 0g, has to be excluded. Indeed, the
number of coordinates set to zero in a toric variety, p,
determines a subspace of complex dimension n� p. In
particular, one expects, that the origin has ‘‘�1’’ dimen-
sions, and hence are totally irrelevant. But since the C�

leaves it inert, it is zero dimensional, i.e., a collection of
points, which do matter in general.

The resolution Res�Cn=Zn� is topologically nontrivial,
i.e. one needs more than one coordinate patch to describe it
entirely. A set of coordinate patchesUi is obtained straight-
forwardly by taking one of the homogeneous coordinates
not to be vanishing

 U0 � fx � 0g; Ui � fzi � 0g; (12)

for i � 1; . . .n, defined of course in Cn�1 � F only. In
each of the coordinate patches we can use the rescaling
(10) to set its defining nonvanishing coordinates to unity.
For Ui this can be done uniquely by setting � � zi. But for
U0 we find a Zn ambiguity because � � e2�ip=nx�1=n.
Hence on the remaining coordinates z1; . . . ; zn the C�

reduces to a Zn action. This is in fact the original orbifold
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action, and we have a singularity unless we exclude

 F � fz1 � . . . � zn � 0g: (13)

To define proper patches, we need to subdivide the punc-
tured U0, but we will not dwell on this here.

The explicit blowup of the Cn=Zn orbifold, described in
the previous subsection, used the coordinate patchUn, with
zn � 1. In this patch the SU�n� invariant variable X is
obtained from the inhomogeneous coordinates (9):

 X1=n � �ZZ � �1� �zz�jx1=nj2: (14)

Only here z � �z1; . . . zn�1� denote a set of inhomogeneous
coordinates on CPn�1. The reason is that even though the
coordinate patch Un is not sufficient to describe the whole
resolution, still the integrals give the correct numbers, is
that the parts of Res�Cn=Zn� not in Un correspond to lower
dimensional subspaces, irrelevant for these integrals.

We define a set of n� 1 hypersurfaces of complex
dimension n� 1, which are called divisors. (For a general
introduction to algebraic geometry including divisors, see
e.g. [47,48].) There are two types of divisors, Di, i �
1; . . . ; n, and E, defined by

 Di � fzi � 0g; E � fx � 0g: (15)

The final one, E, is called an exceptional divisor, because it
defines a subspace of the resolution not present in the
orbifold. Taking into account the remaining rescaling
(10), we see that E � CPn�1 defined in terms of homoge-
neous coordinates. This means that the singularity of the
orbifold Cn=Zn has been ‘‘blown up’’ to a CPn�1. In a
similar fashion, it follows that Di � CPn�22C is defined
as a complex line bundle over CPn�2. The resolution
Res�Cn=Zn� itself can be thought of as a complex line
bundle over CPn�1. The exceptional divisor E is obviously
compact, while the other divisors are not compact.

To each of the divisors we can associate a complex line
bundle. Any complex line bundle is defined by its holo-
morphic scalar transition functions. To determine these
transition functions for the various divisors we write the
defining equation of the divisor in patch Ui. This gives for
the ordinary divisor Di:

 Uj�i:
zi
zj
� 0; Ui: 1 � 0; U0: x1=nzi � 0; (16)

and for the exceptional divisor E:

 Uj: znj x � 0; U0: 1 � 0: (17)

In the coordinate patches, where we encounter the incon-
sistent equation ‘‘1 � 0,’’ the corresponding divisor sim-
ply does not live. From this we read off the transition
functions for the associated line bundle of divisors Di
and E:

 

gkj�Di� �
zk
zj
; gj0�Di� � x1=nzj and

gkj�E� �
znj
znk
; gj0�E� �

1

znj x
:

(18)

The subscripts indicate between which two coordinate
patches the transition functions interpolate. It follows that
the transition functions of the line bundles, associated to
the divisors, Di and E, are all related to each other:

 g�D1�
�n � . . . � g�Dn�

�n � g�E�: (19)

Since the equality holds for all transition functions, we
have dropped the subscripts that indicate the coordinate
patches.

To understand the consequences of the fact that all
transition functions of the divisors are related, we make
the following brief excursion to properties of vector bun-
dles. A vector bundle V can be topologically characterized
by its total Chern class

 c�V � � det
�
1�

F�V �
2�i

�
; (20)

where F�V � is the curvature of the bundle. The total Chern
class can be expanded in terms of its first, second, etc.,
Chern classes c1�V �, c2�V �, etc. A complex line bundle is
completely determined by its first Chern class c1�V � �
F�V �=2�i, which can be taken to be a harmonic (1, 1)-
form. Because it is closed, locally its curvature can be
written as F�V � � dAi�V � in terms of a connection
Ai�V � in coordinate patch Ui. Between two coordinate
patches Ui and Uj the connections

 Aj�V � � Ai�V � � gji�V �
�1dgji�V � (21)

are related via the transition functions gji�V �.
With this in mind, we can describe the Chern classes of

the line bundles associated to the divisors of the resolution
Res�Cn=Zn�. To each of the divisors Di and E of the
resolution we can associate a line bundle with first Chern
class, c1�Di� and c1�E�, respectively. It is a convenient toric
geometrical convention, to let the context determine
whether the symbol for the divisor refers to the defining
hypersurface, or the first Chern class of its associated line
bundle. Therefore, one may write Di � c1�Di� and E �
c1�E�. The relations between the transition functions (19)
imply that the divisors satisfy the following linear equiva-
lence relations

 Di 	Dj; nDi � E	 0; (22)

where the linear equivalences, 	, can be replaced by
equalities, provided that the symbols for the divisors refer
to the first Chern classes of the line bundles, when we
ignore addition of exact forms. Upon using Poincaré’s
duality the divisors refer to hypersurfaces, the linear equiv-
alences mean that these surfaces can be deformed to differ
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by boundary surfaces. The derivation of the linear equiva-
lence relations by first determining the relation between the
transition functions (19) is proper but somewhat lengthy. It
can be bypassed by requiring that the local coordinates (9)
are invariant under the transformations zi ! eDizi and x!
eEx. The reason that this works is that one can perform
transformations on the homogeneous coordinates, that
leave the local coordinates (9) invariant.

The (1, 1)-forms, Di and E, can be integrated over
holomorphic 1-cycles, i.e. complex curves. Similarly (2,
2)-forms, like DiDj, DiE, and E2, can be integrated over
holomorphic 2-cycles, and so on. It is therefore useful to
have a classification of the holomorphic p-cycles within
the resolution Res�Cn=Zn�, using the divisors Di and E
interpreted as hypersurfaces. From their definition it fol-
lows immediately that Di and E define holomorphic �n�
1�-cycles. We can define the integral of any (n� 1, n� 1)-
form, say, Dn�2

2 E over, for example, D1, and denote it byR
D1
Dn�2

2 E. Moreover, the intersection of two divisors, like
 

Di 
Dj�i � fzi � zj � 0g and

Di 
 E � fzi � x � 0g; (23)

define �n� 2�-dimensional holomorphic hypersurfaces.
The integral over such intersection of (n� 2, n� 2)-forms
can similarly be defined. This can of course be extended to
the intersection of an arbitrary number of different divisors.
Because E is compact, intersections that involve E, will
also be compact; contrary to intersections of only non-
compact divisors Di can be noncompact. This gives us a
way to identify the integration ranges used in (5) and (6):
 

CPp�ED1 . . .Dn�1�p; CPp�12C�D1 . . .Dn�p; (24)

with intersections of divisors.
The intersections of n different divisors are of special

interest, because they define zero dimensional surfaces, i.e.
sets of points. The number of such points is called the
intersection number of these divisors. The intersection
number of n� 1 different Di’s and a single E can be
computed directly: For example consider D2 
 . . . 
Dn 

E. Setting z2 � . . . � zn � x � 0 in (10), realizing that
z1 � 0, we can choose � � z1 uniquely. This means that
all the intersection numbers

 E 

Y
j�i

Dj �
Z
ED2 . . .Dn � 1: (25)

The middle equation shows that we can also view these
intersection numbers as integrals over the whole toric
variety of the n divisor interpreted as (1, 1)-forms.

This naturally leads to the following generalization the
‘‘product’’ or ‘‘intersection’’ of any n divisors can be
defined as the integral over the corresponding (1, 1)-forms.
The linear equivalences to relate the integral to an integral
of all different divisors one of which being E. In particular,
we find self-intersection number

 En � ��n�n�1
Z
D2 . . .DnE � ��n�

n�1: (26)

In the same way all other (self-)intersections involving at
least one E may be computed. As can be seen from these
simple computations the symbol 
 to indicate intersection
of divisors is also essentially obsolete, and in the following
we let the context decide whether, say ED1, refers to a
(2, 2)-form or a complex �n� 2�-cycle. Employing the
linear equivalence relations we can even compute integrals
over n noncompact divisors, for example

 D1 . . .Dn � �
1

n

Z
ED2 . . .Dn � �

1

n
: (27)

This brings us to a few important issues: First of all, one
cannot interpret this result naively as saying that the non-
compact divisors D1 to Dn intersect � 1

n times. In fact, the
exclusion set F, defined in (13), implies that this intersec-
tion does not exist in the resolution Res�Cn=Zn�. Hence,
one should only interpret D1 . . .Dn as the integral of the
corresponding (1, 1)-forms over the whole resolution.

But even when one interprets D1 . . .Dn as an integral
only, one may still wonder what fixes its values, because
being noncompact it seems not to be topological. To pursue
this question, we explain how to recover the results for
integrals (6) using toric geometry. To obtain the latter
integrals we need to identify the gauge background iF
with a divisor interpreted as a first Chern class (1, 1)-form.
The linear equivalences (22) imply that there is in fact only
one independent (1, 1)-form, hence it is determined up to
an overall normalization. To fix the overall normalization
we look for the (1, 1)-form which integral is unity on
compact curves, like ED2 . . .Dn, which according to (24)
corresponds to CPn. In this way we obtain the identifica-
tion

 

F

2�
� Di � �

1

n
E;

Z
ED2...Dn

F

2�
� 1: (28)

Using the identification of the cycles (24) and the linear
equivalences (22) we find the toric formulation

 

Z
ED1...Dn�1�p

�
iF
2�i

�
p
� �n

Z
D1...Dn�p

�
iF
2�i

�
p
� 1; (29)

in agreement with the integrals (6). The reason for this
agreement is that these integrals define topological invar-
iants to which one has access using toric geometry. The
explicit expression for the gauge background (4) satisfying
the Hermitian Yang-Mills equations on the Ricci-flat back-
ground (2), defines a special representative of the corre-
sponding characteristic class. This shows that it is the
boundary conditions on ED3 . . .Dn or at the boundary of
D2 . . .Dn at infinity, which fixes the values of these inte-
grals. By patching various resolutions together, one can
turn the noncompact divisors and curves into compact
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ones, and then the standard intersection theory works, see
[45].

Similarly, to obtain a representation of the integrals (5)
involving the curvature R, we can employ the splitting
principle [49], which says that the total Chern class c�R�
of the tangent bundle is given as the product of 1�D over
all compact and noncompact divisors D. For the resolution
of Cn=Zn this amounts to [40]

 c�R� � �1� E�
Yn
i�1

�1�Di�: (30)

The first, second, etc., Chern classes of the tangent bundle
can be determined by expanding this to the appropriate
order. As the resolution represents a (noncompact) Calabi-
Yau space, the first Chern class should vanish. This can be
confirmed easily:

 c1�R� � E�
Xn
i�1

Di � 0; (31)

by virtue of the linear equivalence relations (22). By ex-
panding the general formula for the total Chern class (20)
to second order gives

 �
1

2
tr
�
R

2�i

�
2
� c2�R� � E

X
i

Di �
X
i<j

DiDj

�
n� 1

2
ED1; (32)

using that the first Chern class vanishes. From this it is
straightforward to confirm the integrals (5) of trR2 as
well.

Next, we want to relate the toric geometry to heterotic
orbifolds. In particular we explain how from it the blowup
models characterized by the vector V of only integers or
half-integers, the corresponding orbifold models defined
by the gauge shift v can be recovered. The relation be-
tween V and v was made in (8) by computing the contour
integral over the gauge connection AV far away from the
singularity. Using Stoke’s theorem this can be translated to
an integral of F V over a curve like D2 . . .Dn:

 vIHI �
Z
D2...Dn

F V � �
1

n
VIHI: (33)

Hence the fractional nature of the orbifold gauge shift
vector v is obtained by integrating over a noncompact
curve. The integrated version Bianchi Identity is easily
computed. For Res�C2=Z2� we find

 V2 � �2
Z

tr�F V�
2 � �2

Z
trR2 � 6; (34)

when integrated over the whole resolution. For Res�C3=Z3�
we obtain

 

V2 �
Z
E

tr�F V�
2 � �3

Z
Di

tr�F V�
2 � �3

Z
Di

trR2

�
Z
E

trR2 � 12; (35)

using (32). Hence, we have retrieved the conditions men-
tioned in the previous subsection. Moreover the toric ap-
proach shows that the integrals over the compact and
noncompact 2-cycles E and Di lead to the same condition,
and is a simple consequence of the fact that these divisors
are linearly equivalent (22).

There is a convenient way to represent the properties of
toric varieties including the properties of the divisors: the
toric diagram. To build the toric diagram of Res�Cn=Zn�
first give n vectors v1; . . . ; vn that represent the n ordinary
divisors D1; . . . ; Dn. For example we can take the basis
v1 � �1; 0; . . . ; 0�, to vn � �0; . . . ; 0; 1�. The exceptional
divisor E is represented by the vector

 w �
X
i

�ivi; (36)

which in this basis takes the form w � �1; . . . ; 1�=n. This
basis v1; . . . ; vn and w precisely dictate how to construct
the local coordinates (9). The toric diagram of Res�C2=Z2�
is given in the left picture of Fig. 1. The toric diagram of
Res�C3=Z3� is three dimensional; to obtain a simple rep-
resentation of it we can take a two dimensional projection
of the three dimensional toric diagram. We choose the
basis v1 � �0; 0; 1�, v2 � �1; 0; 1�, and v3 � �0; 1; 1�, so
that the exceptional divisor E is then represented by w �
�13 ;

1
3 ; 1�. Because the last entry in both vi and w are

identical, we only need to use the first two entries, which
defines a projection. The resulting projected toric diagram
is given in the right picture in Fig. 1. The exceptional
divisor E lies in the interior of the toric diagram. A theorem
in toric geometry guarantees that such a divisor is compact.
We see this theorem confirmed in this example. Toric
geometry also tells us that the basic cones, the smallest
possible cones inside a (projected) toric diagram, corre-

E

D2

D1
0 D1

D3

E

D2

FIG. 1. The left picture displays the toric diagram of
Res�C2=Z2�. The right picture displays a projected view of the
toric diagram of Res�C3=Z3�. Because the latter is a projection,
there are no arrows from the origin pointing to the divisors as in
the former toric diagram.
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spond to the intersection of divisors with unit intersection
number. This is consistent with (25), for example, D1E �
1 and D1D2E � 1, in the resolution, Res�C2=Z2� and
Res�C3=Z3�, respectively. Together with the linear equiv-
alences (22) we can determine the intersections of a com-
pact curve with the divisors. We construct the table:

Divisor D1 . . . Dn E

ED2 . . .Dn 1 . . . 1 �n

Notice that the values in this table precisely correspond to
minus the powers of the rescaling parameter � in (10),
hence we read off the C� scaling charges from the toric
diagram, by computing the intersection numbers of a com-
pact curve with the divisors.

To summarize, we have shown that all the results for the
integrals obtained using the explicit blowup of the Cn=Zn
orbifold singularity can be obtained using toric geometrical
techniques, without ever having to compute any integral
explicitly. This procedure shows that the integrals all have
a topological origin, which is compatible with the fact that
these integrals are used in the integrated Bianchi identities
to select consistent blowup models. All this information
can be obtained uniquely from the toric diagram, which
was directly determined form the orbifold action.

III. ORBIFOLD RESOLUTIONS WITH MULTIPLE
EXCEPTIONAL DIVISORS

A. Generalities of orbifold resolutions

In the previous section we have seen how we can obtain
all topological relevant information of the resolution of
Cn=Zn orbifolds using toric geometrical techniques. (For
related discussions see e.g. [43,45,46].) In this section we
would like to show that this machinery can be used to treat
resolutions of more complicated orbifolds as well. This
requires us to be able to analyze resolutions with more than
one exceptional divisor.

We begin to formalize the toric geometrical method to
construct the resolution of an orbifold singularity by defin-
ing the toric diagram. Consider noncompact orbifolds
Cn=G, where G is a finite group, Abelian for simplicity,
and n � 2, 3. The action of an element � 2 G on the
orbifold coordinates ~Z1; . . . ~Zn can be written as

 �: � ~Z1; . . . ; ~Zn� ! �e2�i�1��� ~Z1; . . . ; e2�i�n��� ~Zn�; (37)

such that all 0 � �i���< 1. The elements � and ��1 lead
to the same orbifold action up to complex conjugation.
They have to be identified, when � acts nontrivially on
three complex dimensions, but not when it only acts on two
complex coordinates. (A Z2 group element �, for which all
�i��� � 0, 1=2, is self conjugate.) We define the corre-
sponding representative [�] to be the element that satisfiesP
i�i��� � 1. To each representative [�] we can associate

an exceptional divisor E�. The total number of exceptional
divisors is denoted as N. For even and odd ordered orbi-

folds we encounter N�Z2k� � N�Z2k�1� � k exceptional
divisors. If we let v1; . . .vn define a basis for the toric
diagram of the orbifold, then the vector

 w� �
X
i

�i���vi (38)

identifies the exceptional divisor E� in the toric diagram of
the resolution for each representative [�]. This definition of
exceptional divisors of the resolution is in one-to-one
correspondence to the twisted sectors in orbifold string
theory: Also there each representative [�] corresponds to
a distinct, e.g. first, second, etc., twisted sector. In particu-
lar, as is well known the Cn=Zn orbifolds, with n � 2, 3,
have only a single-twisted sector, in agreement with the
previous section where we only had a single exceptional
divisor. The set of vectors vi andw� define the points in the
toric diagram corresponding to divisors of the resolution.

Next, we describe how to associate to the toric diagram a
toric variety which represents the resolution of Cn=G. Each
of the vectors vi and w� correspond to a homogeneous
coordinate zi and x� of the resolution Res�Cn=G�, respec-
tively. As in the previous section, the divisors are defined
by setting the corresponding coordinate to zero:

 Di � fzi � 0g; E� � fx� � 0g: (39)

The ordinary divisors Di are never compact, while the
exceptional divisors are compact only when they lie in
the interior of the toric diagram. We introduce a set of
local coordinates

 Zj �
Y
i

z
�vi�j
i

Y
�

x
�w��j
� ; (40)

where �vi�j denotes the jth component of the vector vi. We
can read off the n linear equivalence relations of the
divisors from them:

 

X
i

�vi�jDi �
X
�

�w��jE� 	 0: (41)

At the same time the �C��N group of scaling of homoge-
neous coordinates zi and x� is defined, such that it leaves
the local coordinates (40) invariant. This means that if one
substitutes the scaling charges as values of the divisors in
the linear equivalence relations (41) one obtains zero. The
action �C��N of scaling is in general not well defined on
Cn�N . The resolution of the Cn=G orbifold is defined as

 Res �Cn=G� � �Cn�N � F�=�C��N; (42)

where exclusion set F is defined, as in the previous section,
such that in none of the coordinate patches singularities
arise. This coincides with the definition of the exclusion set
given in [42].

To obtain the integrals of the various divisors over the
resolution, loosely speaking the intersection numbers, as-
sume that the definition of the toric diagram has to be
completed by giving a triangulation. In this section we
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assume that the triangulation is unique. In Sec. IV we
return to the complication when more than one triangula-
tion is possible. The triangulation defines the basic cones,
i.e. the smallest possible cones, inside the toric diagram.
The intersection of the divisors, or the corresponding in-
tegral, that form the corners of the basic cones, are defined
to have unity intersection number. In other words, the
triangulation defines the compact curves of the resolution
as the interior lines in the toric diagram. The intersection
number with the divisor of the basic cone of which such a
compact curve forms the edge is equal to one. In addition,
the intersection of divisors that are linearly dependent
vanishes. In the projected toric diagram in three complex
dimensions this corresponds to the case when three or more
divisors are aligned. The set of basic cones, together with
the linear equivalence relations, determine all other inte-
grals of the divisors uniquely. In total there are

 #2�D;E� �
�N � 2��N � 3�

2
;

#3�D;E� �
�N � 5��N � 4��N � 3�

6

(43)

such integrals in two and three complex dimensions, re-
spectively. When there are a large number of exceptional
divisors, this means that the total number of integrals grows
rapidly. Indeed, in three complex dimensions we have
#3�D;E� � 20, 35, 56, 84, for N � 1, 2, 3, 4 exceptional
divisors. (The resolution of the Z6�II singularity provides
an example of the case withN � 4.) Fortunately, we do not
need to give all these integrals explicitly, because we can
use the linear equivalences to express integrals involving
ordinary divisors in terms of those involving exceptional
divisors only. The number of integrals of exceptional divi-
sors in two and three complex dimensions, grows like

 #2�E� �
N�N� 1�

2
; #3�E� �

�N� 2��N� 1�N
6

; (44)

with the number of exceptional divisors N. In particular, in
three complex dimensions we find the more manageable
numbers #3�E� � 1, 4, 10, 20 for N � 1, 2, 3, 4. This
completes the purely geometrical description of resolu-
tions of Cn=G singularities.

For applications in model building of heterotic orbifold
blowups we need to specify the gauge background. The
simplest gauge backgrounds, apart from the standard em-
bedding, are U(1) line bundle backgrounds F V . As we
have seen above, complex line bundles play a prominent
role in the toric geometrical description of orbifold reso-
lution. Taking the linear equivalence relations (41) into
account, a basis for U(1) gauge backgrounds is given by
the exceptional divisors that correspond to (1, 1)-forms.
Given this, the Yang-Mills equations of motion reduce to

 J ^ J ^F V � 0; (45)

J being a Kähler form on the resolved manifold. Such a

requirement imposes a set of constraints on the Kähler
moduli (see e.g. [33]); we assume that these constraints
can be satisfied in our specific cases without further re-
strictions on the gauge bundles.

In general, exceptional divisors do not represent the
minimal line bundles of the resolution. A basis of the
smallest line bundles is obtained by requiring that each
of the elements integrated on all compact curves, that form
a basis for all compact curves, either gives zero or one. In
the two dimensional case all exceptional divisors are com-
pact. In three complex dimensions all curves, represented
by lines between two adjacent divisors, that go through the
interior of the toric diagram, are compact. Taking into
account the linear equivalences again, one can define
such a basis of N minimal compact curves C� of the
resolution. After that it is a straightforward exercise in
linear algebra to find those linear combinations !� of
exceptional divisors, that are orthonormal to the basis of
compact curves

 

Z
C�
!�0 � ��;�0 : (46)

This basis of N compact curves can be used to compute the
weights of the N scalings defining the �C��N . To find the
relevant charges, one may compute the intersections be-
tween these compact curves and all divisors.

After this basis has been determined, the general U(1)
gauge bundle embedded in the SO(32) or E8 � E08 gauge
group, can be represented as

 

F V

2�
�
X
��


VI�!�HI: (47)

For each representative [�] the vector V� either contains
only integers or only half-integers. This ensures, that we
have well-defined eigenvalues on the roots of the adjoint of
SO(32) super Yang-Mills theory. (When we want to discuss
compactification of E8 � E8 SYM or either heterotic
string, we need the entries of V� to sum to an even number.)
In analogy to (33) we can make identifications of the
vectors V� and the orbifold gauge shift vectors vi for
each of the Abelian factors inside the orbifold group G.
The integral of F V over each noncompact divisor Di gives
rises to such a relation. This procedure does not work when
on a face of the toric diagram, one or more exceptional
divisors are located. In such a case, the face defines the
resolution of a suborbifold C2=G0, G0 � G. To make the
identification of the orbifold and line bundle shifts, one has
to perform the matching on this subvariety. To restrict the
divisors to this resolution of the suborbifold, one needs to
put some exceptional divisors to zero. This means ignoring
the corresponding extra homogeneous coordinate and
its associated C� scaling. In this way all properties, includ-
ing e.g. the total Chern class, can be reduced to the
subresolution.
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Only those gauge configurations which in addition sat-
isfy the integrated Bianchi identity

 

Z
C2

trR2 �
Z
C2

trF 2
V; (48)

for all compact 2-cycles C2, define consistent background
on the resolution. In this work we will often require that the
integrated Bianchi identity also vanishes for noncompact
2-cycles. The latter requirement is not necessary, but we
will see in examples that with this condition we are able to
recover many of the modular invariant heterotic orbifold
models. In particular, for Res�C2=G0�, the resolution is
itself the only 2-cycle, which obviously is noncompact.
For the three dimensional case, the (non)compact holo-
morphic 2-cycles correspond to the (non)compact divisors.

As a final cross-check on the validity of the application
of toric methods to obtain resolutions of heterotic orbifold,
we compute the four dimensional spectra. We only com-
pute the spectra of those models that satisfy all possible
consistency conditions. (For the other models, there is H
flux flowing out of the singularity, this means that the
resolution has locally torsion. Therefore the standard index
theorems for computing the spectra do not apply.) The four
dimensional spectrum on the resolution with the U(1)
gauge background can be computed using the multiplicity
operator

 NV �
Z � 1

3!

�
F V

2�

�
3
�

1

12
c2�R�

F V

2�

�
: (49)

This operator can then be applied to the branching of the
adjoint representation due to the gauge background to
determine the multiplicity factors. As we are considering
resolutions of noncompact orbifolds, the multiplicities
often take fractional values.

After this general digression of the use of toric geomet-
rical techniques to obtain resolutions of heterotic orbifold
models, we give in the following two subsections interest-
ing examples of orbifold resolutions, Res�C2=Z3� and
Res�C3=Z4�, which both have two exceptional divisors.

B. Resolution of C2=Z3

To illustrate the resolutions with more than one excep-
tional divisor in two dimensions, we consider the resolu-
tion of C2=Z3, as an example. The orbifold action reads

 �: �~Z1; ~Z2� ! �e2�i�1 ~Z1; e2�i�2 ~Z2�; �� 1
3�1;2�: (50)

Taking the vectors v1 � �1; 0� and v2 � �0; 1� to represent
the ordinary divisors D1 and D2 in the toric diagram, we
find that w1 �

1
3 �1; 2� and w2 �

1
3 �2; 1� indicate the two

exceptional divisors E1 and E2, respectively. The resulting
toric diagram of the resolution is given in Fig. 2. From the
local coordinates (40)

 Z1 � z1x
1=3
1 x2=3

2 ; Z2 � z2x
2=3
1 x1=3

2 ; (51)

we read off the linear equivalence relations

 3D1 � E1 � 2E2 	 0; 3D2 � 2E1 � E2 	 0; (52)

and the �C��2 scalings

 �z1; z2; x1; x2� 	 ��
�1
1 z1; �

�1
2 z2; �

2
2�
�1
1 x1; �

2
1�
�1
2 x2�: (53)

The exclusion set reads
 

F � fz1 � x1 � 0g [ fz2 � x2 � 0g

[ fz1 � z2 � 0g; (54)

as can be seen from the toric diagram displayed in Fig. 2.
From this toric diagram one can read off the basic cones:

 D1E2 � E1E2 � D2E1 � 1: (55)

Because the toric variety is two complex dimensional the
divisors are the same as the curves of the resolution, all
intersection of curves with divisors can be compactly dis-
played in a single table, see Table I. From the intersection
table we infer that D2 and D1 define (1, 1)-forms that are
orthonormal to the compact curves E1 and E2, respectively.
Hence we can expand a U(1) gauge background as

 

F V

2�
� �VI1D1 � VI2D2�HI; (56)

where, V1 and V2, are either integer or half-integer vectors.
Using methods explained above, we can make identifica-
tions between the orbifold gauge shift v, and the vectors V1

and V2, by computing the integrals over F V over non-

D2

D1
0

E 1

E 2

FIG. 2. The toric diagram of Res�C2=Z3� is displayed. Both
exceptional divisors E1 and E2 are compact.

TABLE I. The upper half of the table gives intersection num-
bers of the compact curves E1 and E2, with all divisors of the
resolution Res�C2=Z3�. The bottom half of the table gives the
values of the integrals over the product of the (1, 1)-forms
corresponding to the divisors, which are not necessarily integral.

Divisor D1 D2 E1 E2

E1 0 1 �2 1
E2 1 0 1 �2
D1 � 2

3 � 1
3 0 1

D2 � 1
3 � 2

3 1 0
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compact curves D1 and D2, respectively:
 

vIHI �
Z
D1

F V

2�
� �

1

3
�2VI1 � V

I
2�HI;

�vIHI �
Z
D2

F V

2�
� �

1

3
�VI1 � 2VI2�HI:

(57)

It follows that V1 � �V2 � 3v, in order that the line
bundle background can be interpreted in the blow down
limit.

To determine the consequences of the Bianchi identity,
we compute the integral of the second Chern class over the
resolution

 �
1

2

Z trR2

�2�i�2
�
Z
c2�R� �

8

3
: (58)

Requiring that the integrated Bianchi identity vanishes
leads to the consistency condition

 V2
1 � V

2
2 � V1 
 V2 � 8: (59)

This is the analog of the modular invariance consistency
condition of the heterotic string

 �3v�2 � 2 mod 6: (60)

In Table II we give the inequivalent modular invariant
orbifold gauge shifts v, and indicate the vectors V1 and
V2, of the corresponding blowup model(s). The first four
orbifold models in this table can be realized in blowup with
the choice: V2 � �V1. For the orbifold standard embed-
ding 3v � �12; 014� can also be realized in an alternative
way, in which the vectors are not simply equal and oppo-
site, but nevertheless satisfy the condition that they can be
identified with the orbifold gauge shift.

The final orbifold model in Table II cannot be realized
by any combination of resolution vectors V1 and V2, sat-
isfying all conditions. For this reason we have separated it
from the rest of the table. We give two proposals of vectors
that could realize the blowup of the orbifold model: The

first realization has vectors V1 and V2, that can be directly
identified with the orbifold one, but do not have a vanishing
Bianchi identity. The second realization has vectors V1 and
V2, that lead to the vanishing of the Bianchi identity, but
cannot be linked directly to an orbifold shift. For this
model and all the others where we can compute the spec-
trum, they coincide with the ones that were identified in
[50].

C. Resolution of C3=Z4

The second example of a resolution with two excep-
tional divisors is obtained from the three dimensional
orbifold C3=Z4:
 

�: �~Z1; ~Z2; ~Z3� ! �e
2�i�1 ~Z1; e

2�i�2 ~Z2; e
2�i�3 ~Z3�;

� � 1
4�1; 1; 2�: (61)

The elements � and �3 are each other’s complex conju-
gates, hence there are two exceptional divisors E1 and E2.
The vectors

 w1 �
1
4v1 �

1
4v2 �

1
2v3; w2 �

1
2v1 �

1
2v2; (62)

take the form 1
4 �1; 1; 2� and 1

2 �1; 1; 0�, in the basis, v1 �

�1; 0; 0�, v2 � �0; 1; 0�, v3 � �0; 0; 1�, respectively. This
leads to the local coordinates

 Z1� z1x
1=4
1 x1=2

2 ; Z2� z2x
1=4
1 x1=2

2 ; Z3� z3x
1=2
1 ; (63)

which imply the linear equivalence relations

 4D1 � E1 � 2E2 	 0; 4D2 � E1 � 2E2 	 0;

2D3 � E1 	 0:
(64)

The �C��2 scalings
 

�z1; z2; z3; x1; x2�

	 ���1
1 z1; �

�1
1 z2; �

�1
3 z3; �

2
3x1; �

2
1�
�1
3 x2�; (65)

require that the exclusion set is given by

 F � fz1 � z2 � 0g [ fz3 � x2 � 0g; (66)

in order to avoid singularities in any of the coordinate
patches. The projected toric diagram was composed using
the basis, v1 � �0; 0; 1�, v2 � �1; 0; 1�, v��0; 1; 1�, in
which w1 � �

1
4 ;

1
2 ; 1� and w2 � �

1
2 ; 0; 1�.

The projected toric diagram 3 implies that the basic
cones

 D1E1E2 � D2E1E2 � D1D3E1 � D2D3E1 � 1; (67)

all have unit intersection number, and that the integrals

 D1D2E2 � D3E1E2 � 0 (68)

vanish. The total number of integrals of divisors on this
resolution is 35, but as discussed above it suffices to only
give the 4 integrals of the exceptional divisors

TABLE II. This table compares the C2=Z3 orbifold gauge shift
vector v with the blowup vectors V1 and V2, that topologically
characterize gauge background of the resolution Res�C2=Z3�.
The blowup vectors under the double line do not satisfy all
possible conditions simultaneously. The upper proposal gives a
nonvanishing Bianchi, while the vectors of the bottom one
cannot be identified with the orbifold shift.

Orbifold shift 3v Blowup vector V1 Blowup vector V2

�12; 014� �22; 014� ��22; 014�

�2; 1; 014� �1;�1; 014�

�2; 14; 011� �2; 14; 011� ��2; 14; 011�

�18; 08� �18; 08� ��18; 08�

�114; 02� 1
2 �1

14; 32� � 1
2 �1

14; 32�

�2; 110; 05� �2; 110; 05� ��2; 110; 05�
1
2 ��3; 110; 15� �1; 010;�15�
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 E2
1E2 � 0; E2

2E1 ��2; E3
1 � 8; E3

2 � 2; (69)

as all other integrals can be determined from them using
the linear equivalences (64).

The exceptional divisor E1 lies in the interior of the
projected toric diagram, and hence is compact. This can
be easily confirmed explicitly. The divisor E1 is embedded
as

 E1 � ���1
1 z1; ��1

1 z2; ��1
3 z3; 0; �2

1�
�1
3 x2�; (70)

inside the toric variety Res�C3=Z4�. By fixing the scaling
such that j�1j

2 � jz1j
2 � jz2j

2 and j�2j
2 � jz3j

2 � j�2
1x2j

2,
it is obvious that E1 is bounded and hence compact.
Moreover, notice the coordinates z1 and z2 have a scaling
factor ��1

1 and the coordinates z3 and x2 have a scaling
factor ��1

3 . Ignoring the factor �2
1, that also scales x2, E1

would be a direct product of two CP1’s. However, pre-
cisely this additional scaling of x2 with �2

1 means that E1 is
not simply a direct product of two CP1’s, but rather a CP1

bundle over CP1. Such a surface is called the Hirzebruch
surface F2 in the mathematical literature.

The exceptional divisor E2 is noncompact in three com-
plex dimension. It equals a direct product CP1 � C, which
signals that we should view the situation from a two
dimensional complex perspective instead. The edge of
the toric diagram, in Fig. 3, spanned byD1 and D2, is itself
precisely the toric diagram of the resolution Res�C2=Z2�,
as depicted on the left of Fig. 1. Therefore, the integrals
computed in subsection II B, for n � 2, can be directly
applied to the divisorsD1, E2, andD2. Hence, in particular,
we have D1E2 � D2E2 � 1.

Next, we want to find a basis of orthonormal (1, 1)-
forms, that can be used to expand the U(1) gauge back-
ground around. To determine this basis, we note that there
exist four compact curves: D1E1, D2E1, D3E1, and E1E2.
Using the linear equivalences (64) we infer that if we have
constructed an orthonormal basis of (1, 1)-forms on the
curves D1E1 and E1E2, they are integer on all these com-
pact curves. Such a basis of (1, 1)-forms is spanned by D1

and D3, see the same Table III. This means that we can
expand the gauge background as

 

F V

2�
� �

1

2
E1H1 �

1

4
�E1 � 2E2�H2; (71)

where H1 � VI1HI and H2 � VI2HI, respectively. We have
used the linear equivalences (64) to express D1 and D3 in
terms of the exceptional divisors only.

In order that this gauge background (71) defines a con-
sistent compactification, we have to require that the
Bianchi identity vanishes when integrated over the com-
pact divisor E1. To determine the resulting condition we
evaluate the second Chern class

 c2�R� � D2
1 � 2D1D3 � 2D2

3 � 2D1E2 �D3E2; (72)

which leads to the necessary consistency condition

 V2
1 � V1 
 V2 � 4: (73)

This condition ensures that the gauge background, defined
by V1 and V2, is consistent.

In addition to this necessary condition, we may also
require that the integrated Bianchi vanishes on E2, and
on the subvariety Res�C2=Z2�. As noted above, the edge
of the toric diagram, Fig. 3, spanned by D1 and D2, defines
the toric diagram of Res�C2=Z2�. This tell us that we
should do the computation on two complex dimensional
toric variety, with the divisors D1, D2, and the exceptional
one E2. All properties of this subvariety are inherent from
Res�C3=Z4� by setting E1 � 0, i.e. simply ignoring the
homogeneous coordinate x1 and its associated scaling �3.
Indeed, the scaling (65) reduces to

 �z1; z2; z3; x2� 	 ��
�1
1 z1; �

�1
1 z2; z3; �

2
1x2�; (74)

which defines the space Res�C2=Z2� � C. It is also not
difficult to check that the total Chern class of Res�C3=Z4�
with vanishing E1 reduces to that of Res�C2=Z2�.
Similarly, taking E1 � 0 in (71) gives us the gauge back-
ground on this subresolution. This gives rise to the addi-
tional conditions

 V1 
 V2 � �2 and V2
2 � 6; (75)

respectively.
Finally, we can make a partial matching with the orbi-

fold gauge shift. From the six dimensional perspective we

D3

E 2D1 D2

E 1

FIG. 3. This figure gives the projected toric diagram of
Res�C3=Z4�. Only the exceptional divisor E1 is compact, all
other divisors are noncompact.

TABLE III. The first part of the table gives all possible inter-
section numbers of the compact curves with all divisors of the
resolution Res�C3=Z4�. As the curve D3E2 is excluded, the final
row of this table can only be interpreted as giving (fractional)
values of the integrals of the corresponding forms.

D1 D2 D3 E1 E2

D1E1 0 0 1 �2 1
D2E1 0 0 1 �2 1
D3E1 1 1 2 �4 0
E1E2 1 1 0 0 �2
D3E2 � 1

2 � 1
2 0 0 1
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can use the identification of the orbifold and blowup shifts
on the subresolution of C2=Z2. Integrating the bundle
background over D1 within Res�C2=Z2� gives

 2vIHI �
Z
D1

F V

2�
� �

1

2
VI2HI: (76)

We can identify this integral with the Z2 gauge orbifold
shift 2v. The identification from the four dimensional
perspective is more complicated, and will not be discussed
here.

We can give a complete classification of all consistent
models on the resolution of C3=Z4, using all the conditions
described above. Table IV gives the gauge shift vectors of
the possible heterotic orbifold models, and the vectors V1

and V2, that define the U(1) bundle background on the
resolution. Only for the orbifold model numbered 4 in
Table IV we have not found a blowup model. This orbifold

model has no matter in the first twisted sector. Since the
blowup modes are precisely the twisted states of the string,
we expect that no complete resolution of this orbifold
model exists.

For each of the other models, we compute the spectrum
using (49), and compare it with the spectrum of the corre-
sponding orbifold model. The multiplicity operator takes
the form

 NV �
1

6

�
3

2

�
1

2
�H2

1

�
H2 � �1�H

2
1�H1

�
; (77)

where we employed the short-hand notation Hi � VIi HI.
The resulting spectra in the SO(32) theory are given in
Table V. The multiplicity factors of 1=8 and 1=4 can be
easily understood from the heterotic orbifold point of view:
In paper [51] the local anomalies at four and six dimen-
sional fixed points of T6=Z4 were computed, using general
trace formulae on orbifolds [52]: The ten dimensional
states contribute 1=8 of an anomaly at a Z4 fixed point,
the six dimensional second-twisted sector contributes 1=4,
and the four dimension single-twisted sector gives integral
contributions. The matter representations can also be
traced back to the orbifold model. The six and four dimen-
sional spectra of the heterotic string on C3=Z4 can be found
in [53,54]. The spectra in Table Vare obtained from simple
branching with respect to the unbroken gauge group, up to
possible mismatches due to vectorlike states. Mostly only a
single scalar is not part of the charged chiral spectrum on
the resolution (as explained in [35] this state has become a
model dependent axion part of the expansion of B2). Some
models have SU(N) gauge groups and therefore non-
Abelian gauge anomalies could arise. However, from
Table V it can be confirmed that all pure SU(N), N � 3,
anomalies cancel. The models contain a bunch of U(1)’s
that are all potentially anomalous, we expect that their
anomalies are canceled via the Green-Schwarz mechanism
involving universal and nonuniversal axions [34,35,55,56].

IV. ORBIFOLDS WITH MULTIPLE RESOLUTIONS

A. Generalities of multiple triangulations

In the general discussion and in the examples so far we
have avoided one further complication of generic resolu-
tions of orbifold singularities in three (or more) complex
dimensions: The resolution of a given C3=G orbifold might
be nonunique. This difficulty arises precisely when more
than one triangulation of the toric diagram is possible. For
clarity we first indicate which properties of orbifold reso-
lutions described and illustrated in Sec. III still hold, and
after that focus on novelties, that arise from the possibility
of having multiple triangulations.

Essentially all the properties of a resolution, discussed in
subsection III A, that do not depend on the triangulation of
the toric diagram, can be extended to orbifolds which have
nonunique resolutions. In particular, the definition of the
(exceptional) divisors (39), the construction of a set of

TABLE IV. This table compares the C3=Z4 orbifold gauge
shift vector v, with the blowup vectors V1 and V2, that character-
ize the line bundle gauge background on the resolution. We
provide a complete classification of U(1) fluxes compatible with
the resolution of a C3=Z4 singularity, i.e. fulfilling the orbifold
matching (76) and the Bianchi identities (73) and (75).

Orbifold shift 4v Blowup vector V2 Blowup vector V1 Nr.

�013; 12; 2� �013; 12; 2� �013; 12;�2� 1a
�013; 12; 2� �012; 2;�12; 0� 1b
�013; 12; 2� �011; 2; 1; 02;�1� 1c

�011; 12; 23� �013; 12; 2� �010; 14;�12� 2a
�013; 12; 2� �011; 12;�2; 02� 2b

�09; 12; 25� �013; 12; 2� �08; 15; 02;�1� 3a
�013; 12; 2� �09; 14;�12; 0� 3b

�07; 12; 27� — — 4
�010; 16� �010; 16� �010; 12;�14� 5a

�010; 16� �013; 1;�1;�2� 5b
�010; 15; 3� �010; 16� �09; 2;�12; 04� 6
�08; 16; 22� �010; 16� �08; 13;�13; 02� 7a

�010; 16� �08; 12;�2; 05� 7b
�06; 16; 24� �010; 16� �06; 14;�12; 04� 8
�05; 110; 2� �010; 16� 1

2 ��3; 110;�15� 9
�03; 110; 23� �010; 16� 1

2 �1
12;�13;�3� 10

�114; 22� �013;�2; 12� 1
2 �1

15;�3� 11
�113;�1; 22� �013; 12; 2� 1

2 �1
15;�3� 12a

�013; 12; 2� � 1
2 ��3; 115� 12b

1
2 �1

3; 312;�3� 1
2 ��3; 115� ��013; 12; 2� 13a
1
2 �1

15;�3� �013; 12; 2� 13b
1
2 �1

15;�3� 1
2 �1

3;�111; 3; 1� 13c
1
2 �1

7; 38;�3� 1
2 �1

15;�3� ��15; 1; 010� 14a
1
2 �1

15;�3� 1
2 �1

6;�18;�3; 1� 14b
1
2 �1

15;�3� 1
2 �1

8;�17; 3� 14c
1
2 �1

11; 34;�3� 1
2 �1

15;�3� �010; 13;�13� 15
1
2 �1

15;�3� 1
2 �1

15;�3� �013;�2; 12� 16a
1
2 �1

15;�3� 1
2 ��114; 3;�1� 16b
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local coordinates (40), the linear equivalences (41), and the
�C��N scaling, are uniquely defined for any triangulation.
As we have seen resolutions of three dimensional orbifolds
may contain two dimensional resolutions as subvarieties.

These subvarieties are identified as the faces of the toric
diagram. Even though the resolution of three dimensional
orbifolds may not be unique, the toric diagrams corre-
sponding to the faces is uniquely defined by the divisors

TABLE V. This table gives the chiral part of the spectrum of the resolution models of the C3=Z4 orbifold. The models, defined by the
blowup vectors V1 and V2, are numbered according to the convention defined in Table IV.

Nr. 4D gauge group 1
8� “untwisted” 1

4� “2nd twisted” ‘‘1st twisted’’

1a SO�26� � U�2� � U�1� �26; 2� � 2�1; 2� �26; 1� � 2�1; 2� � �1; 1� �26; 1� � 2�1; 2� � 3�1; 1�
1b SO�24� � U�2� � U�1�2 �24; 2� � 4�1; 2� �24; 1� � 2�1; 2� � 3�1; 1� �24; 1� � 2�1; 2� � 5�1; 1�
1c SO�22� � U�2� � U�1�3 �22; 2� � 6�1; 2� �22; 1� � 2�1; 2� � 5�1; 1� �22; 1� � 2�1; 2� � 5�1; 1�
2a SO�20� � U�3� � U�1�3 2�20; 1� � 2�1; 3�

�2�1; �3� � 4�1; 1�
�20; 1� � �1; 3�
��1; �3� � 3�1; 1�

2�1; 3� � 2�1; �3� � 2�1; 1�

2b SO�22� � U�2� � U�1�3 2�22; 1� � 4�1; 2� � 4�1; 1� �22; 1� � 2�1; 2� � 3�1; 1� 2�1; 2� � 7�1; 1�
3a SO�16� � U�2� � U�5� � U�1� �16; 2; 1� � �1; 2; 5�

��1; 2; �5� � 2�1; 2; 1�
�16; 1; 1� � �1; 1; 5�
��1; 1; �5� � �1; 1; 1�

�1; 1; 10� � �1; 1; �5�

3b SO�18� � U�2� � U�4� � U�1� �18; 2; 1� � �1; 2; 4�
��1; 2; �4� � 2�1; 2; 1�

�18; 1; 1� � �1; 1; 4� � �1; 1; �4�
��1; 2; 1� � �1; 1; 1�

�1; 1; 1� � �1; 6; 1�

5a SO�20� � U�4� � U�2� �20; 4; 1� � �20; 1; 2� �1; �4; 2� � �1; 6; 1� � �1; 1; 1� �1; �4; 2� � �1; 6; 1� � 3�1; 1; 1�
5b SO�20� � U�3� � U�1�3 3�20; 1� � �20; 3� 3�1; �3� � �1; 3� � 3�1; 1; 1� 2�1; �3� � 5�1; 1�
6 SO�18� � U�4� � U�2� � U�1� �18; 4; 1� � �18; 1; 2�

�2�1; 4; 1� � 2�1; 1; 2�
�1; �4; 2� � �1; 6; 1� � �1; 1; 1� 2�1; �4; 1� � �18; 1; 1�

�2�1; 1; 2� � �1; 1; 1�
7a SO�16� � U�3� � U�2�2 � U�1� �16; 1; 1; 1� � �16; 1; 1; 2�

��16; �3; 1; 1� � 2�1; 3; 2; 1�
�2�1; 1; 2; 2� � 2�1; 1; 2; 1�

�1; 3; 1; 1� � �1; �3; 1; 1�
��1; 1; 1; 2� � �1; �3; 1; 2��1; 1; 1; 1�

2�1; 3; 1; 1� � �1; 1; 1; 1�

7b SO�16� � U�2� � U�5� � U�1� �16; 1; 5� � �16; 1; 1�
�2�1; 2; �5� � 2�1; 2; 1�

�1; 1; 10� � �1; 1; 5� 2�1; 1; �5� � �1; 1; 1�

8 SO�12� � U�4� � U�2� � U�4� �12; 1; 2; 1� � �12; 4; 1; 1�
��1; �4; 1; 4� � �1; �4; 1; �4�
��1; 1; 2; 4� � �1; 1; 2; �4�

�1; 6; 1; 1� � �1; �4; 2; 1�
��1; 1; 1; 1�

�1; 1; 1; 6� � �1; 1; 1; 1�

9 U�5� � U�9� � U�1�2 �5; 9� � ��5; 9�
��5; 1� � ��5; 1�
�2�1; �9� � 2�1; 1�

�10; 1� � ��5; 1� �1; �9� � 2�1; 1�

10 U�3� � U�10� � U�2� � U�1� �3; 10; 1� � ��3; 10; 1�
�2�1; 10; 2� � 2�1; 10; 1�

2��3; 1; 1� � ��3; 1; 2� � �1; 1; 2�
��1; 1; 1�

�3; 1; 1� � �1; 1; 2�

11 U�13� � U�1�3 4�13� � 4�1� 2�13� � 5�1� 2�1�
12a U�13� � U�2� �U�1� 2�13; 2� � 2�1; 2� 2�13; 1� � 2�1; 2� � �1; 1� �13; 1�
12b U�12� � U�2� � U�1�2 2�12; 2� � 4�1; 2� 2�12; 1� � 2�1; 2� � 3�1; 1� �12; 1� � 3�1; 1�
13a U�12� � U�2� � U�1�2 �66; 1� � �12; 1�

��12; 1� � �12; 2�
�2�1; 2� � 2�1; 1�

�12; 1� � �1; 2� � �1; 1� �12; 1� � 2�1; 2� � 3�1; 1�

13b U�13� � U�2� �U�1� �78; 1� � �13; 2� � �13; 1�
��1; 2� � �1; 1�

�13; 1� � �1; 2� �13; 1� � 2�1; 2� � 2�1; 1�

13c U�11� � U�3� � U�1�2 �55; 1� � �11; 3� � 2�11; 1�
�3�1; 3� � �1; 1�

�11; 1� � �1; 3� � �1; 1� �11; 1� � 2�1; �3�

14a U�5� � U�9� � U�1�2 �10; 1� � 2�5; 1� � ��5; �9�
�2�1; �9� � �1; 36� � �1; 1�

��5; 1� � �1; 9� � �1; 1� �5; 1�

14b U�6� � U�8� � U�1�2 �15; 1� � ��6; 1� � �6; 1�
��6; �8� � �1; 8� � �1; �8�
��1; 28� � �1; 1�

�6; 1� � �1; 8� � �1; 1� ��6; 1� � �1; 1�

14c U�8� � U�7� � U�1� �28; 1� � ��8; 1� � �8; �7�
��1; 21� � �1; �7�

��8; 1� � �1; �7� �1; 7�

15 U�10� � U�3� � U�2� � U�1� �45; 1; 1� � �10; 1; 1�
��10; �3; 1� � �10; 1; 2�
�2�1; �3; 1� � �1; 3; 2�
��1; 1; 2� � �1; 1; 1�

�10; 1; 1� � �1; 3; 1� � �1; 1; 2� �1; �3; 1� � �1; 3; 2� � 2�1; 1; 1�

16a U�13� � U�1�3 �78� � 2�13� � �13� � 3�1� �13� � 2�1� �13� � 4�1�
16b U�14� � U�1�2 �91� � �14� � �14� � �1� �14� � �1� �14� � 3�1�
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on them. Hence these subvarieties are the same for each
resolution.

The exclusion set F does depend on the triangulation
[42]: As before, the exclusion is defined such that the
resolution is by definition nonsingular. In addition, the
curves that are not realized as lines within the triangulation
are part of the exclusion set. The latter makes the exclusion
set dependent on the triangulation of the toric diagram.

The integrals of the divisors over the resolution also
crucially depend on the triangulation: As described in
subsection III A the triangulation identifies that the com-
pact curves have unit intersection number with some divi-
sors of the resolution. Hence, if the triangulation is not
unique, one can assign a different intersection of the com-
pact curves with the divisors. The problem is that there are
more basic cones possible in the toric diagram given the
divisors only than can be realized in a given triangulation.
This issue is illustrated by the toric diagrams of the reso-
lution of C3=Z2 � Z02: Of the ten possible basis cones, only
four are realized within a triangulation, as we discuss in
detail in subsection IV B. To define the integrals of the
divisors, interpreted as (1, 1)-forms, over the resolution, we
employ the following rules for any given triangulation:

(i) The basic cones, that do exist within the triangula-
tion, are formed by divisors with unity intersection
number.

(ii) All other non-self-intersections of divisors with
strictly compact curves, i.e. curves that either con-
tain a compact divisor or two exceptional divisors,
vanish.

(iii) All other integrals of three divisors are obtained
from these defining ones, using linear equivalence
relations.

These rules give consistent assignments that do not clash
with the linear equivalence relations. Even though these
rules might in general be insufficient to determine all
integrals of the exceptional divisors, they are sufficient
for the resolutions considered in this paper. As in the
previous sections, it may happen that the integral over
some divisors is nonvanishing due to the linear equivalence
relations, even though, as hypersurface the intersection of
these divisors is excluded. As we will show in the examples
of resolutions of C3=Z2 � Z02 below, using the definition of
the integral of divisors given here, we are able to obtain
blowup versions of all heterotic models on this orbifold. In
addition, we obtain their spectra, which are all free of non-
Abelian anomalies.

B. Resolutions of C3=Z2 � Z02

We consider C3=Z2 � Z02 as an example of an orbifold
that admits more than one resolution. To clearly separate
which statements are triangulation dependent, and which
are not, we first describe those properties that are valid for

each resolution. After that we compute the integrals of the
divisors on the two inequivalent resolutions separately.
Finally we study the relation between heterotic models
on this orbifold and its possible resolutions.

1. Triangulation independent properties of the resolu-
tions

The orbifold C3=Z2 � Z02 is defined by the three Z2

orbifold actions:
 

�: � ~Z1; ~Z2; ~Z3�! �~Z1;�~Z2;� ~Z3�; �� 1
2�0;1;1�;

�0: � ~Z1; ~Z2; ~Z3�! �� ~Z1; ~Z2;� ~Z3�; �0 � 1
2�1;0;1�;

��0: � ~Z1; ~Z2; ~Z3�! �� ~Z1;� ~Z2; ~Z3�; ���0 � 1
2�1;1;0�;

(78)

where the latter can be viewed as the combination of the
first two. This orbifold has three twisted sectors, and hence
three exceptional divisors E1, E2, and E3, defined by the
vectors

 w1 �
1
2v2 �

1
2v3; w2 �

1
2v1 �

1
2v3;

w3 �
1
2v1 �

1
2v2:

(79)

In the standard basis for vi, they lead to the local coordi-
nates

 Z1 � z1x
1=2
1 x1=2

3 ; Z2 � z2x
1=2
1 x1=2

3 ;

Z3 � z3x
1=2
1 x1=2

2 ;
(80)

on the resolutions. This determines the linear equivalences
 

2D1 � E2 � E3 	 2D2 � E1 � E3

	 2D3 � E1 � E2 	 0: (81)

Using these linear equivalences we can represent the sec-
ond Chern class as
 

c2�R� � �
3
4�E

2
1 � E

2
2 � E

2
3�

� 1
4�E1E2 � E2E3 � E3E1�: (82)

The �C��3 action on the homogeneous coordinates can
be parametrized as
 

�z1;z2;z3;x1;x2x3�

	���1
2 ��1

3 z1;�
�1
1 ��1

3 z2;�
�1
1 ��1

2 z3;�
2
1x1;�

2
2x2;�

2
3x3�: (83)

The integrals

 D1D2E3 � D2D3E1 � D3D1E2 � 0 (84)

all vanish: they are aligned in the projected toric diagram,
see Fig. 4. But precisely these edges of the projected toric
diagrams define resolutions of C2=Z2 orbifolds, discussed
in Sec. II. Hence each of these edges correspond to a six
dimensional model. There are two inequivalent triangula-
tions, which are displayed in Fig. 4, which we now in turn
describe.
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2. The resolution with the ‘‘symmetric’’ triangulation

We investigate the topological properties of the sym-
metric triangulation, defined on the left side of Fig. 4. First
of all, the exclusion set is defined as

 

F � fz1 � z2 � 0g [ fz2 � z3 � 0g

[ fz1 � z3 � 0g [ fz1 � x1 � 0g

[ fz2 � x2 � 0g [ fz3 � x3 � 0g: (85)

This ensures that there are no singularities and that the
dashed lines in the left projected toric diagram in Fig. 4
correspond to nonexisting curves. We read off that the
basic cones are given by

 D1E2E3 � D2E3E1 � D3E1E2 � E1E2E3 � 1; (86)

while the other possible basic cones that are nonexistent in
this triangulation vanish:

 D1E1E2 � D1E1E3 � D2E1E2 � 0;

D2E2E3 � D3E1E3 � D3E2E3 � 0:
(87)

As we observed in Sec. III A all 56 possible integrals can
be conveniently summarized by giving the 10 involving the
exceptional divisors only. Because of the high amount of
symmetry within the toric diagram, we can summarize all
integrals over the exceptional divisors as

 E3
p � �E2

pEq�p � E1E2E3 � 1: (88)

From these integrals we easily compute the integrals over
all compact curves of all divisors. The result is tabulated in
Table VI.

The curves that are not part of the triangulation do not
exist in the resolution as hypersurfaces. Nevertheless, we
see in Table VI below the double line, that even though
curves like D1E1 do not exist, the integral D1E1X, of the
dual (2, 2)-form over X (X being D2 or D3 or E1) does not
vanish.

3. The resolution with the ‘‘E1’’ triangulation

Next we discuss the ‘‘E1’’ triangulation. There are in
fact two other possible triangulations, ‘‘E2’’ and ‘‘E3’’, but
they are simply obtained from this one by interchanging
the labels 1, 2, and 3, hence they do not constitute truly
different resolutions. The exclusion set reads in this case
 

F � fz1 � z2 � 0g [ fz2 � z3 � 0g

[ fz1 � z3 � 0g [ fx1 � x2 � 0g

[ fz2 � x2 � 0g [ fz3 � x3 � 0g: (89)

All the basic cones of the‘‘E1’’ triangulation contain the
exceptional divisor E1:

 D1E1E2 � D1E1E3 � D2E1E3 � D3E1E2 � 1: (90)

In addition, we have the nonexisting basic cones

 D1E2E3 � E1E2E3 � D2E1E2 � 0;

D2E2E3 � D3E1E3 � D3E2E3 � 0:
(91)

From this input data we obtain the following integrals of
the exceptional divisors:

 E2
1E2 � E2

1E3 � E2
2E3 � E2

3E2 � 0;

E1E2E3 � E3
1 � 0; E2

2E1 � E2
3E1 � �2;

E3
2 � E3

3 � 2:

(92)

The integrals over the compact curves of the divisors can
again be computed straightforwardly, using the linear
equivalences. The resulting integrals are listed in
Table VII. Also from this table we see that setting all
integrals that involve (2, 2)-forms dual to curves, that are
not part of the triangulation of the toric diagram, to zero,
leads to inconsistencies. In this case only the curve E2E3

has only vanishing integrals, and hence is not in conflict
with the linear equivalence relations. Note that also the
divisor E1 does not intersect with any of the curves listed in
Table VII.

TABLE VI. The upper part of the table gives the intersection
numbers of the compact curves with all divisors of the sym-
metric resolution of C3=Z2 � Z02. The lower part gives the values
of the integrals of the divisors corresponding to curves that are
not realized in the symmetric resolution.

D1 D2 D3 E1 E2 E3

E1E2 0 0 1 �1 �1 1
E1E3 0 1 0 �1 1 �1
E2E3 1 0 0 1 �1 �1
D1E1 0 � 1

2 � 1
2 1 0 0

D2E2 � 1
2 0 � 1

2 0 1 0
D3E3 � 1

2 � 1
2 0 0 0 1

D1

D3

D2E 3

E 1E 2

D1

D3

D2E 3

E 1E 2

FIG. 4. The two inequivalent (projected) toric diagrams of
Res�C3=Z2 � Z02� are displayed. The left one we call the sym-
metric resolution, while the right one the ‘‘E1’’ resolution.
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3. Heterotic models from resolutions of C3=Z2 � Z02

As described at the beginning of subsection IV B many
topological properties are the same for all resolutions of
C3=Z2 � Z02. In particular, the six dimensional analysis
corresponding to the edges of the projected toric diagrams,
Fig. 4, are independent on the resolution chosen.
Therefore, we begin with the resolution independent prop-
erties in our construction of heterotic models on these
resolutions.

The gauge background on the resolution can in general
be expanded as

 

F V

2�
� �

1

2
�H1E1 �H2E2 �H3E3�; (93)

where H1 � VI1HI, etc. To obtain the gauge configurations
on the three edges of the projected toric diagram, we only
take the exceptional divisor into account which lives on
that particular edge. Using the analysis of Res�C2=Z2�,
presented in Sec. II B, we infer that Vi have either only
integer or half-integer entries. In addition, we make the
identification between the orbifold gauge shift vectors v1,
v2 and v3 � v1 � v2. For example, on the edge spanned
by D2 and D3, we have

 

Z
E1

F V

2�
� VI1Hi; vI1HI �

Z
D2

F V

2�
��

1

2
VI1Hi: (94)

The orbifold gauge shift vectors satisfy the modular in-
variance conditions

 �2v1�
2 � 2 mod 4; �2v2�

2 � 2 mod 4;

�2v3�
2 � 2 mod 4:

(95)

Similarly, we know from the discussion in Sec. II B that the
integrated Bianchi identities on the three edges do not
necessarily have to vanish, but if they do, we find the
conditions

 V2
1 � V2

2 � V2
3 � 6: (96)

1. Heterotic model building on the symmetric resolution

We turn to the specific properties of the heterotic model
construction on the symmetric resolution. First of all we
check the quantization conditions

 

Z
E1E2

F V

2�
� �

1

2
��VI1 � V

I
2 � V

I
3�HI; (97)

and cyclic permutation of the labels 1, 2, and 3. The factor
1=2 might seem worrying, but it is in fact harmless because
we know that in order to have an orbifold interpretation, we
need that 1

2V3 �
1
2 �V1 � V2�modulo a vector in the adjoint

or in the spinorial representation of SO(32), and in both
cases the Dirac quantization condition (97) is satisfied. The
integrated Bianchi identities on the divisors E1, E2, and E3

give rise to the requirements:
 

V2
1 � 2V2 
 V3 � V2

2 � 2V1 
 V3

� V2
3 � 2V1 
 V2 � 8: (98)

When combining this with the six dimensional Bianchi
requirements, we conclude that

 V1 
 V2 � V2 
 V3 � V1 
 V3 � 1: (99)

The solution of these conditions and the corresponding
orbifold models are listed in Table VIII. It is remarkable
that the orbifold shift vectors 2vi and the vectors Vi char-
acterizing the gauge bundle are almost identical. Indeed, a
sign flip in some entries of an orbifold shift is irrelevant, as
well as the addition of vectors in the lattice of the adjoint or
the spinorial representations of SO(32). The four dimen-
sional chiral spectrum on this resolution of the C3=Z2 �
Z02 can be computed from the multiplicity operator
 

NV �
1
6�H1 �H2 �H3��

1
2�H1H2 �H2H3 �H3H1�

� 1
8�H

2
1 �H

2
2 �H

2
3� �

1
4
 �

3
8H1H2H3: (100)

The resulting spectra are rather elaborate because of mul-
tiple branchings, and not very illuminating; we refrain
from giving them explicitly in the paper. However, by
direct inspection of these spectra we confirmed that all
the models listed in Table VIII are free of irreducible
anomalies.

2. Heterotic model building on the ‘‘E1’’ resolution

For the other resolution, the quantization requires that,
easily:
 Z
E1E2

F V

2�
� VI2HI;

Z
D1E1

F V

2�
� �

1

2
�H2 �H3�;

Z
E1E3

F V

2�
� VI3HI: (101)

The quantization condition can only be satisfied if 1
2 �V2 �

V3� is a vector containing either only even or only odd
numbers. Moreover, in order to have an identification with

TABLE VII. The upper part of the table gives the intersection
numbers of the compact curves with all divisor of the ‘‘E1’’
resolution of C3=Z2 � Z02. The lower part gives the values of the
integrals of the divisors corresponding to curves that are not
realized in the ‘‘E1’’ resolution.

D1 D2 D3 E1 E2 E3

E1E2 1 0 1 0 �2 0
E1E3 1 1 0 0 0 �2
D1E1 �1 � 1

2 � 1
2 0 1 1

E2E3 0 0 0 0 0 0
D2E2 � 1

2 0 � 1
2 0 1 0

D3E3 � 1
2 � 1

2 0 0 0 1
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the orbifold models, we need 1
2V1 �

1
2 �V2 � V3� up to

lattice vectors of the adjoint or spinorial representation of
SO(32). This implies that V1 contains either only odd or
only even numbers. When all entries are odd V2

1 � 16,
while in the even case V2

1 is a multiple of four. In either
case the Bianchi identity V2

1 � 6 cannot be satisfied. Thus,
no model can be built in such a resolution of the C3=Z2 �
Z02 orbifold singularity that fulfils all the consistency con-
ditions listed above.

V. CONCLUSIONS

We have investigated resolutions of heterotic orbifolds
using toric geometry. Our initial motivation was to under-
stand the topology behind the recently constructed heter-
otic models on explicit blowup of Cn=Zn singularities. We
showed how the values of the integrals relevant to deter-
mine the consistent models and their spectra can be ob-
tained as integrals of divisors on the corresponding toric
variety. Unfortunately, only for the special Cn=Zn singu-
larities explicit blowups are known; for more complicated
and phenomenologically more relevant orbifolds explicit
constructions remain a difficult task.

Luckily, toric geometry does not require that one has
explicitly constructed the metric of the noncompact
Calabi-Yau blowup of orbifold singularity: The geometri-
cal orbifold action essentially uniquely determines the
toric variety that describes the resolution of the orbifold
singularity. The only caveat is that the resolution might not
be topologically unique. The main advantage of having the
resolution of the orbifold compared to the orbifold itself is
that one is able to determine the structure inside the singu-
larity. This is encoded by the exceptional divisors, which
were needed to desingularize the toric variety. From the
very definition of these exceptional divisors it is clear that
they are in one-to-one correspondence to the twisted sec-
tors of orbifold string theories. Motivated by this, we gave
a self-contained introduction to toric geometry for nonex-
perts, emphasizing the methods relevant to obtain heterotic

models on toric orbifold resolutions. As it is rather cum-
bersome to describe these procedures in general, we have
illustrated the toric geometrical tools by constructing het-
erotic models on the resolutions of C2=Z3, C3=Z4, and
C3=Z2 � Z02 orbifolds. During our investigations the fol-
lowing issues came up:

We used the homogeneous coordinate approach to the
construction of toric varieties and the corresponding ex-
clusion set [42]. We found, however, that integrals of
divisors that as hypersurfaces are excluded, can neverthe-
less give rise to nonvanishing values. Already for the
simple resolution of Cn=Zn the intersection of all ordinary
divisors is part of the exclusion set. However, both using
linear equivalences and integrating the corresponding
background field strength on the explicit blowup, we
showed that such integrals are nonzero, but rather frac-
tional. Even though intersection theory of noncompact
divisors might be ill-defined,1 the integrals of the first
Chern classes of the line bundles associated to the divisors
do give unambiguous results in the cases considered. The
reason is that the integrands are uniquely defined up to
exact terms, which means that the integrals over the non-
compact resolution are defined up to boundary terms. For
applications to blowups of compact orbifolds, one needs to
glue various noncompact resolutions together. The bound-
ary contributions are then canceled among themselves
automatically, and the result is uniquely defined. Hence,
an alternative way to deal with this complication is to
consider the intersection theory of resolutions of compact
orbifolds [45,46].)

After these mathematical issues we turned to the appli-
cations in heterotic model building. We aimed to find a
matching between models constructed using conformal
field theory on orbifolds and blowup models defined on
their resolutions described by toric geometry. It is non-

TABLE VIII. This table compares the C3=Z2 � Z02 orbifold gauge shift vectors v2 and v3, with the blowup vectors V1, V2, and V3,
that characterize gauge background of the symmetric resolution of this orbifold. The blowup vectors satisfy all the flux quantization
conditions (97) and all the Bianchi identities (96) and (98). The identification of the orbifold and blowup shifts is performed up to
lattice vectors.

Orbifold shift 2v1 Orbifold shift 2v2 Blowup vector V1 Blowup vector V2 Blowup vector V3

�12; 014� �0; 12; 013� �12; 0; 2; 012� �0; 12; 0; 2; 011� �1; 0; 1; 0; 0; 2; 010�

�12; 2; 013� �0;�1; 1; 2; 012� ��1; 0; 1; 0; 2; 011�

�12; 014� �0; 16; 09� �12; 013; 2� �0; 16; 09� �1; 0; 13;�12; 09�

�12; 2; 013� �0;�1; 15; 09� ��1; 0; 13;�12; 09�

�16; 010� �03; 16; 07� �16; 010� �03;�1; 15; 07� �12;�1; 03; 12;�1; 07�

�16; 010� �05; 16; 05� �16; 010� �05; 16; 05� �05; 1; 05; 15�

�12; 014� 1
2 �1

15;�3� ��1; 1; 2; 013� 1
2 �1

15;�3� 1
2 ��12; 112;�3; 1�

�16; 010� 1
2 ��3; 115� �16; 010� 1

2 ��3; 115� 1
2 ��3; 15;�110�

�14;�12; 010� 1
2 �1

15;�3� 1
2 �1

6;�18; 3;�1�

1As D. Cox pointed out to us, the intersection of noncompact
divisors is problematic because the corresponding Chow group is
trivial.
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trivial that such a matching exists because the supergravity
description breaks down when orbifold singularities appear
in blow down. However, since the comparison was made
on the level of the chiral spectrum, which only relies on
topological information and gauge group branchings, we
have confidence that this approach can be trusted.

There are many consistency conditions which can be
enforced on heterotic models on a resolution of an orbifold.
There are the minimal requirements to construct a sensible
model on the resolution of the orbifold: The U(1) gauge
bundles have to be integral on all compact curves, both in
three dimensional complex resolutions and all compact
curves of the two dimensional subresolutions. In addition,
the integrals of the Bianchi identity over all compact ex-
ceptional divisors (compact four dimensional real cycles)
of the resolution have to vanish as well. To be able to
compute the spectrum of the model on the resolution,
one needs to ensure that the Bianchi identity integrated
over all noncompact 4-cycles, and all subresolutions, i.e.
the Bianchi identity in six dimensions, vanish.
Surprisingly, satisfying all these conditions on the resolu-
tion of the orbifold seems to guarantee that in the blow
down limit the model can be directly interpreted as a
heterotic orbifold. A direct identification of the orbifold
gauge shift vector with the U(1) gauge background can be
obtained by computing integrals over noncompact curves.
By Stoke’s theorem we can turn it into a contour integral at
infinity, which can be identified with the same integral of
the orbifold model.

For each of the resolution models we have computed the
spectra. To this end we used the conventional index theo-
rem dropping possible boundary contributions. This can be
justified by imagining resolutions of compact orbifolds: the
boundary contributions from the local resolutions of the
various fixed points precisely cancel in the gluing proce-
dure. In any event we have confirmed that we are able to
reproduce the complete spectra of the heterotic orbifold
models up to vectorlike matter. All in all we have obtained
a detailed dictionary of how to translate between orbifold
and blowup model properties.

As explained above, not all requirements are necessary,
hence one may wonder what happens if some of them are
not fulfilled. In particular, we could have nonvanishing
Bianchi identities, when integrated on noncompact 4-

cycles. This is very natural when one thinks of obtaining
blowup models of compact orbifolds: Then one only has
compact 4-cycles; on each of them the integrated Bianchi
needs to vanish. From a local perspective this means that
there is H-flux exchanged between the resolutions of the
various fixed points. Using the results of [45] one should be
able to analyze such situations globally. However, one
knows from orbifold field and string theory that the spectra
can be determined locally at each of the fixed points (even
in the presence of Wilson lines). However, the standard
index theorem used in the work to compute the chiral
spectrum fails because it does not take local H-fluxes
into account. Using a modified index theorem that is valid
in the presence of such fluxes, one may hope to be able to
compute the local spectra at any of the resolution models
that only satisfy the necessary vanishing Bianchi
conditions.

Another natural extension of our work is to determine
the blowup models of the T6=Z6�II orbifold. As was
emphasized in [23,24] such orbifolds with Wilson lines
seem to be able to give a relatively large class of MSSM-
like models. It would therefore be very interesting to study
these models in blowup. The T6=Z6�II orbifold contains
various orbifold singularities that are of the types C2=Z2,
C2=Z3, and C3=Z6�II. The construction of resolution mod-
els for the first two singularities have been discussed in this
paper; for the first one we have constructed an explicit
blowup in [32]. The final singularity type can be inves-
tigated using the methods explained here. In fact, there are
five topologically inequivalent resolutions and any resolu-
tion involves four exceptional divisors. Therefore, each
inequivalent resolution is characterized by 20 integrals
number of the exceptional divisors. As the full analysis
will therefore be rather involved, we postpone it to a future
publication.
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