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We refine and update the metastability constraint on the standard model (SM) top and Higgs masses by
analytically including gravitational corrections to the vacuum decay rate. Present best-fit ranges of the top
and Higgs masses mostly lie in the narrow metastable region. Furthermore, we show that the SM potential
can be fine-tuned in order to be made suitable for inflation. However, SM inflation results in a power
spectrum of cosmological perturbations not consistent with observations.
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I. INTRODUCTION

Assuming that the standard model (SM) holds up to
some high energy scale close to MPl � 1:22 1019 GeV,
present data suggest a light Higgs mass, mh �
�115–150� GeV. If the Higgs boson is so light, radiative
corrections induced by the top Yukawa coupling can de-
stabilize the Higgs potential and the electroweak vacuum
becomes a false vacuum, which sooner or later decays [1].
Demanding that the SM vacuum be sufficiently long-lived
with respect to the age of the Universe implies a bound on
the Higgs and top masses [2–5].

In Sec. II we recall the peculiarities of vacuum decay
within the SM relevant for our later inclusion of gravity,
which was neglected in previous analyses. In Sec. III we
show how gravitational corrections to the vacuum decay
rate [6] can be computed by making a perturbative expan-
sion in the Newton constant, and we obtain the analytic
result for SM vacuum decay.

In Sec. IV we show that for fine-tuned values of the
Higgs and top masses (that lie within the experimentally
allowed range), the SM potential can be suitable for in-
flation. However, the corresponding power spectrum of
anisotropies is larger than the observed one.

II. VACUUM DECAY WITHIN THE STANDARD
MODEL

We recall vacuum decay within the SM without gravity,
and its peculiarities relevant for our later inclusion of
gravity. The SM contains one complex scalar doublet H,

 H � �h� i��=
���
2
p

��

" #
; (1)

with tree-level potential

 V � m2jHj2 � �jHj4 � 1
2m

2h2 � 1
4�h

4 � . . . ; (2)

where the dots stand for terms that vanish when the

Goldstone bosons �, �� are set to zero. With this normal-
ization, v � �GF

���
2
p
��1=2 � 246:2 GeV, and the mass of

the single physical degree of freedom h is m2
h �

V00�h�jh�v � 2�v2. As is well known, for h� v the quan-
tum corrections to V�h� can be reabsorbed in the running
coupling �� ���, renormalized at a scale ��� h. To a good
accuracy, V�h� v� � ��h�h4=4 and the instability occurs
if � becomes negative for some value of h. For the values of
mh compatible with data this occurs at scales larger than
105 GeV, suggesting that we can compute vacuum decay
neglecting the quadratic term m2h2=2.

The bounce [7] is a solution h�r� of the Euclidean
equations of motion that depends only on the radial coor-
dinate r2 	 x�x�:

 � @�@�h� V 0�h� � �
d2h

dr2 �
3

r
dh
dr
� V 0�h� � 0; (3)

and satisfies the boundary conditions

 h0�0� � 0; h�1� � v! 0: (4)

We can perform a tree-level computation of the tunneling
rate with a negative � < 0 renormalized at some arbitrary
scale �. In this approximation, the tree-level bounce h0�r�
can be found analytically and depends on an arbitrary scale
R:

 h0�r� �

������
2

j�j

s
2R

r2 � R2 ; S0
h0� �
8�2

3j�j
: (5)

At first sight, computing the decay rate among two vacua in
the approximation V�h� � �h4=4 where no vacuum exists
may appear rather odd. However [4], the presence of a
potential barrier around the false vacuum h� 0 is not
necessary, since in quantum field theory the bounce is
not a constant field configuration, and the energy in its
gradient effectively acts as a potential barrier. Furthermore,
the decay rate does not depend on the unknown physics
that eventually stabilizes the true vacuum at h�MPl, if the
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bounce has size R� 1=MPl: once a tunneling bubble
appears, the instability due to V0�h�0�� � 0 brings h
down to the true minimum with unit probability.
Formally, by performing the analytic continuation from
Euclidean r2 � x2 � t2 to Minkowskian r2 � x2 � t2

space-time, the evolution inside the bubble is described
by Eq. (5) with r2 < 0: h0 reaches a singularity at r2 �
�R2. Indeed our potential is unbounded from below.1 In
general, what happens inside the bubble does not affect the
tunneling rate nor the growth of the bubble: being an O(4)-
invariant configuration (i.e. the bounce depends only on r),
its walls expand at the speed of light, so that what happens
in the interior cannot causally affect the exterior.

The arbitrary parameter R appears in the expression of
the SM bounce h0�r� because in our approximations the
tree-level SM potential is scale invariant: at this level, there
is an infinite set of bounces of varying size R, all with the
same action S0
h0�.

Quantum corrections are the dominant effect that breaks
scale invariance, and have been computed in [4]. At one-
loop order, the tunneling probability in the Universe space-
time volume VU is then given by

 p � max
R

p�R��; p�R� �

VU
R4 e

�S; (6)

where S � S0 � �S1-loop is the one-loop action: since the
bounce is not a static configuration, corrections to both the
potential part, as well as to the kinetic part of the action,
must be taken into account [4]. To find the bounce con-
figuration that extremizes S, it is enough to evaluate it
along the family of tree-level bounces, h0 in Eq. (5), and
minimize with respect to R. The result is roughly S �
8�2=3j�� �� � 1=R�j, i.e. one-loop corrections remove
the tree-level ambiguity on the renormalization group
equation (RGE) scale �� by fixing it to be the scale 1=R
of the bounce. Since within the SM �� ��� happens to run
reaching a minimal value at ��� 1016–17 GeV, tunneling is
dominated by bounces with this size. A posteriori, this
justifies having neglected the SM mass term, that gives a
correction �S� �mR�2 � 1 to the bounce action, and
suggests that gravity should be taken into account
perturbatively.

III. VACUUM DECAY WITH GRAVITY

We now extend the previous computation taking into
account gravity [6]. In our case this is a potentially relevant
effect, since gravity breaks scale invariance and 1=R is just

somewhat smaller than the Planck scale. One might worry
that gravity can have dramatic effects, and that the decay
rate starts to depend on the unknown depth Vmin of the true
minimum of the SM potential.2 This is not the case. Since
the exterior geometry is the flat Minkowski space, the
generic argument given in the nongravitational case still
holds: the bubble is an O(4)-invariant solution and its walls
expands at the speed of light, irrespectively of what hap-
pens inside.3

We recall from [6] the basic formalism needed for a
quantitative analysis. We assume an Euclidean spherically
symmetric geometry, ds2 � dr2 � ��r�2d�2, where d� is
the volume element of the unit 3-sphere. The Einstein-
Higgs action

 S �
Z
d4x

���
g
p

�
�@�h��@�h�

2
� V�h� �

R

2�

�
; (8)

where � � 8�G and G � 1=M2
Pl with MPl �

1:22 1019 GeV, simplifies to

 S � 2�2
Z
dr
�
�3

�
h02

2
� V

�
�

3

�
��2�00 � ��02 � ��

�
;

(9)

where 0 denotes d=dr. The equations of motion are

 h00 � 3
�0

�
h0 �

dV
dh

; �02 � 1�
�
3
�2

�
h02

2
� V

�
: (10)

We can analytically include the effect of gravity, assum-
ing RMPl � 1, by performing a leading-order expansion in
the gravitational coupling �:
 

h�r� � h0�r� � �h1�r� �O��2�;

��r� � r� ��1�r� �O��2�:
(11)

The action is
 

S � S0 � 6�2�
Z
dr
�
r2�1

�
h020
2
� V�h0�

�

� �r�021 � 2�1�01 � 2�1r�001 �
�
�O��2�: (12)

We have taken into account that many terms in the expan-
sion vanish either because the integrand is a total derivative

1In the usual case, with a potential with two minima, the
bounce can be computed only numerically. The analytic con-
tinuation can be done by switching r! ir in Eq. (3) at r < 0,
and solving numerically. The qualitative behavior of the solution
can be understood by noticing that this operation is equivalent to
flipping the sign of V: h oscillates around the true minimum,
reaching it at r! �1, i.e. for asymptotically large times inside
the expanding bubble.

2This is what one would naı̈vely guess from the results of [6]
for the bounce action:

 Swith gravity � Swithout gravity=
1� R
2Vmin=M

2
Pl�

2; (7)

i.e. the bubble does not exist if the true minimum has a large
negative cosmological constant, e.g. Vmin ��M

4
Pl. However,

Eq. (7) holds within the thin-wall approximation [6], not appli-
cable when Vmin is large and negative, and not applicable to the
SM case we are interested in.

3It is only an observer inside the bubble that experiences a
large negative cosmological constant and consequently a con-
traction down to a big-crunch singularity [6], instead of an
expanding bubble.
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[e.g. the negative power 1=� in Eq. (8) is just apparent] or
thanks to the equations of motion. Indeed h1 does not
appear in Eq. (12) because we are functionally expanding
around the extremum h0 of the nongravitational action, so
that the first functional derivatives vanish thanks to the
equations of motion. So, we only need to compute �1: its
equation of motion is

 �01 �
1

6
r2

�
h020
2
� V�h0�

�
: (13)

Inserting it into Eq. (12) completes the computation of
gravitational corrections to leading-order in �. We notice
that the first term in Eq. (12), which is linear in �1,
contributes �2 times the last purely gravitational term in
Eq. (12), which is quadratic in �1. This happens because S
must have an extremum at c � 1 under the variation
�1�r� ! c�1�r�. The discussion is so far general, and by
choosing toy potentials we verified that Eq. (12) agrees
with the full numerical result.

IV. VACUUM DECAY WITH GRAVITY IN THE
STANDARD MODEL

Going to the SM case, using the analytic expression of
Eq. (5) for the bounce h0, we can perform all integrations
analytically finding
 

S �
8�2

3j�j
� �S1-loop � �Sgravity;

�Sgravity �
256�3

45�RMPl��2
;

(14)

where �Sgravity is the gravitational correction and �S1-loop

the one-loop correction, given in Eq. (3.3) of [4].
Equation (6) gives the tunneling probability p�R�.

Figure 1 shows an example of the relevance of gravita-
tional corrections. We checked that the leading-order ap-
proximation agrees with the result of a full numerical
computation: Eq. (14) correctly approximates the action
of the true bounce, and the true bounce h�r� is correctly
approximated by h0�r� with the value of R that minimizes
S.4

Figure 2 shows the regions in the �mh;mt� plane where
the SM vacuum is stable, metastable, or too unstable.
Gravitational corrections only induce a minor shift on the
‘‘instability‘‘ border, less relevant than present experimen-
tal and theoretical (higher-order) uncertainties. The ellip-
ses truncated at mh � 115 GeV are the best-fit values for
the top and Higgs masses, from our up-to-date global fit of
precision data, that includes the latest direct measurement
of the top mass, mt � �170:9 1:8� GeV [8]. Present data
and computations indicate that we do not live in the
unstable region (such that the SM can be valid up to the
Planck scale), but increased accuracy is needed to deter-
mine if we live in the stable or in the small metastable
region.

FIG. 1 (color online). Probability p�R� that the SM vacuum
decayed so far for mh � 115 GeV, mt � 174:4 GeV, �3�MZ� �
0:118, due to bounces with size R, without including gravita-
tional effects (dashed curve [4]) and including gravitational
effects (continuous line). The correction is relevant only at
1=R * 1017 GeV. Uncertainties due to higher-order corrections
are not shown.

FIG. 2 (color online). Metastability region of the standard
model vacuum in the �mh;mt� plane, for �s�mZ� � 0:118 (solid
curves). Dashed and dotted-dashed curves are obtained for
�s�mZ� � 0:118 0:002. The shaded half-ellipses indicate the
experimental range for mt and mh at 68% and 90% confidence
level. Subleading effects could shift the bounds by 2 GeV in
mt.

4Here we comment about the comparison between the analytic
result in Eq. (14) and the full numerical computation. With a
typical potential this is a straightforward procedure: the bounce
is determined numerically as a compromise between classical
solutions which under-shoot and over-shoot the true bounce at
large r. With a potential close to h4, finding the bounce numeri-
cally is more involved: with this potential classical solutions
necessarily go to zero at large r; however, they generically
oscillate to zero as 1=r giving a divergent action. The special
feature of h0�r� is that it vanishes as 1=r2 giving a finite action.
The true bounce should maintain this behavior. In practice, this is
achieved imposing a vanishing difference between h0�r� and the
numerical bounce. The advantage of our analytic approximation
based on the set of candidate bounces h0�r� with different values
of R is that the solutions ill-behaved at infinity never enter the
computation.
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Adding to the SM action possible dimension-6 nonre-
normalizable operators suppressed by the Planck scale
would give similar corrections to the bounce action. In
particular, adding to the SM Lagrangian the operators

 �L6 �
1

M2
Pl

�
�	M2

PlRjHj
2 � c1

jHj6

3!
� c2jHj

2jD�Hj
2

�
;

(15)

where 	 and c1;2 are unknown dimensionless coefficients,
gives the following correction:

 �S0gravity �
8�2

15�MPlR��2

�
128�	�

c1

j�j
� 4c2

�
; (16)

which can be comparable to the model-independent gravi-
tational effect computed in Eq. (14).

The values of the coefficients 	 and c1;2 change under
field redefinitions and only their linear combination enter-
ing (2) is physical. Indeed, under H ! H�1� ajHj2=M2

Pl�
we have5 
c1 � 24�a, 
c2 � 6a, and 
	 � 0; this trans-
formation can be used to set c2 ! 0. Under the Weyl
transformation of the metric g�� ! g���1� ajHj

2=M2
Pl�

we have 
	 � a=16�, 
c1 � 12a�, 
c2 � a; this trans-
formation can be used to set 	! 0. Both these field
redefinitions leave �S0gravity invariant.

To estimate the magnitude of �S0gravity we can thus
restrict the attention to only one of the three operators in
�L6 (we choose the jHj6 term), and estimate its coupling
using naı̈ve dimensional analysis. At one loop, graviton
exchanges generate the jHj6 operator with c1 � g4

s=� as
well as the �jHj4 operator with coefficient �� g4

s=�2.
Here gs is an unknown coefficient which determines if
quantum gravity is weakly or strongly coupled, with strong
coupling corresponding to gs � �

2. One might therefore
argue that c1 � ��, which implies �S0gravity � �Sgravity.

V. INFLATION WITHIN THE STANDARD MODEL?

For mt � 173 GeV and mh � 130 GeV (i.e. within the
experimentally allowed region) both the quartic Higgs
coupling � and its �-function happen to vanish, at some
RGE scale around MPl. Is this just a coincidence, or does
this boundary condition carry some message? Some spec-
ulations about this fact have been presented in [9]. Here we
explore a different aspect, namely, a possible connection
with inflation.

The quasivanishing of both � and ���� allows one to
have a quasiflat Higgs potential at h�MPl, suitable for
inflation. Indeed, we can approximate the RGE running of

� as

 ���� h0� ’ �min �


�4��4
ln2 �

h0
(17)

around the special value h0 where � reaches its minimal
value �min. The constant  is related to������� and has the
numerical value  � 0:6 within the SM. The first and
second derivatives of the SM potential V ’ ��h�h4=4 van-
ish at h � h� 	 h0e�1=4 if �min � =4096�4, such that
the slow-roll parameters

 " 	
M2

Pl

16�

�
V 0

V

�
2
; � 	

M2
Pl

8�
V 00

V

vanish, allowing for inflation.
The lack of convincing natural models for inflation

might indicate that it happens when scalar fields, fluctuat-
ing along some vast ‘‘landscape‘‘ potential generically
unsuitable for inflation, encounter a small portion of the
potential which accidentally is flat enough. This is what
might happen within the SM. The potential is illustrated in
Fig. 3, where we do not show the uncertainty due to higher-
order corrections, which effectively amounts to a 2 GeV
uncertainty in mt. All the e-folds of inflation take place for
h close to the stationary inflection point in the Higgs
potential, h� � 1017�18 GeV. Around this point we can
neglect corrections due to the infrared structure of the
SM, the quadratic term in the potential, and thermal cor-
rections to the potential provided that the initial tempera-
ture before inflation is T � h�. Within chaotic inflation, as
the Universe exits from an early era dominated by quantum
gravity effects, random initial conditions may be assumed
for the Higgs field at different points: a sufficiently large,
homogeneous patch, with a Higgs value near the inflection
point, can inflate and evolve into our Universe.

FIG. 3 (color online). Examples of fine-tuned SM potentials
that might allow inflation. The right-handed axis shows the value
of the slow-roll parameter " that would give the observed
amount of anisotropies.

5We do not distinguish between jHyD�Hj
2 and jHj2jD�Hj

2

since these operators coincide on the configurations H �
�h=

���
2
p
; 0� we are interested in.
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Can this SM potential be responsible for inflation and
the generation of anisotropies 
�=�? The answer is, not
both. The basic problem is that the requirement of having
enough e-folds of inflation,

 N � 2
����
�
p Z dh=MPl���

"
p � 60; (18)

can be met with a small enough ", but this conflicts with
the requirement that quantum fluctuation of the Higgs
inflaton should also generate the observed power spectrum
of anisotropies, 
�=�� 10�5, i.e.

 

V
"
� �0:0054MPl�

4: (19)

Indeed the height V of the SM potential in its flat region is
predicted and cannot be arbitrarily adjusted to be as low as
needed. This result can be understood by either doing

explicit computations with the approximated potential
��h�h4=4, or by looking at the sample SM potentials
plotted in Fig. 3. For a top mass within the observed range,
the plateau is at values of h and V1=4 which are somewhat
below the Planck scale, but 
�=� at N � 60 comes out
larger than the observed value. Successful inflation and
successful generation of anisotropies would be obtained if
for some unknown reason the potential would remain flat
from h� h� up to h�MPl.

VI. CONCLUSIONS

In this paper we have refined and updated the meta-
stability constraint on the Higgs mass, assuming the valid-
ity of the standard model up to the highest possible energy
scale, � � MPl. In particular, we have taken into account
gravitational corrections, which were neglected in previous
analyses. These corrections turn out to be small and cal-
culable in the phenomenologically interesting region ofmh

close to its experimental lower bound. The updated con-
straints in the �mh;mt� plane are reported in Fig. 2. Among
all possible values, the Higgs mass seems to lie in the
narrow region which allows the SM to be a consistent
theory up to very high energy scales, with a perturbative
coupling and a stable or sufficient long-lived vacuum.
Figure 4 illustrates the constraints on the Higgs mass as
function of �, and shows that the (meta)stability con-
straints do not depend on � when it is around the Planck
scale.

We have also shown that the SM potential can be fine-
tuned in order to be made suitable for inflation. However,
the resulting power spectrum of anisotropies is larger than
the observed one.
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