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The small-scale structure of a string connecting a pair of static sources is explored for the weakly
coupled anisotropic SU�2� Yang-Mills theory in (2� 1) dimensions. A crucial ingredient in the
formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents.
The quark-antiquark potential is determined. We close with some discussion of the standard, fully
Lorentz-invariant Yang-Mills theory.
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I. INTRODUCTION

Recently, the author has established the existence of
confinement and a mass gap in a version of (2� 1)-
dimensional SU�N� Yang-Mills theory, in which the cou-
pling constants are anisotropic and small. The understand-
ing of the interquark potential and the mass gap is
elementary [1,2] though finding precise values for the
string tension [3], and the mass spectrum [4] requires de-
tailed information of an integrable (1� 1)-dimensional
quantum field theory. This integrable field theory is the
SU�N� � SU�N� principal-chiral nonlinear sigma model.
For N � 2, exact knowledge of certain matrix elements
makes it possible to perturb away from integrability.

Though the gauge theory we consider is not spatially
rotation invariant, it has features one expects of real
(3� 1)-dimensional QCD; it is asymptotically free and
confines quarks at weak coupling.

One can formally remove the regulator in strong-
coupling expansions of (2� 1)-dimensional gauge theo-
ries; the vacuum state in this expansion yields a string
tension and a mass gap which have formal continuum
limits. This is possible because of purely dimensional
considerations in this number of dimensions. Such
strong-coupling analyses can be done in a Hamiltonian
lattice formalism [5], or with an ingenious choice of de-
grees of freedom and point-splitting regularization [6].
There are even formal improvements of the vacuum state
using the point-splitting cutoff [7] or the lattice cutoff [8],
which do not confine adjoint sources. It is important to
know whether these results can be justifiably extrapolated
to the limit of no regularization (more discussion of this
issue can be found in the introduction of Ref. [3]). In
contrast, the approach we have taken is a weak-coupling
method. It is, thus far, the only method yielding quark

confinement with no strong-coupling assumptions in
more than two dimensions, without dynamical matter.
There is a hint of another weak-coupling approach in (2�
1) dimensions [9,10] based on general properties of gauge-
orbit space.

Simple intuitive formulas for the potential between a
static quark and antiquark were found quite early for our
anisotropic theory [1]. String tensions for higher represen-
tations can also be worked out, and adjoint sources are not
confined [2]. The string tensions for the cases of horizon-
tally and vertically separated quarks, i.e. separated in the
x1- and x2-directions, respectively, have corrections, how-
ever. For gauge group SU�2�, the leading correction to the
horizontal string tension was found in Ref. [3]. In this
paper, the vertical potential is shown to be the ground-state
energy of a certain Hamiltonian in one spatial dimension.
This Hamiltonian describes the dynamics of a string with
both coordinate and color degrees of freedom. The correc-
tion to the potential of a vertically separated quark-
antiquark pair is thereby determined.

The connection between the gauge theory and integrable
systems using the Kogut-Susskind lattice formalism was
explained in Refs. [1,3]. A quicker derivation was given in
Refs. [4,11]. Here we simply present the axial-gauge
Hamiltonian formalism and refer the reader to these papers
for its derivation.

The 2-coordinate is discrete, so that x2 takes the values
x2 � a; 2a; 3a . . . ; L2, where a is a lattice spacing. All
fields are considered functions of x � �x0; x1; x2�. The
boundary condition is periodic in x2, which means that
any function f�x0; x1; x2� satisfies f�x0; x1; x2 � L2� �
f�x0; x1; x2�. The boundary condition in the x1-direction
is open, so that space is a cylinder. In this paper, we assume
the thermodynamic limit is already taken, so we will not
worry too much about the boundaries. The gauge fields are
SU�N�-Lie-algebra valued. We chose generators of this Lie
algebra tb, which satisfy Trtbtc � �bc and define structure
coefficients fdbc by �tb; tc� � ifdbctd. We have set the gauge
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component A1�x� to be zero and replace A2�x� by a field
U�x� lying in SU�N�, via

 U�x� � expi
Z x2�a

x2
dy2A2�x0; x1; y2�:

The left-handed and right-handed currents are

 jL
��x�b � i Trtb@�U�x�U�x�y;

jR
��x�b � i TrtbU�x�y@�U�x�;

respectively, where � � 0, 1. The Hamiltonian is H0 �
H1, where

 H0 �
X
x2

Z
dx1 1

2g2
0

f�jL
0 �x�b�

2 � �jL
1 �x�b�

2g; (1.1)

and
 

H1 � �
X
x2

Z
dx1

Z
dy1 �g

0
0�

2

4g4
0a

2 jx
1 � y1j�jL

0 �x
1; x2�b

� jR
0 �x

1; x2 � a�b � �qb��x
1 � u1��x2u2

� qb��x
1 � v1��x2v2��jL

0 �y
1; x2�b � jR

0 �y
1; x2 � a�b

� �qb��y
1 � u1��x2u2 � qb��y

1 � v1��x2v2�; (1.2)

where we have inserted two color charges—a quark with
charge q at site v and an antiquark with charge �q at site u.
These charge operators satisfy �qb; qc� � ifdbcqd and
��qb; �qc� � ifdbc �qd. A constraint remains after the axial-
gauge fixing, namely, that for each x2

 Z
dx1�jL0 �x

1; x2�b � j
R
0 �x

1; x2 � a�b � �qb��y
1 � u1��x2u2

� qb��y
1 � v1��x2v2�� � 0; (1.3)

where � is any physical state. For more details on the
derivation of the term in the Hamiltonian (1.2) and the
constraint (1.3), see Refs. [1,3]. The Hamiltonian H0 given
in (1.1) is a sum of principal-chiral sigma-model
Hamiltonians.

The anisotropic regime of (2� 1)-dimensional Yang-
Mills theory is

 �g00�
2 	

1

g0
e�4�=�g2

0N�: (1.4)

The point where the regulator can be removed in the theory
is the same as that of the standard isotropic theory g00 �
g0 � 0. The left-hand side and ride-hand side are propor-
tional to the two energy scales in the theory (the latter
comes from the two-loop beta function of the sigma
model). For more discussion of these matters, see
Refs. [2–4].

The excitations of H0, which we call Fadeev-
Zamolodchikov (FZ) particles, behave like solitons,
though they are not quantized versions of classical solu-
tions. Some of these FZ particles are elementary and others
are bound states of the elementary FZ particles. An ele-

mentary FZ particle has an adjoint charge and massm1. An
elementary one-FZ-particle state is a superposition of
color-dipole states, with a quark (antiquark) charge at x1,
x2, and an antiquark (quark) charge at x1, x2 � a. The
interaction H1 produces a linear potential between color
charges with the same value of x2. Residual gauge invari-
ance (1.3) requires that at each value of x2, the total color
charge is zero. If there are no quarks with coordinate x2, the
total right-handed charge of FZ particles in the sigma
model at x2 � a is equal to the total left-handed charge
of FZ particles in the sigma model at x2.

The particles of the principal-chiral sigma model carry a
quantum number r, with the values r � 1; . . . ; N � 1 [12].
Each particle of label r has an antiparticle of the same
mass, with label N � r. The masses are given by

 mr � m1

sinr�N
sin�N

;

m1 � K��g2
0N�

�1=2e�4�=g2
0N � nonuniversal corrections;

(1.5)

where K is a nonuniversal constant and � is the ultraviolet
cutoff of the sigma model.

Lorentz invariance in each x0, x1 plane is manifest. For
this reason, the linear potential is not the only effect of H1.
The interaction creates and destroys pairs of elementary FZ
particles. This effect is quite small, provided that g00 is
small enough. Specifically, this means that the string ten-
sion in the x1-direction coming from H1 is small compared
to the square of the mass of the fundamental FZ particle;
this is just the condition (1.4). The effect is important,
however, in that it is responsible for the correction to the
horizontal string discussed in the next paragraph in
Eq. (1.7).

Simple arguments readily show that at leading order in
g00, the vertical and horizontal string tensions are given by

 �V �
m1

a
; �H �

�g00�
2

a2 CN; (1.6)

respectively, where CN is the smallest eigenvalue of the
Casimir of SU�N�. These naive results for the string tension
have further corrections in g00, which were determined for
the horizontal string tension for SU�2� [3]:

 �H �
3

2

�g00�
2

a2

�
1�

4�g00�
2

3�2m2
1a

2

� exp�2
Z 1

0

d�
�
e��tanh2 �

2

�
�1

�
3

2

�g00�
2

a2

�
1�

4�g00�
2

3�2m2
1a

2 0:7296
�
�1
: (1.7)

The leading term agrees with (1.6). This calculation was
done using the exact form factor for sigma-model currents
obtained by Karowski and Weisz [13]. In this paper, we
shall use the form factor to study corrections of order �g00�
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to the vertical string tension. A review of integrability and
form-factor methods is in the appendix of Ref. [3].

A picture of a gauge-invariant state for the gauge group
SU�2� with a single quark and a single antiquark at differ-
ent values of x2 is given in Fig. 1. For N > 2, there are
more complicated ways in which strings can join particles.
The lightest states have the smallest number of particles,
by virtue of�H 	 �V. Thus, there is a single FZ particle in
each layer between the quark and the antiquark. There is a
piece in H1 which can create and destroy FZ particles, but
this can safely be neglected in a nonrelativistic approxi-
mation. We shall treat the quarks as static, nondynamical
sources in this paper.

In the next section we show how the color of FZ particles
is smeared by radiative corrections, with the aid of the
exact matrix elements of the current operator. We use this
to derive the Hamiltonian of a string in Sec. III. The
ground-state energy of this string, and thus the potential
between static color sources is found in Sec. IV. In Sec. V,
we argue that the functional form of this potential extends
to the standard Lorentz-invariant SU�2� Yang-Mills theory.
We present our conclusions in Sec. VI.

II. COLOR SMEARING

Consider a static quark-antiquark pair for the SU�2�
gauge theory, as in Fig. 1. We will assume that the
x1-coordinate of the quark and antiquark is the same and
that the x2-coordinate of the quark is v2 and the
x2-coordinate of the antiquark is u2, where v2 > u2. The
string tension is

 �V � lim
v2�u2!1

Estring

v2 � u2 ;

where Estring is the lowest possible energy of the
Hamiltonian H projected on the subspace of states with
exactly one FZ particle for layers with x2 
 u2 and x2 <
v2 and no FZ particles in any other layer. To leading order
�V � m=a, where m � m1 [for SU�2� there is only one
mass]. The projection of the Hamiltonian on this subspace
is

 

Hproj �
Xv2�a

x2�u2

X4

k�1

�
m�

Z dp
2�

p2

2m
A�p;x2�ykA�p;x2�k

�
�H1;

(2.1)

where A�p; x2�k, A�p; x2�yk are the Fadeev-Zamolodchikov
destruction and creation operators (the field operator of the
FZ particles), respectively; with x1-momentum p, the in-
dex k � 1; . . . ; 4 denotes the particle species [the
Hamiltonian is invariant under rotations in O�4� �
SU�2� � SU�2�] where H1 is given by (1.2), as before.
We are making a nonrelativistic approximation. This ap-
proximation should be valid, provided �g00�

2 	 ma and we
consider the lowest-lying states.

Particle states are produced on the vacuum by the appli-
cation of FZ operators, e.g. a one particle state with mo-
mentum p and species index k is

 jp; ki � Ay�p�kj0>;

where the index x2 is suppressed. In a theory of relativistic
particles, these states are normalized according to the rule

 hp0; k0jp; ki �
1������������������

p2 �m2
p �k0k��p

0 � p�:

To find the spectrum of Hproj, we need the matrix ele-
ments

 hz1; k1jj
L;R
0 �y�jz2; k2i � hz1 � y; k1jj

L;R
0 �0�jz2 � y; k2i;

where, for now, we have dropped the index x2 and where
the particle states are given by jz; ki � A�z�kj0i, j0i being
the true vacuum of the SU�2� � SU�2� sigma model.

The matrix elements of currents may be written terms of
momentum-space eigenstates by Fourier transformation:

 

hz1; k1jj
L;R
0 �y�jz2; k2i �

Z dp1

2�
1��������
2E1

p
Z dp2

2�
1��������
2E1

p

� e�ip1�z1�y��ip2�z2�y�

� hp1; k1jj
L;R
0 �0�jp2; k2i; (2.2)

where E1;2 �
���������������������
p2

1;2 �m
2

q
. The momentum-space matrix

elements have the exact expression

 

hp1; k1jj
L;R
0 �0�jp2; k2i �

i���
2
p ��k14�k2b � �k24�k1b

� �bk1k2
��p1 � p2�

� F��1 � �2 � i��; (2.3)

where the plus or minus sign corresponds to the left-
handed (L) or right-handed (R) current, respectively, the
rapidities �1;2 are defined by m sinh�1;2 � p1;2, and

FIG. 1. A low-lying quark-antiquark-pair state. The horizontal
coordinate is x1 and the vertical coordinate is x2. The quark lies
at a larger value of x2 than the antiquark. Between the pair is a
collection of FZ particles. All the particles are bound together by
horizontal strings.
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 F��� � exp2
Z 1

0

d�
�
e�� � 1

e� � 1

sin2 ���i���
2�

sinh�

� exp�
Z 1

0

d�
�

e��

cosh2 �
2

sin2 ���i� ��
2�

:

Note that the Kronecker deltas in (2.3) are automatically
zero if an index takes the value 4. This expression is the
result of Karowski and Weisz [13] for the O�4� ’ SU�2� �
SU�2� sigma-model form factors, after applying crossing
[3].

The only difference between the free-field-theory matrix
elements and (2.2) and (2.3) is the presence of the factor
F��1 � �2 � i��. The physical interpretation of this factor
is that the color of an FZ particle is not pointlike, but
smeared over a region of size m�1. This smearing will be
made more explicit in the discussion below.

Since the mass of the FZ particles is assumed large
compared to �g00�

2=a, we assume that in the frame where
the sources are static, these particles move slowly. We can
therefore make the approximation that p1 and p2 in the
Fourier transform in (2.2) are small compared to m. The
result is
 

2�1=2�p2
1 �m

2��1=42�1=2�p2
2 �m

2��1=4

� hp1; k1jj
L;R
0 �0�jp2; k2i

�
i���
2
p ��k14�k2b � �k24�k1b � �bk1k2

� exp�
A

m2 �p1 � p2�
2;

(2.4)

where the positive constant A is

 A �
1

4�2

Z 1
0
d�

�e��

cosh2 �
2

�
1

12
�

ln2

�2 � 0:1310284:

It is convenient that, to leading order, all the momentum
dependence is in the exponent of (2.4). This result just
means that the color distribution of an FZ particle is
Gaussian. Inserting (2.4) into (2.2) yields
 

hz1; k1jj
L;R
0 �y�jz2; k2i �

����������
m2

4�A

s
��L;R

b �kl

� exp
�
�
m2

4A

�
z1 � z2

2
� y

�
2
�

� ��z1 � z2�; (2.5)

where the ‘‘spin’’ operators are

 ��L;R
b �kl � i��k4�lb � �l4�kb � �bkl�:

These operators are generators of independent spin-1=2
representations of color-SU�2�. Specifically,

 ��L;R
b ; �L;R

c � � 2i�bcd�
L;R
d ; ��L

b; �
R
c � � 0;X

b

��L;R
b �

2 � 3:

III. THE STRING HAMILTONIAN

Next we use the smeared color-charge density (2.5) to
write down the effective Hamiltonian of the string. We
write z � z�x2� for each value of x2. From the interaction
Hamiltonian (1.2), and the kinetic term in (2.1), this is

 Hstring �
m
a
�v2 � u2� �

1

2m

Xv2�a

x2�u2

@2

@z�x2�2
� Vbulk � Vends;

where

 Vbulk � �
m2

4�A
�g00�

2

4g4
0a

2

Xv2�a

x2�u2�a

Z
dx1dy1jx1 � y1jfe��m

2=4A��z�x2��x1�2�L�x2�b � e
��m2=4A��z�x2�a��x1�2�R�x2 � a�bg

� fe��m
2=4A��z�x2��y1�2�L�x2�b � e��m

2=4A��z�x2�a��y1�2�R�x2 � a�bg; (3.1)

and
 

Vends � �
�g00�

2

4g4
0a

2

Z
dx1dy1jx1 � y1j

� ����������
m2

2�A

s
e��m

2=4A��z�u2��x1�2�L�u2�b � ��x
1 � u1��qb

�

�

� ����������
m2

2�A

s
e��m

2=4A��z�u2��y1�2�L�u2�b � ��y
1 � u1��qb

�
�
�g00�

2

4g4
0a

2

Z
dx1dy1jx1 � y1j

�

� ����������
m2

2�A

s
e��m

2=4A��z�v2��x1�2�R�v2 � a�b � ��x
1 � v1�qb

�

�

� ����������
m2

2�A

s
e��m

2=4A��z�v2��y1�2�R�v2 � a�b � ��y1 � v1�qb

�
: (3.2)

We need to apply the constraint (1.3) to states. This becomes
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Z
dx1

�
�

����������
m2

2�A

s
e��m

2=4A��z�z2��x1�2�L�x2�b �

����������
m2

2�A

s
e��m

2=4A��z�z2�a��x1�2�R�x2 � a�b

�
� � 0;

for x2 � u2 � a; . . . ; v2 � a, and
 Z

dx1

����������
m2

2�A

s
fe��m

2=4A��z�u2��x1�2�L�u2�b � �qb��x1 � u1�g� � 0;

Z
dx1

����������
m2

2�A

s
fe��m

2=4A��z�v2�a��x1�2�L�v2 � a�b � qb��x
1 � v1�g� � 0;

at the ends. These constraints simply reduce to the identi-
fication of �L�x2�b with �R�x2 � a�b, for x2 �
u2 � a; . . . ; v2 � a, with �L�u2�b=

���
2
p

with �qb and
�R�v2 � a�b=

���
2
p

with �qb. In this way, the color degrees
of freedom are completely eliminated from (3.1) and (3.2).

There are integrals remaining to be done in (3.1) and
(3.2). One of these is straightforward:

 

Z
dx1dy1jx1 � y1je��m

2=4A���x1�2��y1�2� �
4
�������
2�
p

A3=2

m3 :

We write another integral we need as

 

Z
dx1dy1jx1 � y1je��m

2=4A���x1�r�2��y1�2�

�
4
�������
2�
p

A3=2

m3 P�r�:

The third and final integral we need (simplifying the
Hamiltonian near the endpoints of the string) is

 

Z
dx1jx1 � u1je��m

2=4A��x1�z�u2��2

�
2A

m2 P�
���
2
p
z�u2� �

���
2
p
u1�:

The function P�r� cannot be evaluated exactly, but for
small or large r has the limiting forms

 P�r� �

(
1� m2r2

4A ; r	 m�1������
2A

p
mjrj; r� m�1;

(3.3)

respectively. We note that the first of these forms can be
derived from the power series:

 P�r� � 1�
m2r2

4A

X1
n�0

��1�n

�n� 1�!�2n� 1�

�
m2r2

A

�
n
:

The small-r expression in (3.3) is due to the softening of
the linear potential in the horizontal direction from color
smearing. At large r, this smearing has no effect and the
potential is linear.

Our result for the string Hamiltonian is
 

Hstring �
m
a
�v2 � u2� �

1

2m

Xv2�a

x2�u2

@2

z�x2�2
�

3�g00�
2

2g4
0ma

2

�������
A

2�

s

�
Xv2�a

x2�u2�a

f1� P�z�x2� � z�x2 � a��g

�
3�g00�

2

2g4
0ma

2

�������
A

2�

s
�1� Pf

���
2
p
�z�u2� � u1�g

� Pf
���
2
p
�z�v2 � a� � v1�g�: (3.4)

IV. THE STATIC POTENTIAL BETWEEN
SOURCES

Our result (3.4) is simply a transversely oscillating dis-
cretized bosonic string. The only unusual feature is that the
potential energy becomes linear for large transverse gra-
dients. For small transverse gradients, however, the
Hamiltonian (3.4) is quite conventional, since (3.3) yields
a quadratic potential. We emphasize that this fortunate
circumstance is due entirely to the smearing of color of
the FZ particles. To determine the potential between static
sources, we must find the ground-state energy of (3.4). This
is feasible because of the quadratic nature of the potential
for small gradients. In the small-gradient approximation
that jz�x2� � z�x2 � a�j, for u2 < x2 < v2, jz�u2� � u1j,
and jz�v2� � v1j are all much smaller than m�1, the string
Hamiltonian (3.4) becomes
 

Hstring �
3�g00�

2

2g4
0ma

2

�������
A

2�

s
�
m
a
�v2 � u2� �

1

2m

Xv2�a

x2�u2

@2

@z�x2�2

�
3�g00�

2

8g4
0ma

2

����������
1

2�A

s Xv2�a

x2�u2�a

�z�x2� � z�x2 � a��2

�
3�g00�

2

4g4
0ma

2

����������
1

2�A

s
f�z�u2� � u1�2

� �z�v2 � a� � v1�2g: (4.1)

Let us now drop the first, constant term in (4.1) and denote
v2 � u2 by L.
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The analysis of (4.1) is straightforward. We drop the first
term, which has no physical significance. The potential in
(4.1) is diagonalized by means of normal modes wq, which
have components:

 �wq�k � Cq sin
�
�q
Q

�
k�

1

2

�
�
�
2

�
;

where k � �x2 � u2�=a, Q � �v2 � u2�=a � L=a, k, q �
1; 2; . . . ; Q and Cq is a constant of normalization. If we set
u1 � v1, then the Hamiltonian becomes a set of Q simple
harmonic oscillators. The ground-state energy of Hstring is

 E0 �
m
a
L�

���
3
p
g00

g2
0a

�
1

2�A

�
1=4 XQ

q�0

sin
�q
2Q

; (4.2)

where all constant terms have been dropped. We apply the
Euler summation formula
 XQ

q�0

F
�
q
Q

�
� Q

Z 1

0
dxF�x� �

1

2
�F�1� � F�0��

�
1

12Q
�F0�1� � F0�0�� �O

�
1

Q2

�
;

to (4.2), and dropping constant terms once more, obtain the
static quark-antiquark potential
 

V�L� � E0

�

�
m
a
�

2
���
3
p

�
g00
g2

0a
2

�
L�

�
���
3
p

24

g00
g2

0

�
1

2�A

�
1=4 1

L

�O

�
1

L2

�
; (4.3)

which is our final result. Notice that in (4.3) there is a
correction to the string tension of order g00, namely,

 �V �
m
a
�

2
���
3
p

�
g00
g2

0a
2 :

There is also a new term present in the potential propor-
tional to 1=L. This term does not have the standard uni-
versal coefficient [14], but instead is proportional to g00.

V. SOME REMARKS ON THE ISOTROPIC CASE

The picture of confinement in the anisotropic theory is
sufficiently compelling that we believe the behavior of the
standard rotationally invariant theory is fundamentally
similar. The necessity of the inequality (1.4) shows that
the rotationally invariant theory is not easily accessible by
the methods discussed in this section. We argued that
applying an anisotropic renormalization group causes a
theory for which g00  g0 to flow to g00 	 g0 in the infrared
[4]. This infrared form of the theory is essentially just a
nonrelativistic approximation for the isotropic theory. A
theory with a mass gap has a nonrelativistic limit (the
classical Yang-Mills theory, which is massless, has no

such limit). Consider the Yang-Mills action in 2� 1 di-
mensions with the speed of light included explicitly:

 S �
1

c

Z
d2xdtTr

�
1

2e2

X2

i�1

�F0i�
2 �

c2

2e2 �F12�
2

�
;

where e is the continuum coupling. Suppose we Wick
rotate this action to Euclidean space by x0 ! ix0, rotate
so that F12 ! F01, and finally Wick rotate back. By iden-
tifying g0 � e=

���
a
p

and g00 � e=�
���
a
p
c2�, where a is a cutoff

with units of centimeters, and taking c� 1, our naive
result is just the anisotropic model discussed in this and
previous papers. Certain observables in the anisotropic
gauge theory can now be identified with observables in
standard Yang-Mills theory, with a caveat. The caveat is
that the mass scale is given by (1.5) rather than being
proportional to the continuum coupling (this is because
the justification for this procedure relies on the anisotropic
renormalization-group argument given above).

After the rotations described above, the string tension
would be given by the spacelike Wilson loop. By (1� 1)-
dimensional Lorentz invariance, that is exactly the vertical
string tension, studied in this paper. Now the ratio of the
string tension (which is �V) to the square of the mass gap
M of the isotropic theory can be obtained by examining
correlation functions

 hjL;R
� �x1; x2�jL;R

� �x1; x2 � T�i � exp�Mc2T;

for large T. This would be the first calculation of this ratio
which is neither numerical, nor relying on strong-coupling
expansions. If this idea can be made to work, the term
proportional to 1=L in the potential (4.3) should have the
universal coefficient of Ref. [14].

VI. CONCLUSIONS

To summarize, we have determined the potential be-
tween static sources, separated in the x2-direction in
(2� 1)-dimensional SU�2� Yang-Mills theory with two
couplings g0 and g00. The calculation, like those in [2–4],
is done entirely in a weak-coupling approximation, in
which g00 is smaller than any power of g0. The non-
pointlike nature of the color charge of the fundamental
excitations of the principal-chiral sigma model is essential
to understanding the result. The physical string states are
color singlets by virtue of Gauss’s law. This feature should
also be the case for gauge group SU�N�; unfortunately,
nothing explicit can be done for N > 2, as the general-
ization of (2.3) is not known.

The composite-string Hamiltonian (4.1), describing the
electric flux between a vertically separated quark-
antiquark pair, can be studied by several techniques,
among them numerical. One could eventually imagine
real-space renormalization-group or numerical variational
methods applied to this problem.
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Using the exact S-matrix for FZ particles, the scattering
problem of string states, either mesonic, such as those we
have considered here, or purely gluonic, can be studied. In
particular, amplitudes at large center of mass energies, i.e.
Pomerons, in which gluonic processes dominate, are ana-
lytically accessible. Calculating the scattering amplitude in
this asymptotically free version of (2� 1)-dimensional
Yang-Mills theory may give some general insight into
large-s scattering.

In Sec. V, we conjectured that ratios of some quantities
in the isotropic theory may be determined by those in our
anisotropic model, through anisotropic renormalization
flow. If this is the case, the string tension in the isotropic
theory is proportional to the vertical string tension, i.e. that
is studied in this paper. For N > 2, this would also mean
that the k-string tensions in the isotropic theory should be
proportional to sin�k=N—for this is true of the vertical
k-string tensions of our model [2]. This sine-law behavior
was found in models of strong-coupling QCD, in particu-
lar, N � 2 supersymmetric gauge theory softly broken to
N � 1 [15], in the M-theory 5-brane versions of QCD

[16], and in the AdS/QCD scheme [17]. The sine law was
indicated in one calculation [18], but most simulations in
four dimensions point to a result between the so-called
Casimir law and the sine law [19–21]. In (2� 1) dimen-
sions, Bringoltz and Teper’s recent results indicate that the
sine law does not hold [22]. This would bode ill for the
conjecture of Sec. V, unless corrections to these string
tensions of order g00 have significant 1=N dependence
[thus far, we can find results like (4.3) only for N � 2].
We hope that behavior of k-string tensions will be settled
soon, as more large-scale lattice simulations are carried
out.
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