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We discuss the effects that a noncommutative geometry induced by a Drinfeld twist has on physical
theories. We systematically deform all products and symmetries of the theory. We discuss noncommu-
tative classical mechanics, in particular its deformed Poisson bracket and hence time evolution and
symmetries. The twisting is then extended to classical fields, and then to the main interest of this work:
quantum fields. This leads to a geometric formulation of quantization on noncommutative space-time, i.e.,
we establish a noncommutative correspondence principle from ?-Poisson brackets to ? commutators. In
particular commutation relations among creation and annihilation operators are deduced.
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I. INTRODUCTION

One of the most interesting and promising fields of
research in theoretical physics is the issue of space-time
structure in extremal energy regimes. There are evidences
from general relativity, string theory, and black hole phys-
ics which support the hypothesis of a noncommutative
structure. The simplest and probably most suggestive argu-
ment which points at a failure of the classical space-time
picture at high energy scales comes from the attempt of
conjugating the principles of quantum mechanics with
those of general relativity (see [1] and for a review [2]).
If one tries to locate an event with a spatial accuracy
comparable with the Planck length, space-time uncertainty
relations necessarily emerge. In total analogy with quan-
tum mechanics, uncertainty relations are naturally implied
by the presence of noncommuting coordinates,

 �x̂�; x̂�� � i���; (1.1)

where ��� is in general coordinate dependent and its
specific form qualifies the kind of noncommutativity.
Therefore, below Planck length the usual description of
space-time as a pseudo-Riemannian manifold locally mod-
eled on Minkowski space is not adequate anymore, and it
has been proposed that it be described by a noncommuta-
tive geometry [3–5]. This line of thought has been pursued
since the early days of quantum mechanics [6] and more
recently in [7–19] (see also the recent review [20]).

In this context two relevant issues are the formulation of
general relativity and the quantization of field theories on
noncommutative space-time. There are different proposals
for this second issue, and different canonical commutation
relations have been considered in the literature [21–29].

We here frame this issue in a geometric context and address
it by further developing the twist techniques used in [16–
18] in order to formulate a noncommutative gravity
theory. We see how noncommutative space-time induces
a noncommutative phase space geometry, equipped with a
deformed Poisson bracket. This leads to canonical quanti-
zation of fields on noncommutative space.

We work in the deformation quantization context; non-
commutativity is obtained by introducing a ? product on
the algebra of smooth functions on space-time. The most
widely studied form of noncommutativity is the one for
which the quantity ��� of (1.1) is a constant. This non-
commutativity is obtained through the Grönewold-Moyal-
Weyl ? product (for a review see [30]). The product
between functions (fields) is given by

 �f ? h��x� � exp
�

i

2
���

@
@x�

@
@y�

�
f�x�h�y�jx�y; (1.2)

with the ��� matrix constant and antisymmetric. In par-
ticular the coordinates satisfy the relations

 x� ? x� � x� ? x� � i���: (1.3)

There are two approaches to study the symmetries (e.g.,
Poincaré symmetry) of this noncommutative space. One
can consider ��� as a covariant tensor (see for example
[31,32]), then the Moyal product is fully covariant under
Poincaré (indeed linear affine) transformations. Poincaré
symmetry is spontaneously broken by the nonzero values
���. The other approach is to consider the matrix compo-
nents ��� as fundamental physical constants, like @ or c.
Since the commutator x� ? x� � x� ? x� in (1.3) is not
Lorentz invariant, the usual notion of Poincaré symmetry is
lost. However there is still a symmetry, due to a twisted
Poincaré group [33–36], a quantum Poincaré Lie algebra
and Lie group invariance that implies that fields on non-
commutative space are organized according to the same
particle representations as in commutative space.
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We adopt this second approach and we consider the
quantum Lie algebras of vector fields on noncommutative
space-time, and of vector fields on the noncommutative
phase spaces associated to this space-time, the quantum
Lie algebra of symplectic transformations, and that of the
constants of motion of a given Hamiltonian system. These
noncommutative spaces and symmetries are obtained by
deforming the usual ones via a Drinfeld twist [37]. For
example the Drinfeld twist that implements the Moyal-
Weyl noncommutativity (1.2) is F � e��i=2����@��@� .

In Sec. II we introduce the twist F � e��i=2����@��@�

and, starting from the principle that every product, and in
general every bilinear map, is consistently deformed by
composing it with the appropriate realization of the twist
F , we briefly review the construction of noncommutative
space-time differential geometry as in [16–18]. Vector
fields have a natural ? action on the noncommutative
algebras of functions and tensor fields, giving rise to the
concept of deformed derivations. These ? derivations form
a quantum Lie algebra. In this way we consider the ?-Lie
algebra of infinitesimal diffeomorphisms.

In Sec. III we study Hamiltonian mechanics on non-
commutative space. The differential geometry of phase
space is naturally induced from that of space-time (see
Sec. II). The twist gives a noncommutative algebra of
observables and here too we have the ?-Lie algebra of
vector fields. A ?-Poisson bracket is introduced so that the
? algebra of observables becomes a ?-Lie algebra. It can
be seen as the ?-Lie subalgebra of Hamiltonian vector
fields (canonical transformations). Time evolution is dis-
cussed. In particular, constants of motion of translation
invariant Hamiltonians generate symmetry transforma-
tions, they close a ?-Lie symmetry algebra. Moreover in
Sec. III B we formulate the general consistency condition
between twists and ?-Poisson brackets (later applied in
Sec. IV). In subsection we study the deformed symmetries
of the harmonic oscillator, as well as a deformed harmonic
oscillator that conserves usual angular momentum.

In Sec. IV we generalize the twist setting to the case of
an infinite number of degrees of freedom. We lift the action
of the twist from functions on space-time to functionals
and study their ? product (in particular a well-defined
definition of ��x� ?��y� and a�k� ? a�k0� is given). We
study the algebra of observables (functionals on phase
space), and field theory in the Hamiltonian formalism.
Our inspiring principle is that, having a precise notion of
? derivation and of ?-Lie algebra, as in the point mechan-
ics case, we are able to define a ?-Poisson bracket for
functionals which is unambiguous and which gives the ?
algebra of observables a ?-Lie algebra structure. In par-
ticular we obtain the ?-Poisson bracket between canoni-
cally conjugated fields.

In Sec. V we similarly deform the algebra of quantum
observables by lifting the action of the twist to operator
valued functionals on space-time. We thus obtain a de-

formed @ noncommutativity for operator valued function-
als, which is in general nontrivial. Starting from the usual
canonical quantization map for field theories on commu-
tative space-time, �!@ �̂, we uniquely obtain a quantiza-
tion scheme for field theories on noncommutative space-
time and show that it satisfies a correspondence principle
between ?-Poisson brackets and ? commutators. Finally in
order to compare our results with the existing literature
[21–29] we specialize them to the algebra of creation and
annihilation operators of noncommutative quantum field
theory.

Throughout this paper we consider just space noncom-
mutativity, this restriction is in order to have a simple
presentation of the Hamiltonian formalism.

II. TWIST

In this section we introduce the concept of twist and
develop some of the noncommutative geometry associated
to it. For the sake of simplicity we start and concentrate on
the twist which gives rise to the Moyal ? product (1.2), so
that we deform the algebra of smooth functions C1�Rd� on
space (or space-time) Rd. However the results presented
hold for a general smooth manifold and a general twist F
[17]. Only formulas with explicit tensor indices �; � . . . in
the frame @� hold exclusively for the Moyal twist.
Comments on the case of a general twist are inserted in
the appropriate places throughout the paper.

The Moyal ? product (1.2) between functions can be
obtained from the usual pointwise product �fg��x� �
f�x�g�x� via the action of a twist operator F

 f ? g :� � �F�1�f � g�; (2.1)

where � is the usual pointwise product between functions,
��f � g� � fg, and the twist operator and its inverse are
 

F � e��i=2�����@=@x����@=@x��;

F�1 � e�i=2�����@=@x����@=@x��;
(2.2)

here @
@x� and @

@x� are globally defined vector fields on Rd

(infinitesimal translations). Given the Lie algebra � of
vector fields with the usual Lie bracket

 �u; v� :� �u�@�v
��@� � �v

�@�u
��@�; (2.3)

and its universal enveloping algebra U�, the twist F is an
element of U� �U�. The elements of U� are sums of
products of vector fields, with the identification uv�
vu � �u; v�.

We shall frequently write (sum over � understood)

 F � f� � f�; F�1 � �f� � �f�; (2.4)

so that

 f ? g :� �f��f��f��g�: (2.5)

Explicitly we have
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F�1 � e�i=2�����@=@x����@=@x��

�
X 1

n!

�
i

2

�
n
��1�1 . . . ��n�n@�1

. . . @�n
� @�1

. . . @�n

� �f� � �f�; (2.6)

so that � is a multi-index. We also introduce the universal
R matrix

 R :� F 21F
�1; (2.7)

where by definition F 21 � f� � f�. In the sequel we use
the notation

 R � R� � R�; R�1 � �R� � �R�: (2.8)

In the present case we simply have R � F�2, but for more
general twists this is no more the case. The R matrix
measures the noncommutativity of the ? product. Indeed
it is easy to see that

 h ? g � �R��g� ? �R��h�: (2.9)

The permutation group in noncommutative space is natu-
rally represented by R. Formula (2.9) says that the ?
product is R commutative in the sense that if we permute
(exchange) two functions using the R-matrix action then
the result does not change.

Note 1: The class of ? products that can be obtained
from a twist F is quite rich (for example we can obtain star
products that give the commutation relations x ? y � qy ?
x with q 2 C in two or more dimensions). Moreover we
can consider twists and ? products on arbitrary manifolds
not just on Rd. For example, given a set of mutually
commuting vector fields fXag (a � 1; 2; . . .n) on a
d-dimensional manifold M, we can consider the twist

 F � e��i=2��abXa�Xb : (2.10)

Another example is F � e�1=2�H�ln�1	�E� where the vector
fields H and E satisfy �H;E� � 2E. In these cases too, the
? product defined via (2.1) is associative and properly
normalized. In general an element F of U� �U� is a
twist if it is invertible, satisfies a cocycle condition, and is
properly normalized [37] (see [17,18] for a short introduc-
tion; see also the book [38]). The cocycle and the normal-
ization conditions imply associativity of the ? product and
the normalization h ? 1 � 1 ? h � h.

A. Vector fields and tensor fields

We now use the twist to deform the space-time commu-
tative geometry into a noncommutative one. The guiding
principle is the one used to deform the product of functions
into the ? product of functions. Every time we have a
bilinear map

 �: X
 Y ! Z; (2.11)

where X, Y, Z are vector spaces, and where there is an

action of F�1 on X and Y we can combine this map with
the action of the twist. In this way we obtain a deformed
version �? of the initial bilinear map �

 �? :� � �F�1; (2.12)

 �?: X
 Y ! Z �x; y�� �?�x; y� � ���f��x�; �f��y��:

The ? product on the space of functions is recovered
setting X � Y �A � Fun�M�. We now study the case
of vector fields, 1-forms, and tensor fields.

Vector fields �?. We deform the product �: A ��!
� between the space A � Fun�M� of functions on space-
time M and vector fields. A generic vector field is v �
v�@�. Partial derivatives act on vector fields via the Lie
derivative action

 @��v� � �@�; v� � @��v
��@�: (2.13)

According to (2.12) the product �: A ��! � is de-
formed into the product

 h ? v � �f��h��f��v�: (2.14)

Since F�1 � e�i=2����@��@� , iterated use of (2.13) (e.g.,
@�@��v� � @��@��v�� � �@�; �@�; v��), gives

 h ? v � �f��h��f��v� � �f��h��f��v��@� � �h ? v��@�:
(2.15)

In particular we have

 v� ? @� � v�@�: (2.16)

From (2.15) it is easy to see that h ? �g ? v� � �h ? g� ?
v, i.e., that the ? multiplication between functions and
vector fields is consistent with the ? product of functions.
We denote the space of vector fields with this ? multi-
plication by �?. As vector spaces � � �?, but � is an A
module while �? is an A? module.

1-forms �?. Analogously, we deform the product
�: A ��! � between the space A � Fun�M� of
functions on space-time M and 1-forms. A generic 1-
form is � � ��dx�. As for vector fields we have

 h ? � � �f��h��f����: (2.17)

The action of �f� on forms is given by iterating the Lie
derivative action of the vector field @� on forms. Explicitly,
if � � ��dx� we have

 @���� � @�����dx
� (2.18)

and

 � � ��dx� � �� ? dx�: (2.19)

Forms can be multiplied by functions from the left or from
the right (they are a A bimodule). If we deform the
multiplication from the right we obtain the new product

 � ? h � �f�����f��h�; (2.20)
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and we move h to the left with the help of the R matrix,

 � ? h � �R��h� ? �R����: (2.21)

Tensor fields T ?. Tensor fields form an algebra with the
tensor product � (over the algebra of functions). We define
T ? to be the noncommutative algebra of tensor fields. As
vector spaces T � T ?; the noncommutative and associa-
tive tensor product is obtained by applying (2.12)

 � �? �
0 :� �f���� � �f���0�: (2.22)

Here again the action of the twist on tensors is via the Lie
derivative; on vectors we have seen that it is obtained by
iterating (2.13), on 1-forms it is similarly obtained by
iterating @��h ? dg� � @��h� ? dg	 h ? d@��g�. Use of
the Leibniz rule gives the action of the Lie derivative on a
generic tensor.

If we consider the local coordinate expression of two
tensor fields, for example of the type
 

� � ��1;...�m@�1
�? . . . �? @�m

�0 � �0�1;...�n@�1
�? . . . �? @�n

(2.23)

then their ?-tensor product is
 

� �? �0 � ��1;...�m ? �0�1;...�n@�1
�? . . . �? @�m

�? @�1

�? . . . �? @�n : (2.24)

Notice that since the action of the twist F on the partial
derivatives @� is the trivial one, we have

 @�1
�? . . . @�n

� @�1
� . . . @�n

: (2.25)

There is a natural action of the permutation group on
undeformed arbitrary tensor fields

 � � �0!
�
�0 � �: (2.26)

In the deformed case it is the R matrix that provides a
representation of the permutation group on ?-tensor fields

 � �? �
0!
�R �R���0� �? �R����: (2.27)

It is easy to check that, consistently with �R being a
representation of the permutation group, we have ��R�

2 �
id.

Consider now an antisymmetric 2-vector

 � �
1

2
�ij�@i � @j � @j � @i�

�
1

2
�ij ? �@i �? @j � @j �? @i�: (2.28)

Since the action of the R matrix on the partial derivatives
@� is the trivial one, we have that � is both an antisym-
metric 2-vector and a ?-antisymmetric one.

B. ?-Lie algebra of vector fields

The ?-Lie derivative on the algebra of functions A? is
obtained following the general prescription (2.12). We
combine the usual Lie derivative on functions Luh �
u�h� with the twist F

 L ?
u �h� :� �f��u���f��h��: (2.29)

By recalling that every vector field can be written as u �
u� ? @� � u�@� we have

 L ?
u �h� � �f��u�@����f��h�� � �f��u��@���f��h��

� u� ? @��h�; (2.30)

where in the second equality we have considered the ex-
plicit expression (2.6) of �f� in terms of partial derivatives,
and we have iteratively used the property �@�; u�@�� �
@��u

��@�. In the last equality we have used that the partial
derivatives contained in �f� commute with the partial de-
rivative @�.

The differential operator L?
u satisfies the deformed

Leibniz rule

 L ?
u �h ? g� � L?

u �h� ? g	 �R��h� ?L?
�R��u�
�g�: (2.31)

This deformed Leibniz rule is intuitive: in the second
addend we have exchanged the order of u and h, and this
is achieved by the action of the R matrix, that, as observed,
provides a representation of the permutation group.

The Leibniz rule is consistent (and actually follows)
from the coproduct rule

 u � �?u � u � 1	 �R� � �R��u�: (2.32)

[This formula holds also for the twist (2.10). However in
the most generic twist case the term �R� has to be replaced
with f	� �R��f	 [17]].

In the commutative case the commutator of two vector
fields is again a vector field, we have the Lie algebra of
vector fields. In this ?-deformed case we have a similar
situation. We first calculate

 L ?
uL

?
v�h� � L?

u �L
?
v�h��

� u� ? @��v�� ? @��h� 	 u� ? v� ? @�@��h�:

Then instead of considering the composition L?
vL

?
u we

consider L?
�R��v�L

?
�R��u�

. Indeed the usual commutator is

constructed permuting (transposing) the two vector fields,
and we have just remarked that the action of the permuta-
tion group in the noncommutative case is obtained using
the R matrix. We have
 

L?
�R��v�L

?
�R��u�
�h� � �R��v�� ? �R��@�u�� ? @�h

	 �R��v�� ? �R��u
�� ? @�@�h:

In conclusion
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 L ?
uL

?
v �L?

�R��v�L
?
�R��u�
� L?

�u;v�?
; (2.33)

where we have defined the new vector field

 �u; v�? :� �u� ? @�v��@� � �@�u� ? v��@�: (2.34)

A more telling definition of the ? bracket is

 �u; v�? :� ��f��u�; �f��v��; (2.35)

again as in (2.12) the deformed bracket is obtained from the
undeformed one via composition with the twist

 �; �? � �; � �F
�1: (2.36)

Therefore, in the presence of twisted noncommutativity,
we replace the usual Lie algebra of vector fields, �, with
�?, the algebra of vector fields equipped with the ?
bracket (2.35) or equivalently (2.36).

It is not difficult to see that the bracket �; �?: �? 

�? ! �? is a bilinear map and verifies the ? antisymme-
try and the ?-Jacoby identity

 �u; v�? � �� �R��v�; �R��u��?; (2.37)

 �u; �v; z�?�? � ��u; v�?; z�? 	 � �R��v�; � �R��u�; z�?�?:

(2.38)

For example we have

 �u; v�? � ��f
	�u�; �f	�v�� � ���f	�v�; �f

	�u��

� ��f
f��f	�v�; �f
f��f	�u�� � �� �R��v�; �R��u��?;

where in the third passage we inserted 1 � 1 in the form
F�1F .

We have constructed the deformed Lie algebra of vector
fields �?. As vector spaces � � �?, but �? is a ?-Lie
algebra. We stress that a ?-Lie algebra is not a generic
name for a deformation of a Lie algebra. Rather it is a
quantum Lie algebra of a quantum (symmetry) group [39],
(see [40] for a short introduction and further references). In
this respect the deformed Leibniz rule (2.31), that states
that only vector fields (or the identity) can act on the
second argument g in h ? g (no higher order differential
operators are allowed on g) is of fundamental importance
(for example it is a key ingredient for the definition of a
covariant derivative along a generic vector field).

Usually in the literature concerning twisted symmetries
the Hopf algebra U�F is considered. This has the same
algebra structure as U� so that the Lie bracket is the
undeformed one. Also the action of U�F on functions
and tensors is the undeformed one (so that no ?-Lie
derivative L? is introduced). It is the coproduct �F of
U�F that is deformed: for all � 2 U�,

 �F ��� � F����F�1:

The ?-Lie algebra �? we have constructed gives rise to the
universal enveloping algebra U�? of sums of products of
vector fields, with the identification u ? v� �R��v� ?

�R��u� � �u; v�? and coproduct (2.32) [17,18]. The Hopf
(or symmetry) algebras U�F and U�? are isomorphic.
Therefore to some extent it is a matter of taste which
algebra one should use. We prefer U�? because U�?
naturally arises from the general prescription (2.12): the
product u ? v in U�? is just u ? v � �f��u��f��v�, and
because it is in U�? (not in U�F ) that vector fields
have the geometric meaning of infinitesimal generators,
for example, the coproduct �?�t� is a minimal deformation
of the usual coproduct ��t� � t � 1	 1 � t. Also, from
(2.30), we have the A? linearity property L?

f?uh � f ?
L?
uh.

III. CLASSICAL MECHANICS

In this section we apply the program we outlined to
classical mechanics, thus building a ?-classical mechan-
ics. A main motivation is the construction of a deformed
Poisson bracket and the study of its geometry. The Poisson
bracket will be generalized to field theory in the next
section.

In subsection III A we briefly review the geometry of
usual phase space, then we lift the action of the twist F
from space-time to phase space. The structures introduced
in Sec. II immediately give the differential geometry on
noncommutative phase space. The deformation of the
standard Poisson bracket on R2n and the ?-Lie algebra of
Hamiltonian vector fields are then studied. The general
case of an arbitrary Poisson bracket deformed by an arbi-
trary twist F is considered in subsection III B, there we see
that a compatibility requirement between the twist F and
the Poisson bracket emerges.

In subsection III C we study Hamiltonian dynamics. The
constants of motion of translation invariant Hamiltonians
generate symmetry transformations and close a ?-Lie sub-
algebra under the ?-Poisson bracket. We also study the
harmonic oscillator as an example of noncommutative
Hamiltonian dynamics that is not translation invariant.

A. ?-Poisson bracket

In the Hamiltonian approach the dynamics of a classical
finite-dimensional mechanical system is defined through a
Poisson (usually symplectic) structure on phase space and
the choice of a Hamiltonian function. The Poisson struc-
ture is a bilinear map

 f; g: A
A!A; (3.1)

where A is the algebra of smooth functions on phase
space. It satisfies

 ff; gg � �fg; fg antisymmetry (3.2)

 

ff; fg; hgg 	 fh; ff;ggg 	 fg; fh; fgg � 0 Jacobi identity

(3.3)
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 ff; ghg � ff; ggh	 gff; hg Leibniz rule: (3.4)

The first two properties show that the Poisson bracket f; g is
a Lie bracket. The last property shows that the map
ff; g: A!A is a derivation of the algebra A, it there-
fore defines a vector field

 Xf :� ff; g; (3.5)

so that ff; gg � Xf�g� � hXf; dgi. Xf is the Hamiltonian
vector field associated to the ‘‘Hamiltonian’’ f. We will
also use the notation ff; g � LXf where LXf is the Lie
derivative. The antisymmetry property shows that the vec-
tor field Xf actually depends on f only through its differ-
ential df, and we thus arrive at the Poisson bivector field �
that maps 1-forms into vector fields according to

 h�; dfi � Xf: (3.6)

We therefore have

 h�; df � dgi � Xf�g� � ff; gg: (3.7)

Notice that we use the pairing hu � v; df � dgi �
hv; dfihu; dgi (u and v vector fields) that is obtained by
first contracting the innermost elements. We use this onion-
like structure pairing because it naturally generalizes to the
noncommutative case.

To be definite let us consider the canonical bracket on
the phase space T�Rn with the usual coordinates x1; . . . xn,
p1; . . .pn,

 ff; gg :�
@f

@x‘
@g
@p‘
�
@f
@p‘

@g

@x‘
; (3.8)

sum over repeated indices (which takes the values 1; . . . n)
is assumed.

Because of the onionlike structure of the pairing and
since h @@xi �

@
@pi
; dfi � @f

@pi
@
@xi , we have that the Poisson

bivector field is

 � �
@
@pi
^
@
@xi
�

@
@pi
�
@
@xi
�

@
@xi
�

@
@pi

; (3.9)

while

 Xf �
@f
@xi

@
@pi
�
@f
@pi

@
@xi

: (3.10)

The symplectic form associated to the nondegenerate
Poisson tensor � satisfies ff; hg � hXf � Xh;!i and ex-
plicitly reads

 ! � dpi ^ dx
i: (3.11)

A Hamiltonian H is a function on phase space. Motion
of a point in phase space describes the time evolution of the
dynamical system. Infinitesimally it is given by the vector
field XH, and on the algebra A of observables (not ex-
plicitly dependent on time), we have Hamilton’s equation

 

_f � �fH; fg � �XH�f�: (3.12)

We denote with �t the integral flow of �XH. If the
system at time t0 � 0 is described by the point P0 in phase
space, at a later time t has evolved to the point Pt �
�t�P0�. Correspondingly the time evolution of any observ-
able is

 ��t �f� � f � �t; (3.13)

where ��t is the pullback of the integral flow. In particular
the coordinates of the point Pt are xi�t� � xi��t�P0�� and
pi�t� � pi��t�P0��. Hamilton’s equation can be equiva-
lently rewritten as an equation for the pull-back flow ��t ,

 

d
dt
��t � ��

�
t � XH: (3.14)

Now we twist commutative space-time into noncommu-
tative space-time (actually we consider just noncommuta-
tive space coordinates, no time noncommutativity).
Correspondingly the configuration space and the phase
space of a mechanical system will be noncommutative.
For example if space is R3 and we consider an uncon-
strained mechanical system of r points then the configura-
tion space will be R3r. Noncommutativity on R3r is
induced from noncommutativity on R3. Recall that R3r

should be considered as r copies of R3, therefore a trans-
formation on R3 induces a simultaneous transformation on
all the r copies of R3r. Infinitesimally, if the transformation
on R3 (with coordinates xk, k � 1, 2, 3) is given by the
vector field @

@xi , then the corresponding infinitesimal trans-
formation on R3r is given by the vector field

 

@
@xi1
	

@
@xi2

. . .	
@
@xir

(3.15)

(with xk1; x
k
2; . . . xkr coordinates of R3r). We therefore have

the following lift of the action of the twist F from C1�R3�
to C1�R3r� � C1�R3r�,

 F � f� � f� � e��i=2��ij�@=@xi1	...@=@xir���@=@x
j
1	...@=@xjr�;

(3.16)

and correspondingly the following ? product on configu-
ration space, for all a; b 2 C1�R3r�,
 

a?b�x1; . . .xr� � exp
�

i

2
�ij
�
@
@xi1
	 . . .

@
@xir

��
@

@yj1
	 . . .

@

@yjr

��

a�x1; . . .xr�b�y1; . . .yr�jx�y: (3.17)

On the subalgebra C1�R3� � . . . � C1�R3� (r times) of
C1�R3r� the ? product (3.17) coincides with the one de-
fined in [29].

We further lift the twist F to the tangent bundle TR3r

and to the phase space T�R3r. A point of the manifold
TR3r ’ R6r has coordinates �xA; vA�, (A � 1; . . . ; 3r)
where vA are the components of the vector v � vA @

@xA

tangent to the point of coordinates xA. Under the translation
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generated by ( @
@xi1
	 . . . @

@xir
) we have that �xA; vA� is trans-

lated into �x0A; vA�, where x0A are the new coordinates of
the translated point, while the coefficients vA do not
change because we are considering a constant translation.
Therefore the action of � @@xi1

	 . . . @
@xir
�, and of the twist F ,

on the tangent bundle TR3r is the usual one on the base
space and the trivial one on the fibers. Similarly for the
phase space T�R3r. Let xA, pA be phase space coordinates,
the explicit expression of F on C1�T�R3r� � C1�T�R3r� is
again (3.16). In particular f ? h � fh if f or h is only a
function of the momenta pA.

Note 2: This result holds just because of the particular
twist we have considered. In general the lift of a vector
field u � uA @

@xA
from R3r to TR3r is given by u� �

uA @
@xA
	 vB @u

A

@xB
@
@vA

(here xA, vA are the coordinates of
TR3r). Notice the linearity of u� in the fiber coordinates
vA, indeed the lift u� can be obtained from its flow T�ut ,
that is linear on the fibers because it is a tangent flow,
precisely the differential of the flow �ut associated to the
vector field u. Similarly the lift of u to the phase space
T�R3r (with coordinates xA; pA), is given by the vector field

 u� � uB
@
@xB
� pB

@uB

@xC
@
@pC

: (3.18)

We have seen how noncommutativity of space-time
induces noncommutativity of phase space. Let us consider
a system with n degrees of freedom with phase space M �
R2n, and A? � C1�M�? the noncommutative algebra of
functions on M with twist

 F � e��i=2��‘s�@=@x‘���@=@xs� ‘; s � 1; . . . n: (3.19)

It can be easily checked that the Poisson bracket does not
define a derivation of the algebra A? � C1�M�?,

 ff; g ? hg � ff; gg ? h	 g ? ff; hg; (3.20)

or, in different words,

 L Xf �g ? h� � �LXfg� ? h	 g ? �LXfh�: (3.21)

On the other hand, according to (2.12), we are led to
deform the Poisson structure into a noncommutative
Poisson structure f; g?. We define the ?-Poisson bracket

 ff; gg? :� f�f��f�; �f��g�g: (3.22)

A simple calculation, that exploits the fact that the Poisson
structure is invariant under the partial derivatives appearing
in the twist, shows that this twisted Poisson bracket can be
expressed as

 ff; gg? �
@f

@x‘
?
@g
@p‘
�
@f
@p‘

?
@g

@x‘
: (3.23)

This bracket is linear in both arguments, it is R antisym-
metric and it satisfies the ?-Leibniz rule and ?-Jacobi
identity

 ff; gg? � �f �R��g�; �R��f�g? (3.24)

 ff; g ? hg? � ff; gg? ? h	 �R��g� ? f �R��f�; hg? (3.25)

 ff; fg; hg?g? � fff; gg?; hg? 	 f �R��g�; f �R��f�; hg?g?:

(3.26)

We conclude from (3.25) that ff; g is a ? derivation. We can
write

 ff; g? � L?
v (3.27)

for some vector field v. From (3.23) and the definition of
?-Lie derivative, we deduce that the vector field v is the
undeformed Hamiltonian vector field v � Xf � ff; g,
therefore we obtain

 ff; g? � L?
Xf
� L?

ff;g: (3.28)

The Leibniz rule (3.25) can be rewritten as

 L ?
Xf
�g ? h� � L?

Xf
�g� ? h	 �R��g� ?L?

X �R��f�
�h� (3.29)

and is consistent (and actually follows) from the coproduct
rule

 Xf � �?Xf � Xf � 1	 �R� � X �R��f� : (3.30)

Property (3.26), the ?-Jacobi identity, can be rewritten as

 L ?
Xf
L?
Xg
�L?

�R��Xg�
L?

�R��Xf�
� L?

Xff;gg?
: (3.31)

Recalling (2.33) we equivalently have

 �Xf; Xg�? � Xff;gg? : (3.32)

Because of this property and of the Leibniz rule (3.29) [or
better the coproduct rule (3.30)] Hamiltonian vector fields
are a ?-Lie subalgebra of the ?-Lie algebra of vector fields.

B. General twist and Poisson bracket

These results, obtained in the case of the �-constant
twist (3.16) or (3.19) on M � R2n, can be generalized to
a twist F on an arbitrary Poisson manifold M (phase
space). We comment on this general case because it is in
this context that the compatibility relation between twist
and Poisson structure most clearly emerges. The twist de-
forms the algebra of functions on M into the ? algebra
A? � C1? �M�, where f ? g � �f��f��f��g�. According to
the general principles we have set in Sec. II, first we define
the ? pairing between vector fields and 1-forms

 hu; #i? :� h�f��u�; �f��#�i: (3.33)

It can be proven that this pairing has the A?-linearity
properties

 hf ? u; # ? hi? � f ? hu; #i? ? h; (3.34)

(where # ? h :� �f��#��f��h�) and
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 hu; f ? #i? � �R��f� ? h �R��u�; #i?: (3.35)

We extend the pairing to covariant tensors, �, and contra-
variant ones, �, via the definition

 h�; �i? :� h�f����; �f����i: (3.36)

It can be shown that this definition, and the onionlike
structure of the undeformed pairing [cf. after (3.7)], imply
the property

 hu �? v; # �? i? :� hu; hv; #i? ? i? (3.37)

(where  is a 1-form). This equation gives an equivalent
definition of the pairing between covariant and contravar-
iant 2-tensors. From (3.37) it follows that the A?-linearity
properties are preserved:
 

hf ? u �? v; # �? � ? hi? � f ? hu �? v; # �? �i? ? h

hu �? v; f ? # �? �i? � �R��f�

? h �R��u �? v�; # � ?�i?:

(3.38)

Finally, following (2.12), we define the ?-Poisson bracket
as

 ff; gg? :� h�; df �? dgi?: (3.39)

Using the fact that � is ? antisymmetric the
?-antisymmetry property (3.24) can be proven. However
from the definition (3.39) it follows that
 

ff; g ? hg? � ff; gg? ? h

	 �R� �R	�g� ? h �R����; d �R	�f� �? dhi?:

(3.40)

This equality becomes the deformed Leibniz rule (3.25) if

 

�R� � �R���� � 1 �� (3.41)

(recall that 1 and �R� are elements in U�). This is a
compatibility relation between the Poisson structure and
the twist.

Led by this observation we require, as compatibility
condition, that the action of the twist F on the Poisson
tensor � be the trivial one,

 

�f � � �f���� � 1 ��; (3.42)

 

�f ���� � �f� � � � 1: (3.43)

Any two of the last three equations imply the third one. If
we consider a twist of the form F � e��i=2��abXa�Xb , where
the Xa’s are arbitrary commuting vector fields (and �ab is
antisymmetric), then these three equations are equivalent.
They are satisfied if (and when �ab is nondegenerate only
if) the vector fields Xa leave invariant the Poisson structure
(in particular this happens if they are Hamiltonian vector
fields). The semiclassical limit of Eqs. (3.42) and (3.43)

implies that the Poisson structure P associated with the
twist F is compatible with the Poisson structure � on the
manifold M. Explicitly �P;�� � 0, where �; � is the
Schouten-Nijenhuis bracket.

Condition (3.42) implies that

 ff; gg? � f�f
��f�; �f��g�g; (3.44)

and that Hamiltonian vector fields are undeformed,

 X?f :� h�; dfi? � h�; dfi � Xf: (3.45)

It can be proven that conditions (3.42) and (3.43) imply the
following compatibility between the twist and Hamiltonian
vector fields

 

�f � � �f��Xh� � �f� � X�f��h�
; (3.46)

 

�f ��Xh� � �f� � X�f��h� �
�f�: (3.47)

The ?-Jacoby identity that is equivalent to property
(3.32), easily follows from these equations because of
linearity

 �Xf; Xg�? � ��f
��Xf�; �f��Xg�� � �X�f��f�; X�f��g�

�

� Xf�f��f�;�f��g�g � Xff;gg? : (3.48)

Because of this property and of the Leibniz rule (3.29) [or
better the coproduct rule (3.30)] we have that also for a
general twist with a compatible Poisson bracket
Hamiltonian vector fields are a ?-Lie subalgebra of the
?-Lie algebra of vector fields.

C. Time evolution and constants of motion

The study of the noncommutative phase space geometry
is here applied to briefly discuss time evolution and sym-
metries in deformed mechanics. We consider point parti-
cles on space with usual Moyal-Weyl noncommutativity
given by the �-constant twist F � e��i=2��ij@i�@j .

A natural definition of time evolution is

 

_f � �L?
XH
f � �fH; fg?: (3.49)

As noticed in (3.45), we see that the time evolution gen-
erator XH �

@H
@xi

@
@pi
� @H

@pi
@
@xi is the same as the undeformed

one; it is its action L? on functions that are deformed.
Indeed in general fH; fg? � fH; fg and therefore time
evolution is different from the undeformed one.
Equation (3.49) should be considered as an equation for
the deformed pull-back flow ���t �? [cf. (3.14)],

 

d
dt
���t �? � ����t �? �L?

XH
: (3.50)

Equation (3.49), [or (3.50)] can be formally integrated

 ���t �?f � exp��tL?
XH
�f

� f� tL?
XH
f	

1

2
t2L?

XH
�L?

XH
f� 	 . . . : (3.51)
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A more explicit expression of this formula is obtained if we
denote by �a the phase space coordinates xi; pj, and if we
correspondingly expand the Hamiltonian vector field as
XH � XaH@a, where @a �

@
@�a . Then we have

 

���t �?f � exp��tL?
XH
�f

� f� tXaH ? @af	
1

2
t2XaH ? @a�X

a
H ? @af� 	 . . . :

(3.52)

Another expression for ���t �? is ���t �? � L?
e
tXH
?

where the ?

exponential etXH? is obtained with the ? product in U�?,
and L? represents etXH? as a differential operator on
functions.

It is easy to verify the one parameter group property
���t �? � ���s�? � ���t	s�?. On the other hand the deformed
Leibniz rule for L?

XH
implies ���t �?�f ? g� � ���t �?f ?

���t �?g, as well as

 ���t �?f�x; p� � f�x�t�; p�t��; (3.53)

where xi�t� � ���t �?xi, pj�t� � ���t �?pj.
A constant of motion is a function Q on phase space that

satisfies

 fH;Qg? � 0: (3.54)

If

 fQ;Hg? � 0 (3.55)

we say that the Hamiltonian is invariant under the vector
field XQ (because fQ;Hg? � L?

XQ
H). Since the ?-Poisson

bracket is not antisymmetric (3.54) and (3.55) are indepen-
dent equations.

Notice that for translation invariant Hamiltonians the
time evolution equation as well as the notion of constant
of motion are undeformed. Then (3.54) and (3.55) coin-
cide. Using the ?-Jacoby identity we have that the ?
bracket fQ;Q0g? of two constants of motion is again a
constant of motion. We conclude that the subspace of
Hamiltonian vector fields XQ that ? commute with XH
form a ?-Lie subalgebra of the ?-Lie algebra of
Hamiltonian vector fields: The ?-symmetry algebra of
constants of motion.

Examples of translation invariant Hamiltonians include
all point particle Hamiltonians whose potential depends
only on the relative distance of the point particles involved.
We also see that this formalism is quite well suited for field
theory Hamiltonians that have potentials like

R
d3x ���x� ?

��x� ? ���x� ? ��x� and are translation invariant.

1. Example: The harmonic oscillator

In this subsection we see our deformed point mechanics
at work on a simple example that does not admit translation
invariance.

We consider the harmonic oscillator in two noncommu-
tative space dimensions. We study its equation of motion,
the constants of motion and the invariances of the
Hamiltonian. Angular momentum is not conserved, but a
deformed version is. Vice versa, a deformation of this
oscillator conserves usual angular momentum.

The results here presented are not used in the later
sections on field theory.

Let

 H �
1

2
�xi ? xj
ij 	 pi ? pj
ij� �

1

2
�xixj
ij 	 pipj
ij�

(3.56)

 L � "jix
i ? pj � "jix

ipj (3.57)

be the Hamiltonian and the angular momentum of the 2-
dimensional harmonic oscillator.

Since

 fh; fg? � fh; fg (3.58)

if h and f are sums of functions that depend only on the
coordinates xi or the momenta pj, we have the undeformed
equations fH;Hg? � fH;Hg � 0 and
 

_xi � �fH; xig? � �fH; x
ig;

_pj � �fH;pjg? � �fH;pjg:
(3.59)

On the other hand neither the angular momentum is a
constant of motion

 

_L � �fH;Lg? � �L
?
XH
L � �

i

2
"ij�

ij � �i� (3.60)

(we have defined �ij � �"ij), nor the Hamiltonian is rota-
tion invariant, indeed we have L�XLH � fL;Hg? � �i�.
From (3.52) the time evolution of the angular momentum is
���t �?L � L� i�t.

We recall that the classical harmonic oscillator is a
maximally superintegrable system, that is, it has 3�� 2d�
1� constants of motion which are functionally independent.
For example we can consider
 

H;L;K � �x1�2 � �x2�2 	 �p1�
2 � �p2�

2;

T � x1x2 	 p1p2:
(3.61)

Only three of the above constants of motion are function-
ally independent. The third and fourth constants have the
interesting property of being preserved in our twist-
deformed setting. Indeed from (3.58) it immediately fol-
lows

 fH;Kg? � fK;Hg? � 0; fH; Tg? � fT;Hg? � 0:

(3.62)

Therefore the ?-harmonic oscillator remains a superintegr-
able system, but loses rotational invariance.
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Deformations L? of the angular momentum L can how-
ever be constants of motion. For example we have the two
functionally independent deformations

 L0? � L� i� arctan
�
x1

p1

�
; L00? � L� i� arctan

�
x2

p2

�
(3.63)

that satisfy fH;L0?g? � 0, fH;L00?g? � 0. In order to prove
this statement it is instructive to consider an arbitrary �
deformation of L,

 L? �
X1
n�0

�nLn; (3.64)

where L0 � L and all coefficients Ln are �-independent
functions on phase space. We determine these coefficients
by requiring L? to be a constant of motion,

 fH;L?g? �
X1
n�0

�nfH;Lng? � 0: (3.65)

Since for any function f on phase space we have

 fH; fg? � fH; fg �
i

2
�"ij

@
@xi

@
@pj

f; (3.66)

L? is a constant of motion if

 

X1
n�0

�nfH;Lng �
i

2
�n	1"ij

@
@xi

@
@pj

Ln � 0: (3.67)

All the coefficients in this � expansion have to vanish and
we then obtain the recursive relation

 fH;Ln	1g �
i

2
"ij

@
@xi

@
@pj

Ln (3.68)

with the initial condition L0 � L. At first order in � we
have fH;L1g � i, that is

 

�
xj

@
@pj
� pj

@
@xj

�
L1 � i: (3.69)

Since the left-hand side preserves the degree of any homo-
geneous polynomial in the coordinates xi and pj, no ana-
lytic function on phase space can solve this equation. If we
relax the analyticity condition we find two independent
solutions

 L01 � �iarctan
�
x1

p1

�
; (3.70)

 L001 � �iarctan
�
x2

p2

�
: (3.71)

In order to solve (3.68) we can choose all higher order
coefficients Ln with n � 2 to be zero. We thus obtain the
two solutions (3.63). Notice that, unlike H and T, the

constants of motion (3.63) do not ? commute with
themselves.

As an instance of our general comment on the indepen-
dence of (3.54) and (3.55), that is to say, on the indepen-
dence of the notions of constant of motion and invariance,
we observe that the two constants of motion (3.63) do not
generate symmetries of the Hamiltonian. It can be easily
verified that solutions of (3.55) are given instead by the
complex conjugates of (3.63).

We find also interesting to study deformations H? of the
harmonic oscillator Hamiltonian that admit the unde-
formed angular momentum L as constant of motion. The
aim, like in [41], is to consider new dynamical systems that
may be highly nontrivial if thought in commutative space
[the equation of motion (3.49) or (3.59) can just be seen as
a partial differential equation on commutative space-time],
but that analyzed in the noncommutative Hamiltonian
mechanics framework shows the same constants of motion,
and possibly richness of symmetries and integrability, as
the undeformed ones.

We therefore consider the power series

 H? �
X1
n�0

�nHn (3.72)

with H0 � H, and determine the coefficients Hn (that are
functions on phase space) by requiring fH?; Lg? �P
1
n�0 �

nfHn; Lg? � 0. Since

 ff; Lg? � ff; Lg �
i

2
��@2

1 	 @
2
2�f; (3.73)

by setting f � H? we obtain the recursion relation

 fHn	1; Lg �
i

2
�@2

1 	 @
2
2�Hn; (3.74)

and in particular

 fH1; Lg �
i

2
�@2

1 	 @
2
2�H0 � i: (3.75)

This yields a partial differential equation similar to (3.69)

 "kj

�
xj

@

@xk
� pk

@
@pj

�
H1 � i: (3.76)

As in the previous calculation since the operator on the
left-hand side preserves the degree of a homogeneous
polynomial in xi and pj, no analytic solution is possible.
Comparison with (3.69) however gives the solutions,

 H01 � �i arctan
�
p1

p2

�
(3.77)

 H001 � �i arctan
�
x1

x2

�
: (3.78)

Again it can be checked that all the subsequent equations in
(3.74) are satisfied with the choiceHi � 0, i � 2, therefore
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we have two possible deformations of the Hamiltonian
which admit the angular momentum as a constant of
motion

 H0? � H � i� arctan
�
p1

p2

�
H00? � H � i� arctan

�
x1

x2

�
:

(3.79)

Notice however that fL;H0?g? � 0 and fL;H00?g? � 0, that
is, (3.79) are not invariant under rotations. Rotational
invariance is fulfilled if we consider the complex conju-
gates of (3.79).

It is interesting to note that, unlike the deformations of
the angular momentum (3.63), both the deformations
(3.79) ? commute with themselves. The first Hamiltonian
H0? is nonlocal, while the second one is local. They are both
real if we consider the parameter � to be purely imaginary.
We will not deepen their analysis here because it goes
beyond the scope of the present article.

IV. CLASSICAL FIELD THEORY

We generalize the twist setting to the case of an infinite
number of degrees of freedom. In this case the position and
momenta generalize to the fields ��x� and ��x� with x 2
Rd (Rd	1 being space-time). The algebra A is an algebra of
functionals, it is the algebra of functions onN where in turn
N is the function space

 N � Maps�Rd ! R2�: (4.1)

Here we are considering a scalar field theory, in a more
general case R2 (with its coordinates � and �) is sub-

stituted by the proper target space. The generalization to
R2s (with s scalar fields) is immediate. Particle mechanics
with phase space R2d is recovered by considering that Rd

in (4.1) collapses to d points.
We define the Poisson bracket between the functionals

F, G 2 A to be

 fF;Gg �
Z
ddx


F

�


G

�
�

F

�


G

�

(4.2)

The fields ��x� and ��x� for fixed x can be considered
themselves a family of functionals parametrized by x 2
Rn, for fixed x, ��x� is the functional that associates to �
and � the value ��x�; similarly with ��x�). Their brackets
are1

 f��x�;��y�g � 0; f��x�;��y�g � 0;

f��x�;��y�g � 
�x� y�:
(4.3)

Now let space Rd become the noncommutative Moyal
space. The algebra of functions on Rd and the algebra (4.1)
become noncommutative with noncommutativity given by
the twist (2.2), F � e��i=2��ij�@=@xi���@=@xj�:

The twist lifts to the algebra A of functionals [42] so that
this latter too becomes noncommutative. This is achieved
by lifting to A the action of infinitesimal translations.
Explicitly @

@xi is lifted to @�i acting on A as

 @�i G :� �
Z
ddx@i��x�


G

��x�

	 @i��x�

G

��x�

: (4.4)

Therefore on functionals the twist is represented as

 F � e��i=2��ij
R
ddx�@i��
=
��x��	@i��
=
��x����

R
ddy�@j��
=
��y��	@j��
=
��y���: (4.5)

The associated ? product is

 F ? G � �f��F��f��G�: (4.6)

We can regard ��x� as the functional ��x� �
R
ddz
�x�

z���z� that associates to the function � its value in x. In
particular we can consider the ? product between func-
tionals ��x� ?��y�. If x � y then ��x� ?��y� �
�� ?���x� where this latter ? product is the usual one
with the function �.

Note 3. The twist F � e�i=2��ij@i�@j gives rise to the
?-Lie algebra of infinitesimal diffeomorphisms of
subsection II B; similarly the twist (4.5) yields the ?-Lie
algebra of infinitesimal functional variations. The former
?-Lie algebra is generated by the ?-Lie derivatives along
vector fields L?

u , the latter ?-Lie algebra is generated by

the ?-functional variations 
?" . We briefly discuss this
?-Lie algebra in the Appendix.

Let us consider the canonical Poisson tensor

 � �
Z
ddx

�




��x�
�




��x�

�




��x�
�




��x�

�
(4.7)

and verify that it is compatible with the twist (4.5), i.e., that
relations (3.41), (3.42), and (3.43) hold. We unify the phase
space coordinates notation by setting

 	a � ��;��: (4.8)

Then the action of infinitesimal translations on functionals
is rewritten as

 @�i � �
Z
ddy@yi	

a�y�




	a�y�
: (4.9)

We compute

1In order to avoid considering distributions we should work
with smeared fields ��f� �

R
ddxf�x���x� and ��g� �R

ddxg�x���x�. The smeared version of the Poisson bracket is
then f��f�;��g�g �

R
ddxf�x�g�x�.
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 @�i

�Z
ddx





	b�x�
�




	c�x�

�
�
Z
ddx@�i

�




	b�x�

�
�




	c�x�

	




	b�x�
� @�i

�




	c�x�

�
�
Z
ddx

�
@�i ;





	b�x�

�
�




	c�x�

	




	b�x�
�

�
@�i ;




	c�x�

�
�
Z
ddxddy@yi
�x� y�





	b�y�
�




	c�x�

	




	b�x�
� @yi
�x� y�




	c�y�

� 0;

where in the last equality we have exchanged the dummy x
and y variables of the second addend and used that
@yi
�x� y� � �@xi
�x� y�. The vanishing of this expres-
sion implies the compatibility relations (3.41), (3.42), and
(3.43).

The compatibility between the Poisson tensor and the
twist assures that we have a well-defined notion of de-
formed Poisson bracket, f; g?: A � A! A,

 fF;Gg? :� f�f��F�; �f��G�g: (4.11)

This bracket satisfies

 fF;Gg? � �f �R��G�; �R��F�g? (4.12)

 fF;G ? Hg? � fF;Gg? ? H 	 �R��G� ? f �R��F�; Hg?
(4.13)

 fF; fG;Hg?g? � ffF;Gg?;Hg? 	 f �R��G�; f �R��F�; Hg?g?:

(4.14)

In particular the ? brackets among the fields are unde-
formed

 f��x�;��y�g? � f��x�;��y�g � 
�x� y�; (4.15)

 f��x�;��y�g? � f��x�;��y�g � 0; (4.16)

 f��x�;��y�g? � f��x�;��y�g � 0: (4.17)

We prove the first relation

 

f��x�;��y�g? � f�f
����x��; �f����y��g

� f��x�;��y�g �
i

2
�ij
�Z

ddz@i��z�
�x� z�;
Z
ddw@j��w�
�y� w�

�
	O��2�

� f��x�;��y�g �
i

2
�ij@yj@xi
�x� y� 	O��

2� � f��x�;��y�g; (4.18)

the second term in the third line vanishes because of
symmetry, as well as higher terms in �ij.

We conclude that for Moyal-Weyl deformations also in
the field theoretical case the ?-Poisson bracket just among
coordinates is unchanged. It is however important to stress
that this is not the case in general. For nontrivial func-
tionals of the fields we have

 fF;Gg? � fF;Gg: (4.19)

We now expand � and � in Fourier modes
 

��x� �
Z ddk

�2��d
��������
2Ek
p �a�k�eikx 	 a��k�e�ikx�

��x� �
Z ddk

�2��d
��i@�

������
Ek
2

s
�a�k�eikx � a��k�e�ikx�;

(4.20)

where Ek �
������������������
m2 	 ~p2

p
�

����������������������
m2 	 @

2 ~k2
p

and kx � ~k  ~x �Pd
i�1 k

ixi. We use the usual undeformed Fourier decom-
position because indeed are the usual exponentials that,
once we also add the time dependence part, solve the free
field equation of motion on noncommutative space

�@2@�@� 	m2�� � 0. This equation is the same as the
one on commutative space because the ? product enters
only the interaction terms.

The expressions of the fields � and � in terms of the
Fourier coefficients a and of their complex conjugate a�

can be inverted to give

 

a�k� �
Z
ddx

� ������
Ek
2

s
��x� 	

i

@

��������
1

2Ek

s
��x�

�
e�ikx

a��k� �
Z
ddx

� ������
Ek
2

s
��x� �

i

@

��������
1

2Ek

s
��x�

�
eikx:

(4.21)

From these formulas we see that for each value of k, a�k�,
and a��k� are functionals of � and �. We therefore can
consider the ? product between these functionals as de-
fined in (4.6). In order to explicitly calculate the ? product
we observe that the action (4.4) of the infinitesimal trans-
lations @

@xi on the functionals a and a� (that for ease of
notation we here just denote by @i) is
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@ia�k� � �ikia�k� � ikia�k�;

@ia��k� � ikia�k� � �ikia��k�:
(4.22)

We find it instructive to write the ? product in few simple
cases
 

a�k� ? a�k0� � e��i=2��ijkik0ja�k�a�k0�;

a��k� ? a��k0� � e��i=2��ijkik0ja��k�a��k0�;

a��k� ? a�k0� � e�i=2��ijkik0ja��k�a�k0�;

a�k� ? a��k0� � e�i=2��ijkik0ja�k�a��k0�;

and more in general
 

a�k�1�� ? a�k�2�� ? . . . a�k�m��

� e��i=2��ij
P

r<s
k�r�i k

�s�
j a�k�1��a�k�2�� . . . a�k�m��;

where r, s � 1; 2 . . .m. A similar formula holds for mixed
a and a� products.

We finally easily calculate the Poisson bracket among
the Fourier modes using the definition (4.11) and the func-
tional expressions of a�k�, a��k� in terms of � and �
(4.21), or equivalently from (4.11) and (4.22). We obtain

 fa�k�; a��k0�g? � e�i=2��ijkik0jfa�k�; a��k0�g

� �
i

@
�2��d
�k� k0�; (4.23)

where we used the undeformed relation fa�k�; a��k0�g �
� i

@
�2��d
�k� k0�. The phase drops out in (4.23) because

the 
 contributes only for k � k0, in which case the anti-

symmetry of � forces the exponent to be zero. We similarly
have

 fa�k�; a�k0�g? � 0; fa��k�; a��k0�g? � 0: (4.24)

As for our comment related to (4.19), this is a good place to
check nontriviality of the twisted Poisson bracket.
Although it is equal to the untwisted one for linear combi-
nations of the Fourier modes, it is easily verified that it
yields a different result, involving nontrivial phases, as
soon as we consider Poisson brackets of powers of a, a�.

V. FIELD QUANTIZATION

We now formulate the canonical quantization of scalar
fields on noncommutative space. Associated to the algebra
A of functionals G��;�� there is the algebra Â of func-
tionals Ĝ��̂; �̂� on operator valued fields. We lift the twist
to Â and then deform this algebra to Â? by implementing
once more the twist deformation principle (2.12). We
denote by @̂i the lift to Â of @

@xi ; for all Ĝ 2 Â,

 @̂ iĜ :� �
Z
ddx@i�̂�x�


Ĝ


�̂�x�
	 @i�̂�x�


Ĝ


�̂�x�
; (5.1)

here @i�̂�x�

Ĝ

�̂�x�

stands for
R
dd‘@i�‘�x�


Ĝ

�‘�x�

, where

like in (4.20) we have expanded the operator �̂�x� asR
dd‘�‘�x�â�‘� (and similarly for �̂�x�).
Consequently the twist on operator valued functionals

reads

 F̂ � e��i=2��ij
R
ddx�@i�̂�
=
�̂�x��	@i�̂�
=
�̂�x���

R
ddy�@j�̂�
=
�̂�y��	@j�̂�
=
�̂�y��: (5.2)

In Â? there is a natural notion of ? commutator, according
to the general prescription (2.12)

 �; �? � �; � �F�1: (5.3)

This ?-commutator is ?-antisymmetric, is a ?-derivation
in Â? and satisfies the ?-Jacoby identity

 �F̂; Ĝ�? � �� �R��Ĝ�; �R��F̂��? (5.4)

 �F̂; Ĝ ? Ĥ�? � �F̂; Ĝ�? ? Ĥ 	 �R��Ĝ� ? � �R��F̂�; Ĥ�?
(5.5)

 �F̂; �Ĝ; Ĥ�?�? � ��F̂; Ĝ�?; Ĥ�? 	 � �R��Ĝ�; � �R��F̂�; Ĥ�?�?:

(5.6)

Finally, recalling the definition of the R matrix it can be
easily verified that

 �F̂; Ĝ�? � F̂ ? Ĝ� �R��Ĝ� ? �R��F̂�; (5.7)

which is indeed the ? commutator in Â?. This ? commu-

tator (5.3) has been considered in [26] (and was introduced
in [43]).

We studied four algebras and brackets:
�A; f; g�; �Â; �; ��; �A?; f; g?�; �Â?; �; �?�: Canonical quantiza-
tion on noncommutative space is the map @? in the diagram

 

We define canonical quantization on nocommutative
space by requiring this diagram to be commutative.
Notice that the vertical maps, that with abuse of notation
we have called F and F̂ , are the identity map, indeed A �
A? and Â � Â? as vector spaces. Therefore we have @? �
@. The map @? satisfies a ?-correspondence principle be-
cause ?-Poisson brackets go into ? commutators at leading
order in @
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Indeed recall the definitions of the ?-Poisson bracket and
of the ? commutator and compute

 fF;Gg? � f�f
��F�; �f��G�g!

@

�
i

@
�d�f��F�; d�f��G��

� �
i

@
��f��F̂�; �f��Ĝ�� � �

i

@
�F̂; Ĝ�?: (5.10)

The second equality holds because the lifts (4.4) and (5.1)
of @

@xi satisfy

 

d@�i G � @̂iĜ; (5.11)

[as is most easily seen from (4.22) and (5.14)].
From (5.3), repeating the passages of (4.18) we obtain

[in accordance with (5.10)] the ? commutator of the fields
�̂ and �̂,

 ��̂�x�; �̂�y��? � i@
�x� y�: (5.12)

As a further confirmation that our quantization map @? �
@ � ^ implements the ?-correspondence principle between
?-Poisson brackets and ? commutators we notice that to all
orders in @

 

df�;�g? � i

@
��̂; �̂�?: (5.13)

Concerning the creation and annihilation operators, they
are functionals of the operators �̂, �̂ through the quantum
analogue of the classical functional relation (4.21). Using
(5.1) we have [cf. (4.22)]

 @iâ�k� � ikiâ�k�; @iây�k� � �ikiây�k�; (5.14)

where here for ease of notation we have just denoted the lift
of the infinitesimal translations @

@xi by @i. Their ? commu-
tator follows from (5.12) and the quantum analogue of
(4.21) [or from (5.3) and (5.14), or also from (4.23) and
linearity of (5.13)],

 �â�k�; ây�k0��? � �2��
d
�k� k0�: (5.15)

In order to compare this expression with similar ones
which have been found in the literature [21–24,27–29] it is
useful to recall (5.7) and realize the action of the R matrix.
Since R � F�2 we obtain that (5.15) is equivalent to

 â�k� ? ây�k0� � e�i�ijk0ikj ây�k0� ? â�k� � �2��d
�k� k0�:

(5.16)

This relation first appeared in [44]. In the noncommutative
quantum field theory context it appears in [27,28], and

implicitly in [26] (it is also contemplated in [29] as a
second option). On the other hand [22–24,29], starting
from a different definition of ? commutator, �A?; B� :�
A ? B� B ? A, obtain deformed commutation relations
of the kind aka

y
k0 � e

��i=2��ijkik0jayk ak0 � �2��
d
�k� k0�.

These are different from (5.16), indeed if we expand also
the ? product in (5.16) we obtain the usual commutation
relations â�k�ây�k0� � ây�k0�â�k� � �2��d
�k� k0�.

As in the case of the ?-Poisson bracket, we have found
that the ? commutator of coordinate fields (5.12), and of
creation and annihilation operators (5.15), are equal to the
usual undeformed ones. Once again, we warn the reader
that this is not true anymore for more complicated func-
tionals of the coordinate fields, in general �F̂; Ĝ�? �

�F̂; Ĝ�.
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APPENDIX: ?-LIE ALGEBRA OF FUNCTIONAL
VARIATIONS

In Sec. II, we remarked that the twist F � e��i=2��ij@i�@j

is an element of the tensor product of U� by itself, the
universal enveloping algebra of the Lie algebra � of vector
fields. Similarly the lifted twist (4.5) is an element of the
universal enveloping algebra U
 of the Lie algebra 
 of
infinitesimal functional variations (on phase space). In
order to fully understand the lift (4.5) we have to clarify
the way the Lie algebra of infinitesimal diffeomorphisms is
a subalgebra of the Lie algebra of infinitesimal functional
variations.

Undeformed infinitesimal functional variations 
" are
defined by

 
"G :�
Z
ddx"a�x�




	a�x�

G; (A1)

where 	a � ��;�� (more in general 	a are target space
coordinates), and where "a�x� themselves can be
functionals.

PAOLO ASCHIERI, FEDELE LIZZI, AND PATRIZIA VITALE PHYSICAL REVIEW D 77, 025037 (2008)

025037-14



Consider the map between vector fields and infinitesimal
functional variations (with slight abuse of notation we
denote this map by the symbol 
)

 
: �! 
 u � 
u (A2)

 
uG :� �
Z
ddxu�	a��x�




	a�x�

G: (A3)

This map is a Lie algebra map,

 
�u;v� � �
u; 
v�: (A4)

If u � @
@xi then 
u is just the lifted partial derivative @�i

defined in (4.9). In order to proceed in the construction of
the ?-Lie algebra of functional variations we define
?-functional variations. According to (2.12),

 
?" �G� :� �f��
"���f��G��; (A5)

where the action of �f� on 
" is the adjoint action in U
,

��
"� � �
�; 
"�, �
�1


�2
��
"� � �
�1

; �
�2
; 
"��, and

similarly for higher products of variations 
�i .
The functional variation 
?" satisfies the Leibniz rule

[cf. (2.31) and (3.30)]

 
?" �F ? G� � 
"�F� ? G	 �R��F� ? � �R��
"��
��G�; (A6)

where �R��
"� is itself a functional variation, say 
�, and
� �R��
"��? � 
?�. The Leibniz rule is consistent (and ac-
tually follows) from the coproduct rule

 
" � �?�
"� � 
" � 1	 �R� � �R��
"�: (A7)

Finally also the formulas in this appendix hold for the most
generic twist; just replace �R� with f	� �R��f	 in (A7).
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