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Boltzmann equations are often used to describe the nonequilibrium time-evolution of many-body
systems in particle physics. Prominent examples are the computation of the baryon asymmetry of the
universe and the evolution of the quark-gluon plasma after a relativistic heavy ion collision. However,
Boltzmann equations are only a classical approximation of the quantum thermalization process, which is
described by so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann
equations are as approximations to the complete Kadanoff-Baym equations. Therefore, we present in
this article a detailed comparison of the Boltzmann and the Kadanoff-Baym equations in the framework of
a chirally invariant Yukawa-type quantum field theory including fermions and scalars. The obtained
numerical results reveal significant differences between both types of equations. Apart from quantitative
differences, on a qualitative level the late-time universality respected by the Kadanoff-Baym equations is
severely restricted in the case of the Boltzmann equations. Furthermore, the Kadanoff-Baym equations
strongly separate the time scales between kinetic and chemical equilibration. In contrast to this standard
Boltzmann equations cannot describe the process of quantum-chemical equilibration, and consequently
also cannot feature the above separation of time scales.
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I. INTRODUCTION

This article is an extension of our previous studies [1],
where we performed a detailed comparison of Boltzmann
and Kadanoff-Baym equations in the framework of a real
scalar �4 quantum field theory. The motivation for these
studies is a better understanding of processes like lepto-
genesis or preheating in the early universe [2–5], or the
evolution of the quark-gluon plasma after relativistic
heavy-ion collisions [6–9]. All these phenomena require
the description of many-particle systems out of thermal
equilibrium. The standard means to deal with this nonequi-
librium situation are Boltzmann equations. However, it is
well known that (classical) Boltzmann equations suffer
from several shortcomings as compared to their quantum
mechanical generalizations, so-called Kadanoff-Baym
equations. This motivates a comparison of Boltzmann
and Kadanoff-Baym equations in order to assess the relia-
bility of quantitative predictions based on standard
Boltzmann techniques. In the present work we generalize
our previous results to the case of a chirally invariant
Yukawa-type quantum field theory coupling fermions
with scalars. More precisely, we consider a globally
SU�2� � SU�2� �U�1� symmetric quantum field theory,
which offers two interpretations for the particle content:
On one hand, in the context of leptogenesis one might think
of a single generation of leptons and a Higgs bidoublet
[10]. On the other hand, this theory is equivalent to the
linear �-model [11–13], which can be used to describe
low-energy quark-meson dynamics in two-flavor QCD. In

any case, this work can be regarded as a further step to
approach more realistic theories, which can be used to
describe the phenomena motivating our studies.

What are the shortcomings of Boltzmann equations?
Originally, Boltzmann equations have been designed for
the description of the nonequilibrium time-evolution of
dilute gases of classical particles. As such, their range of
validity must be scrutinized once quantum effects become
relevant. This is certainly the case for elementary particles
playing the central role in phenomena-like leptogenesis or
the quark-gluon plasma. As already indicated above, the
quantum dynamics of such systems is described by so-
called Kadanoff-Baym equations. Employing a sequence
of approximations, Boltzmann equations can be derived
from Kadanoff-Baym equations [14–18]. However, it is
important to note that these approximations might be nei-
ther justifiable nor controllable, and sometimes even in-
consistent. After all, standard Boltzmann equations take
only on-shell processes into account, feature spurious con-
stants of motion, and introduce irreversibility by implying
the assumption of molecular chaos (‘‘Stoßzahlansatz’’)
[19–22]. In contrast to this, Kadanoff-Baym equations
are time-reversal invariant and take memory and off-shell
effects into account [23–26]. Therefore, one should per-
form a detailed comparison of Boltzmann and Kadanoff-
Baym equations [1,24,25,27–30].

Because of the complexity of the problem, in a first step
we restricted ourselves to a real scalar �4 quantum field
theory in 3� 1 space-time dimensions [1]. Of course, in
this framework one can neither describe the phenomenon
of leptogenesis nor thermalization of the quark-gluon
plasma after a relativistic heavy ion collision.
Nevertheless, it certainly allowed us to perform a detailed
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comparison of the Boltzmann and Kadanoff-Baym equa-
tions, which revealed interesting phenomena to be inves-
tigated in more realistic theories. We found considerable
differences in the results furnished by the Boltzmann and
Kadanoff-Baym equations: On a quantitative level, we
found that the Boltzmann equation predicts significantly
larger thermalization times than the corresponding
Kadanoff-Baym equations. On a qualitative level we could
verify that Kadanoff-Baym equations respect full late-time
universality [23,31] and strongly separate the time scales
between kinetic and chemical equilibration [32]. In the
case of a real scalar �4 quantum field theory the
Boltzmann equation includes only two-particle scattering
processes, which conserve the total particle number. This
spurious constant of motion severely constrains the evolu-
tion of the particle number distribution. As a result, the
Boltzmann equation respects only a restricted universality,
fails to describe the process of quantum-chemical equili-
bration, and does not separate any time scales.

In the present work we extend our comparison of
Boltzmann and Kadanoff-Baym equations to a chirally
invariant Yukawa-type quantum field theory coupling fer-
mions with scalars. We start from the 2PI effective action
[33,34] and derive the Kadanoff-Baym equations by re-
quiring that the 2PI effective action be stationary with
respect to variations of the complete connected two-point
functions [35,36]. First, this guarantees that the Kadanoff-
Baym equations conserve the average energy density as
well as global charges [37–39], and second, the 2PI effec-
tive action has proven to be an efficient and reliable tool for
the description of quantum fields out of thermal equilib-
rium in numerous previous treatments [23,36,40–43]. In
order to derive the corresponding Boltzmann equations,
subsequently one has to employ a first-order gradient
expansion, a Wigner transformation, the Kadanoff-Baym
ansatz, and the quasiparticle approximation [14–18].
While Boltzmann equations describe the time evolution
of particle number distributions, Kadanoff-Baym equa-
tions describe the evolution of the complete quantum
mechanical two-point functions of the system. However,
one can define effective particle number distributions,
which can be obtained from the complete propagators
and their time derivatives evaluated at equal times
[36,40]. Finally, we solve the Boltzmann and the
Kadanoff-Baym equations numerically for highly symmet-
ric systems in 3� 1 space-time dimensions and compare
their predictions on the evolution of these systems for
various initial conditions.

II. 2PI EFFECTIVE ACTION

We consider a globally SU�2�L � SU�2�R �U�1�B�L
symmetric quantum field theory with one generation of
chiral leptons and a Higgs bidoublet with Dirac-Yukawa
interactions [10]. The Dirac fields are denoted with ��

l �x�,
where � is a Dirac index and l 2 f�; eg denotes the type of

the leptons. Using the Pauli matrices, the (complex) Higgs
bidoublet can be parametrized by real scalar fields denoted
with �a�x�, where a 2 f0; . . . ; 3g. In this notation the
Lagrangian density takes the form1

 L � � ��@6 �� 1
2�@��a��@

��a� �
1
2m

2
B�a�a

� ���a�a�
2 � i� ���a��aPR � �

y
aPL��:

Although we refer to the scalar fields as Higgs fields, we
would like to note that this theory is equivalent to the linear
�-model [11–13], which can be used to describe low-
energy quark-meson dynamics in two-flavor QCD. This
and a similar model have been considered in a related
context in Refs. [32,36].

Since we will compute the evolution of the two-point
Green’s functions for nonequilibrium initial conditions,
already the classical action has to be defined on the closed
Schwinger-Keldysh real-time contour, shown in Fig. 1.
The free inverse propagators can then be read off the free
part of the classical action:

 I0 � �
Z
C
d4xd4y

�
��l�x�S�1

0;lm�x; y��m�y�

�
1

2
�a�x�G�1

0;ab�x; y��b�y�
�
;

where the inverse free propagators are given by

 G�1
0;ab�x; y� � �@x�@y� �m

2
B��C�x� y��ab (1)

and

 S�1
0;lm�x; y� � @6 x�C�x� y��lm: (2)

We consider a system without symmetry breaking, i. e.
h�a�x�i � 0. In this case the full connected Schwinger-
Keldysh propagators are given by

 Gab�x; y� � hTCf�a�x��b�y�gi (3)

and

 S��lm �x; y� � hTCf�
�
l �x�

���
m�y�gi; (4)

so that the 2PI effective action can be written in the form

tt max

t    = 0init

FIG. 1. Closed real-time path C. This time path was invented
by Schwinger [53] and applied to nonequilibrium problems by
Keldysh [54]. In order to avoid the doubling of the degrees of
freedom, we use the form presented in Ref. [15].

1The form of the kinetic term indicates that we use the
Minkowski metric where the time-time component is negative.
�1, �2 and �3 are the usual Pauli matrices, while �0 � i1. In
addition to the Dirac 	 matrices we will frequently use � � i	0,
and PL �

1
2 �1� 	5� and PR �

1
2 �1� 	5�.
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��G; S� �
i
2

trClogC�G
�1� � 1

2 trC�G�1
0 G� � i trClogC�S

�1�

� trC�S�1
0 S� � �2�G; S� � const: (5)

The square brackets indicate that the trace, the logarithm,
and the product of the propagators have to be taken in the
functional sense, and the subscript C reminds us that in-
tegrals over time are running along the closed real-time
contour. i�2�G; S� is the sum of all two-particle irreducible
vacuum diagrams, where internal lines represent the com-
plete connected propagators S andG. In this work we apply
the loop expansion of the 2PI effective action up to two-
loop order. The diagrams contributing to �2 in this ap-
proximation are shown in Fig. 2. Using the abbreviation

 H��
a;lm � i����a�lmP

��
R � ��

y
a �lmP

��
L �

we find

 �2�G; S� � ��
Z
C
d4x�Gaa�x; x�Gbb�x; x�

� 2Gab�x; x�Gab�x; x�� �
i
2

�
Z
C
d4xd4yGab�x; y� tr�HaS�x; y�HbS�y; x��;

where the trace runs over Dirac and lepton type indices.

III. KADANOFF-BAYM EQUATIONS

The equations of motion for the complete propagators
read

 

���G; S�
�Gba�y; x�

� 0 and
���G; S�

�S��ml �y; x�
� 0: (6)

They are equivalent to the corresponding self-consistent
Schwinger-Dyson equations

 G�1
ab �x; y� � iG�1

0;ab�x; y� ��ab�x; y� (7)

and

 S�1
lm �x; y� � iS�1

0;lm�x; y� � �lm�x; y�; (8)

where the proper self-energies are given by (cf. Figs. 3 and
4)
 

�ab�x; y� � 2i
��2�G; S�
�Gba�y; x�

� �4�i�C�x� y��Gdd�x; x��ab � 2Gab�x; x��

� tr�HaS�x; y�HbS�y; x�� (9)

and

 ���
lm �x; y� � �i

��2�G; S�

�S��ml �y; x�

� �H�	
a;lkH

��
b;nmS

	�
kn �x; y�Gab�x; y�: (10)

Next, we define the spectral function2

 G%;ab�x; y� � ih��a�x�;�b�y���i

and the statistical propagator3

 GF;ab�x; y� �
1
2h��a�x�;�b�y���i

for the Higgs bosons, so that we can write the complete
Higgs propagator as

 G�x; y� � GF�x; y� �
i
2

signC�x
0 � y0�G%�x; y�: (11)

In the case of real scalar fields the spectral function and the
statistical propagator are real-valued quantities [40]. In a
similar way, we also define the spectral function4

 S��%;lm�x; y� � ih���
l �x�;

���
m�y���i (12)

and the statistical propagator5

FIG. 2. Two-loop contribution to �2�G; S�. Full (dashed) lines
represent the complete connected lepton (Higgs) propagator S
(G).

FIG. 3. One-loop contribution to the Higgs self-energy.

FIG. 4. One-loop contribution to the lepton self-energy.

2From the definition of the Higgs spectral-function we see that
it is antisymmetric in the sense that G%;ba�y; x� � �G%;ab�x; y�.
Furthermore, the canonical equal-time commutation relations
give �G%;ab�x; y��x0�y0 � 0 and �@y0G%;ab�x; y��x0�y0 �
��ab�

3�x� y�.
3In contrast to the spectral function, the statistical Higgs-

propagator is symmetric in the sense that GF;ba�y; x� �
GF;ab�x; y�.

4The adjoint of the lepton spectral function is given by
Sy%;lm�x; y� � ��S%;ml�y; x��. Furthermore, the canonical
equal-time anticommutation relations give �S%;lm�x; y��x0�y0 �
i���x� y��lm.

5The adjoint of the statistical lepton-propagator is given by
SyF;lm�x; y� � �SF;ml�y; x��.
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 S��F;lm�x; y� �
1
2h��

�
l �x�;

���
m�y���i (13)

for the leptons, so that we can decompose the complete
lepton propagator according to

 S�x; y� � SF�x; y� �
i
2

signC�x
0 � y0�S%�x; y�: (14)

Then, using Eqs. (11) and (14), we can decompose the
Higgs self-energy (9) as well as the lepton self-energy (10)
according to:

 ��x; y� � �i�C�x� y��
�local��x� ��F�x; y�

�
i
2

signC�x
0 � y0��%�x; y�

and

 ��x; y� � �F�x; y� �
i
2

signC�x
0 � y0��%�x; y�:

The local part of the Higgs self-energy causes a mass shift
only, wherefore we define the effective mass by

 M2
ab�x� � m2

B�ab ���local�
ab �x�

� m2
B�ab � 4��Gdd�x; x��ab � 2Gab�x; x��: (15)

After convolving Eqs. (7) and (8) from the right with the
corresponding complete propagators, we observe that both
equations split into two complementary evolution equa-
tions for the statistical propagators and the spectral func-
tions, respectively [36]:

 ��@x�@x��ac �M
2
ac�x��GF;cb�x; y�

�
Z y0

0
d4z�F;ac�x; z�G%;cb�z; y�

�
Z x0

0
d4z�%;ac�x; z�GF;cb�z; y�; (16)

 ��@x�@x��ac �M
2
ac�x��G%;cb�x; y�

� �
Z x0

y0
d4z�%;ac�x; z�G%;cb�z; y�; (17)

 @6 xSF;lm�x; y� �
Z y0

0
d4z�F;lk�x; z�S%;km�z; y�

�
Z x0

0
d4z�%;lk�x; z�SF;km�z; y� (18)

and

 @6 xS%;lm�x; y� � �
Z x0

y0
d4z�%;lk�x; z�S%;km�z; y�: (19)

Nowadays, it is practically impossible to solve the
Kadanoff-Baym equations numerically in this general
form. However, for initial conditions which are invariant
under spatial translations, spatial rotations, parity, charge
conjugation, and chiral transformations, the propagators

take the form [36]

 Gab�x; y� �
Z d3k

�2
�3
exp�ik�x� y��G�x0; y0; k��ab (20)

and
 

Slm�x; y� �
Z d3k

�2
�3
exp�ik�x� y��

�
S0
V�x

0; y0; k�	0

� i
kj

k
SV�x

0; y0; k�	j

�
�lm; (21)

where k � jkj. The index V indicates that S�V would trans-
form as a vector under a Lorentz transformation. Due to
CP invariance, the statistical and spectral vector compo-
nents of the lepton propagator satisfy
 

S0
V;F�x

0; y0; k� � �S0
V;F�y

0; x0; k�

� S0	
V;F�x

0; y0; k�

SV;F�x
0; y0; k� � SV;F�y

0; x0; k�

� S	V;F�x
0; y0; k�

S0
V;%�x

0; y0; k� � S0
V;%�y

0; x0; k�

� S0	
V;%�x

0; y0; k�

SV;%�x0; y0; k� � �SV;%�y0; x0; k�

� S	V;%�x
0; y0; k�

(22)

Thus, the explicit factor of i makes S0
V;F, SV;F, S0

V;% and
SV;% real-valued quantities:

 Im �S0
V;F� � Im�SV;F� � Im�S0

V;%� � Im�SV;%� � 0: (23)

Furthermore, the canonical equal-time anticommutation
relations for fermion fields imply

 S0
V;%�t; t; k� � 1 and SV;%�t; t; k� � 0; (24)

the second equality being consistent with the antisymmetry
of the spacelike vector-component of the lepton spectral
function, cf. Eq. (22). Of course, the relations (20)–(23)
also hold for the corresponding self-energies, so that the
Kadanoff-Baym equations can be simplified drastically.
The simplified Kadanoff-Baym equations for the Higgs
propagator read [36]

 �@2
x0 � k2 �M2�x0��GF�x0; y0; k�

�
Z y0

0
dz0�F�x0; z0; k�G%�z0; y0; k�

�
Z x0

0
dz0�%�x0; z0; k�GF�z0; y0; k� (25)

and

 �@2
x0 � k2 �M2�x0��G%�x

0; y0; k�

� �
Z x0

y0
dz0�%�x

0; z0; k�G%�z
0; y0; k�: (26)
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In the same way, the 128 complex-valued Kadanoff-Baym equations (18) and (19) for the lepton propagator can be reduced
to the following 4 real-valued equations [36]:

 @x0S0
V;F�x

0; y0; k� � kSV;F�x0; y0; k� � �
Z y0

0
dz0��0

V;F�x
0; z0; k�S0

V;%�z
0; y0; k� � �V;F�x0; z0; k�SV;%�z0; y0; k��

�
Z x0

0
dz0��0

V;%�x
0; z0; k�S0

V;F�z
0; y0; k� � �V;%�x

0; z0; k�SV;F�z
0; y0; k��; (27)

 @x0SV;F�x
0; y0; k� � kS0

V;F�x
0; y0; k� �

Z y0

0
dz0��V;F�x

0; z0; k�S0
V;%�z

0; y0; k� ��0
V;F�x

0; z0; k�SV;%�z
0; y0; k��

�
Z x0

0
dz0��V;%�x0; z0; k�S0

V;F�z
0; y0; k� � �0

V;%�x
0; z0; k�SV;F�z0; y0; k��; (28)

 @x0S0
V;%�x

0; y0; k� � kSV;%�x
0; y0; k� �

Z x0

y0
dz0��0

V;%�x
0; z0; k�S0

V;%�z
0; y0; k� � �V;%�x

0; z0; k�SV;%�z
0; y0; k�� (29)

and

 @x0SV;%�x
0; y0; k� � kS0

V;%�x
0; y0; k� � �

Z x0

y0
dz0��V;%�x

0; z0; k�S0
V;%�z

0; y0; k� ��0
V;%�x

0; z0; k�SV;%�z
0; y0; k��: (30)

The expressions for the Higgs and lepton self-energies are
given in Appendix A. As explained in more detail in
Ref. [36], one can define an effective kinetic energy distri-
bution !�t; k�, as well as effective scalar and fermion
particle number distributions ns�t; k� and nf�t; k�, which
can be obtained from the statistical propagators according
to

 !2�t; k� �
�@x0@y0GF�x0; y0; k�

GF�x0; y0; k�

�
x0�y0�t

; (31)

 ns�t; k� � !�t; k�GF�t; t; k� �
1
2: (32)

and

 nf�t; k� �
1
2� SV;F�t; t; k�: (33)

The definition of such particle numbers is necessary in
order to make contact to Boltzmann equations, e. g.
when comparing numerical solutions of Boltzmann and
Kadanoff-Baym equations, which we will do in Sec. V.
We emphasize, however, that the Kadanoff-Baym equa-
tions are self-consistent evolution equations for the com-
plete propagators of our system, and that one has to follow
the evolution of the two-point functions throughout the
complete x0-y0-plane (of course, constrained to the part
with x0 
 0 and y0 
 0). One can then follow the evolu-
tion of the effective particle number densities along the
bisecting line of this plane.

IV. BOLTZMANN EQUATIONS

In this section we briefly sketch the standard way of
deriving Boltzmann equations from Kadanoff-Baym equa-
tions [14,15,18,44–46]. One has to employ a Wigner trans-

formation, a first-order gradient expansion, the Kadanoff-
Baym ansatz and the quasiparticle approximation.

First, we subtract Eq. (25) [Eq. (27)] with x0 and y0

interchanged from Eq. (25) [Eq. (27)]. Then we reparame-
trize the propagators and the self-energies by center and
relative times, e. g.

 G�u0; v0; k� � G
�
u0 � v0

2
; u0 � v0; k

�
:

Next, we define the center time t � x0�y0

2 and the relative
time s0 � x0 � y0, and observe on the left-hand side of the
difference equations that

 @x0@x0 � @y0@y0 � 2@t@s0

and

 @x0 � @y0 � @t

are automatically of first order in @t. Furthermore, we
Taylor expand the effective masses on the left-hand side
of the difference equation for the scalars as well as the
propagators and self-energies on the right-hand sides of
both difference equations to first order in @t around t. After
that, we Fourier transform the difference equations with
respect to the relative time s0. The Wigner transformed
scalar statistical propagator and scalar spectral function are
given by

 GF�t; !; k� �
Z
ds0 exp�i!s0�GF�t; s

0; k�;

G%�t; !; k� � �i
Z
ds0 exp�i!s0�G%�t; s

0; k�:

As G%�t; s
0; k� is a real-valued odd function of the relative

time s0, we introduced an explicit factor of �i in order to
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make its Wigner transform again a real-valued function.
For similar reasons we also introduce a factor of�i for the
Wigner transforms of SV;%�t; s0; k�, S0

V;F�t; s
0; k�,

S0
V;R�t; s

0; k�, and S0
V;A�t; s

0; k�,6 as well as the correspond-
ing self-energies. In order to be able to really perform the
Fourier transformation, we have to send the initial time to
�1. At least for large x0 and y0 this can be justified by
taking into account that correlations between earlier and
later times are suppressed exponentially [1,40]. For early
times, however, this is certainly not the case. The result of
all these transformations are quantum-kinetic equations for
the statistical propagators GF and S0

V;F [16–18,47–50]7:

 � f�;GFgPB � �%GF ��FG% � f�F; Re�GR�gPB

(34)

and

 fW; S0
V;FgPB � �0

V;%S
0
V;F � �0

V;FS
0
V;% � �V;%SV;F

� �V;FSV;% � f�
0
V;F; Re�S0

V;R�gPB

� fRe��V;R�; SV;FgPB

� f�V;F; Re�SV;R�gPB; (35)

where the Poisson brackets are defined by

 ff; ggPB � ��@tf��@!g� � �@!f��@tg�:

The auxiliary functions

 ��t; !; k� � �!2 � k2 �M2�t� � Re��R�t; !; k��

and

 W�t; !; k� � !� Re��0
V;R�t; !; k��

have been introduced to simplify the notation. Employing
the first-order Taylor expansion is clearly not justifiable for
early times when the equal-time propagator is rapidly
oscillating [1,23]. Consequently, one might expect that
the above quantum-kinetic equations and also the
Boltzmann equations, which we derive subsequently, fail
to describe the early-time evolution and that errors accu-
mulated for early times cannot be remedied at late times. In
fact, the first-order gradient expansion is motivated by
equilibrium considerations: In equilibrium the propagator
depends on the relative coordinates only. There is no
dependence on the center coordinates, and one may hope
that there are situations out of equilibrium where the
propagator depends only moderately on the center coordi-
nates. This is clearly the case for late times when our

system is sufficiently close to equilibrium. However, al-
ready after moderate times the rapid oscillations men-
tioned above, have died out and are followed by a
monotonous drifting regime [1,40]. In this drifting regime
the second derivative with respect to t should be negligible
as compared to the first-order derivative, and a consistent
Taylor expansion can be justified even though the system
may still be far from equilibrium. Here, it is crucial that the
Taylor expansion is performed consistently for two rea-
sons: First, this guarantees that the quantum-kinetic equa-
tions satisfy exactly the same conservation laws as the full
Kadanoff-Baym equations do [17]. Second, it has been
shown that neglecting the Poisson brackets severely re-
stricts the range of validity of the quantum-kinetic trans-
port equations [50,51].

In order to derive Boltzmann equations from the
quantum-kinetic equations for the statistical propagators
(34) and (35), first we have to discard the Poisson brackets
on the right-hand sides, thereby sacrificing the consistency
of the gradient expansion. On the left-hand sides we re-
move the time dependence of the auxiliary quantities �
and W. We take

 W�t; !; k� � !

and

 ��t; !; k� � �!2 � k2 �m2;

where m is the thermal mass of the scalars. After that, we
employ the Kadanoff-Baym ansatz

 GF�t; !; k� � G%�!; k��
1
2� ns�t; !; k�� (36)

and

 SF�t; !; k� � S%�!; k��
1
2� nf�t; !; k�� (37)

which also can be motivated by equilibrium considera-
tions. In fact, this is a generalization of the fluctuation-
dissipation theorem, which states that, for a system in
thermal equilibrium, the statistical propagator is propor-
tional to the spectral function. The fluctuation dissipation
theorem can be recovered from Eqs. (36) and (37) by
discarding the dependence on the center time t and fixing
ns and nf to be the Bose-Einstein and Fermi-Dirac distri-
bution function, respectively. The last approximation,
which is necessary to arrive at the Boltzmann equations,
is the so-called quasiparticle (or on-shell) approximation.
For the scalars this means that the spectral function takes
the form

 G%�!; k� �


E�k�

���!� E�k�� � ��!� E�k���;

where the quasiparticle energy is given by

 E�k� �
�����������������
m2 � k2

p
:

For the lepton spectral function we assume

6The retarded and advanced propagators, e. g. GR�x
0; y0; k� �

��x0 � y0�G%�x
0; y0; k� and GA�x

0; y0; k� � ���y0 � x0��
G%�x

0; y0; k�, and self-energies have to be introduced in order
to remove the upper boundaries of the memory integrals in the
Kadanoff-Baym equations.

7The complete and closed set of these quantum-kinetic equa-
tions comprehends 9 equations and self-energies, which, for
completeness, are shown in Appendix B.
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 S0
V;%�!; k� � 
���!� k� � ��!� k��;

SV;%�!; k� � 
���!� k� � ��!� k��:

Once more, we would like to stress that the exact time
evolution of the spectral functions is determined by the
Kadanoff-Baym equations. It has been shown that the
spectral function can be parameterized by a Breit-Wigner
function with a nonvanishing width [26,29]. To reduce the
width of this Breit-Wigner curve to zero is certainly not a
controllable approximation and leads to very large quali-
tative discrepancies between the results produced by the
Kadanoff-Baym and Boltzmann equations. In fact this
approximation can only be justified if our system consists
of stable, or at least very long-lived, quasiparticles, whose
mass is much larger than their decay width. We also would
like to note that a completely self-consistent determination
of the thermal mass in the framework of the Boltzmann
equation requires the solution of an integral equation for
E�k�, which would drastically increase the complexity of
our numerics. As none of our physical results depend on
the exact value of the thermal mass, for convenience, we
use the equilibrium value of the thermal scalar mass as
determined by the Kadanoff-Baym equations. Eventually,
we define the quasiparticle number densities by

 ns�t; k� � ns�t; E�k�; k�

and

 nf�t; k� � nf�t; k; k�:

After equating the positive energy components in Eqs. (34)
and (35) we arrive at the following Boltzmann equations:
 

@tns�t; k� � 2
�2
Z d3p

�2
�3
Z
d3q�3�k� p� q�

� ��E�k� � p� q�
1

E�k�

�
1�

pq

pq

�

� ��ns�t; k� � 1�nf�t; p�nf�t; q�

� ns�t; k��nf�t; p� � 1��nf�t; q� � 1�� (38)

and
 

@tnf�t; k� � 2
�2
Z d3p

�2
�3
Z
d3q�3�k� p� q�

� ��k� p� E�q��
1

E�q�

�
1�

kp

kp

�

� ��nf�t; k� � 1��nf�t; p� � 1�ns�t; q�

� nf�t; k�nf�t; p��ns�t; q� � 1��: (39)

Exploiting isotropy the above 6-dimensional Boltzmann
collision integrals can be reduced to 1-dimensional inte-
grals:

 

@tns�t; k� �
2�2


2E�k�

Z 1
0
dp��q0�Js�k; p; q0�

� ��ns�t; k� � 1�nf�t; p�nf�t; q0�

� ns�t; k��nf�t; p� � 1��nf�t; q0� � 1��; (40)

 

@tnf�t; k� �
2�2


2

Z 1
0
dq��p0�

q
E�q�

Jf�k; p0; q�

� ��nf�t; k� � 1��nf�t; p0� � 1�ns�t; q�

� nf�t; k�nf�t; p0��ns�t; q� � 1��: (41)

The details of these calculations and the definitions of all of
the auxiliary quantities are given in Appendix C. This
simplification of the collision integrals is crucial in order
to implement efficient computer programs for the numeri-
cal solution of the Boltzmann equations.

In this section we showed that the derivation of
Boltzmann equations from Kadanoff-Baym equations re-
quires a number of nontrivial approximations and assump-
tions. One has to employ a first-order gradient expansion, a
Wigner transformation, and a quasiparticle approximation.
In this sense, one can consider the Kadanoff-Baym equa-
tions as quantum Boltzmann equations resumming the
gradient expansion up to infinite order and including mem-
ory and off-shell effects.

V. COMPARING BOLTZMANN VS.
KADANOFF-BAYM

A. Initial conditions and numerical settings

In order to solve the Kadanoff-Baym equations numeri-
cally, we follow exactly the lines of Refs. [1,36] on a lattice
with 20002 � 323 lattice sites. The values for the coupling
constants are � � 1 and � � 0:25. The initial conditions
for the statistical propagators are determined by scalar and
fermionic particle number distributions ns (t � 0, p) and
nf (t � 0, p) according to
 

GF�x0; y0; p�x0�y0�0 �
ns�t � 0; p� � 1

2

!0�p�
;

�@x0GF�x0; y0; p��x0�y0�0 � 0;

�@x0@y0GF�x
0; y0; p��x0�y0�0 � !0�p�

�
ns�t � 0; p� �

1

2

�
;

S0
V;F�x

0; y0; p�x0�y0�0 � 0;

SV;F�x0; y0; p�x0�y0�0 �
1

2
� nf�t � 0; p�;

where!0�p� is the initial scalar kinetic energy distribution.
On the other hand, the initial conditions for the spectral
functions are determined by equal-time (anti-) commuta-
tion relations. We solve the Boltzmann and Kadanoff-
Baym equations for three different sets of initial particle
number distributions, which are shown in Fig. 5. All initial
conditions correspond to the same (conserved) average
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FIG. 5. These figures show the qualitative shape of the initial particle number distributions for scalars (left) and fermions (right).
These distributions define the initial conditions (IC) for which we solved the Boltzmann and Kadanoff-Baym equations numerically.
Because of computational limitations we could not solve the Boltzmann and Kadanoff-Baym equations for exactly the same initial
conditions. The numerical solution of the Kadanoff-Baym equations called for systems with larger average energy and particle number
densities. However, it is important to note, that our results are not in any way affected by these differences. For both types of equations,
all initial conditions correspond to the same (conserved) average energy density. Above that, for the initial conditions IC1 and IC2 also
the sum of the initial average number densities agree.

FIG. 6. These plots show the time evolution of the particle number distributions for fixed momentum modes and all initial conditions
as determined by the Boltzmann and the Kadanoff-Baym equations. We see that the Kadanoff-Baym equations respect full
universality, whereas the Boltzmann equations maintain only a restricted universality, cf. Fig. 7. The qualitative features of these
plots do not depend on the momentum modes. Therefore, in order to get clear plots, we could choose a different momentum mode for
each plot, which accounts for the different initial conditions on the Boltzmann and the Kadanoff-Baym side.

MANFRED LINDNER AND MARKUS MICHAEL MÜLLER PHYSICAL REVIEW D 77, 025027 (2008)

025027-8



energy density. Above that, for the initial conditions IC1
and IC2 also the sum of the initial scalar and fermionic
average particle number densities agree. The numerical
solution of the Boltzmann equations proceeds along the
lines of Ref. [1]. The scale in our plots is set by the scalar
thermal mass m � !eq (p � 0), where !eq�p� is the ef-
fective kinetic energy distribution (31) for sufficiently late
time t.

B. Universality

Figures 6 and 7 exhibit that the Kadanoff-Baym equa-
tions respect full universality: Fig. 6 shows the time evo-
lution of the particle number distributions for a fixed
momentum mode. The particle number distributions start
from different initial values and go through very different
early-time evolutions. Nevertheless, in the case of the
Kadanoff-Baym equations they all approach the same uni-
versal late-time value. Figure 7 shows the particle number
distributions for times when equilibrium has effectively
been reached. In the case of Kadanoff-Baym equations,
we observe that the equilibrium number distributions agree
exactly independent of the initial conditions, which proves

that we could have shown the plots of Fig. 6 for any
momentum mode. In particular, the straight lines in
Fig. 7 prove that the equilibrium number distributions
take the form of Bose-Einstein or Fermi-Dirac distribution
functions with a universal temperature T � 2:3m and uni-
versally vanishing chemical potentials.

In contrast to this, Boltzmann equations maintain only a
restricted universality. Figures 6 and 7 reveal that only the
initial conditions IC1 and IC2 lead to the same late-time
behavior, which deviates significantly from the one ap-
proached by the third initial condition IC3. Again, the

FIG. 7. Equilibrium particle number distributions. The straight lines in these plots prove that in equilibrium the particle number
distributions indeed take the form of Bose-Einstein or Fermi-Dirac distribution functions, where the temperature is given by the inverse
slope and the chemical potential is proportional to the y-axis intercept. The Kadanoff-Baym equations lead to a universal temperature
T � 2:3m and universally vanishing chemical potentials. The temperatures and chemical potentials predicted by the Boltzmann
equations are given in Table I.

TABLE I. Temperatures and chemical potentials as predicted
by the Boltzmann equations. The values in this table have been
obtained by fitting the equilibrium particle number distributions
shown in Fig. 7 against Bose-Einstein and Fermi-Dirac distri-
bution functions, respectively.

Ts=m Tf=m �s=m �f=m �s=�f

IC1 1.044 1.044 0.910 0.455 1.999
IC2 1.044 1.044 0.910 0.455 2.001
IC3 1.125 1.124 0.586 0.293 1.997
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straightness of the lines in Fig. 7 proves that the equilib-
rium number distributions take the form of Bose-Einstein
or Fermi-Dirac distribution functions. However, the differ-
ent slopes of the lines indicate that the temperature is not
the same for all initial conditions, and the nonvanishing y-
axis intercepts indicate that Boltzmann equations may
predict different nonvanishing chemical potentials. Fitted
values for these quantities are given in Table I.

The reason for the observed restriction of universality
can be extracted from Fig. 8 where we plotted the time

evolution of the average particle number densities per
degree of freedom

 Ns�t� �
Z d3p

�2
�3
ns�t; p� (42)

and

 Nf�t� �
Z d3p

�2
�3
nf�t; p� (43)

and their sum. Provided �-derivable approximations are
employed, the Kadanoff-Baym equations conserve the av-

FIG. 8. Time evolution of the average particle number densities and their sum. The Kadanoff-Baym equations allow for a change of
the latter quantity, whereas it is spuriously conserved by the Boltzmann equations. The quantitative disagreement of the average
particle number densities can be attributed to different initial conditions and discretization schemes for the Boltzmann and the
Kadanoff-Baym equations, and is of no relevance for the purpose of the present work.
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erage energy density as well as global charges [37–39].
However, as we consider systems with vanishing net
charge density neither of the above average particle num-
ber densities has to be conserved, nor their sum. Indeed, the
Kadanoff-Baym equations include off-shell particle crea-
tion and annihilation [1,26], so that all of the quantities
plotted in Fig. 8 may change as time goes on and approach
a universal equilibrium value.

In contrast to this, due to the quasiparticle (or on-shell)
approximation the Boltzmann equations (40) and (41) only
include decay and recombination processes of the form

 1 scalar $ 2 fermions: (44)

More precisely, one of four scalars may decay into or be
recombined from one of two fermion pairs. As a conse-
quence the sum of the average particle number densities
(42) and (43) is strictly conserved, as can be seen in Fig. 8.
Of course, this spurious constant of motion severely re-
stricts the evolution of the particle number distributions. As
a result, the Boltzmann equations maintain only a re-
stricted universality and, as will be discussed in the next
subsection, fail to describe the process of quantum-
chemical equilibration.

C. Chemical equilibration

In a system allowing for the creation and annihilation of
particles, the chemical potential of particles, whose total
number is not restricted by any conserved quantity, must
vanish in thermodynamic equilibrium. Accordingly, as we
consider systems with vanishing net charge density the
chemical potentials for scalars and fermions should vanish
once equilibrium has been reached. Indeed, Kadanoff-
Baym equations lead to universally vanishing chemical
potentials. In contrast to this, as one can see in Table I,
the Boltzmann equations in general will give nonvanishing
chemical potentials. For a system which includes only
interactions of the form (44), in equilibrium the chemical
potentials are expected to satisfy the relation

 �s � 2�f:

As one can see in the right-most column of Table I, this
relation is indeed fulfilled up to numerical errors <0:3%.
Thus, the Boltzmann equations (40) and (41) lead to a
classical chemical equilibrium. As mentioned above, how-
ever, quantum-chemical equilibrium requires that the
chemical potentials vanish for systems with vanishing net
charge density. In this sense, the nonvanishing chemical
potentials in Table I indicate that the description of
quantum-chemical equilibration is out of reach of the
Boltzmann equations (40) and (41).

D. Separation of time scales

As has been discussed in Ref. [1] in the framework of a
purely scalar theory and in Ref. [32] in the framework of

the linear sigma model underlying our studies in this work,
the Kadanoff-Baym equations strongly separate the time
scales between the kinetic and the complete thermody-
namic (including chemical) equilibration. This phenome-
non has been called prethermalization [32], and implies
that certain quantities approach their equilibrium values on
time scales which are dramatically shorter than the ther-
modynamic equilibration time.

As we have seen in this work and in Ref. [1], standard
Boltzmann equations cannot describe the phenomenon of
quantum-chemical equilibration, and thus they also cannot
describe the approach to the quantum-thermodynamic
equilibrium. Consequently, standard Boltzmann equations
cannot separate the time scales between the kinetic and the
full thermodynamic equilibration and hence a description
of prethermalization is out of reach of standard Boltzmann
equations.

In the context of time scales, of course, it is also im-
portant to compare the thermalization times themselves.
Here, it is interesting to note that for nonrelativistic sys-
tems Boltzmann equations yield smaller thermalization
times than Kadanoff-Baym equations [24,25,27]. In con-
trast to this, however, in the framework of relativistic
quantum fields far from equilibrium, Boltzmann equations
give significantly larger thermalization times, as can be
seen in Figs. 6 and 8, and in Ref. [1].

VI. CONCLUSIONS

In this article we addressed the question how reliable
Boltzmann equations are as approximations to Kadanoff-
Baym equations in the framework of a chirally invariant
Yukawa-type quantum field theory coupling scalars with
fermions. Starting from the 2PI effective action, we re-
viewed the derivation of the Kadanoff-Baym equations and
the approximations which are necessary to eventually ar-
rive at standard Boltzmann equations. We solved the
Boltzmann and Kadanoff-Baym equations numerically
for highly symmetric systems in 3� 1 space-time dimen-
sions without any further approximations and compared
their solutions for various nonequilibrium initial
conditions.

We demonstrated that the Kadanoff-Baym equations
respect universality: For systems with equal average en-
ergy density the late-time behavior coincides independent
of the details of the initial conditions. In particular, inde-
pendent of the initial conditions the particle number dis-
tributions, temperatures, chemical potentials and thermal
masses predicted for times, when equilibrium has effec-
tively been reached, coincide. Above that, Kadanoff-Baym
equations incorporate the process of quantum-chemical
equilibration: For systems with vanishing net charge den-
sity the chemical potentials vanish once equilibrium has
effectively been reached. Last but not least, Kadanoff-
Baym equations feature the phenomenon of prethermali-
zation and separate the time scales between kinetic and full
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thermodynamic (including quantum-chemical) equili-
bration.

The quasiparticle approximation introduces spurious
constants of motion for standard Boltzmann equations
(cf. Fig. 8), which severely restricts the evolution of the
particle number distributions. As a result, Boltzmann equa-
tions cannot lead to a universal quantum-thermal equilib-
rium and maintain only a restricted universality: Only
initial conditions for which the average energy density,
all global charges and all spurious constants of motion
agree from the very beginning, lead to the same equilib-
rium results. As shown in Table I, Boltzmann equations
cannot describe the phenomenon of quantum-chemical
equilibration and, in general, will lead to nonvanishing
chemical potentials even for systems with vanishing net
charge density. Because of the lack of quantum-chemical
equilibration, the separation of time scales observed for the
Kadanoff-Baym equations is absent in the case of the
Boltzmann equations, which renders the description of
prethermalization impossible.

Some of the approximations, which are required to
derive Boltzmann equations from Kadanoff-Baym equa-
tions, are clearly motivated by equilibrium considerations.
Taking the observed restriction of universality into ac-
count, we conclude that in the context of relativistic quan-
tum fields one can safely apply standard Boltzmann
equations only to systems which are sufficiently close to
equilibrium, so that the spurious constants of motion
emerging in Boltzmann equations already take their equi-
librium values. However, for systems far from equilibrium
standard Boltzmann equations work reliably neither for
early times (no prethermalization) nor for late times
(only restricted late-time universality, no quantum-
chemical equilibration). Accordingly, for systems in the
intermediate regime the results given by standard
Boltzmann equations should be treated with care. For
realistic scenarios, like leptogenesis or the quark-gluon
plasma, non-negligible corrections to Boltzmann equations
are expected, which should be evaluated.

Solving Kadanoff-Baym equations numerically is sig-
nificantly more difficult than solving the corresponding
standard Boltzmann equations. However, the considerable
discrepancies found for numerical solutions of Kadanoff-
Baym and Boltzmann equations revealed equally signifi-
cant limitations for standard Boltzmann equations.
Accordingly, the importance of numerical solutions of
Kadanoff-Baym equations cannot be overestimated and it
is certainly worth to face the arising difficulties.

In the present work we considered standard Boltzmann
equations at lowest order in the particle number densities,
and we employed the standard Kadanoff-Baym ansatz for
their derivation. Further studies are needed in order to
estimate whether and to what extent the situation for
Boltzmann equations can be improved by including non-
minimal collision terms or by employing a generalized
Kadanoff-Baym ansatz.

In the future it will be important to perform a similar
comparison of Boltzmann and Kadanoff-Baym equations
also in the framework of gauge theories. Furthermore, a
complete quantum mechanical description of leptogenesis
would require a treatment of Kadanoff-Baym equations on
an expanding space-time, which induces further nonequi-
librium effects. Independent of the comparison of
Boltzmann and Kadanoff-Baym equations we are looking
forward to learning to which extent an entirely nonpertur-
bative renormalization procedure affects the results quan-
titatively. Above all, such a nonperturbative renorma-
lization procedure should have a stabilizing virtue for the
computational algorithms.
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APPENDIX A: SELF-ENERGIES

In this appendix we give the expressions for the self-
energies, which have to be inserted in the simplified
Kadanoff-Baym equations (25)–(30). According to
Eq. (20) the effective mass in Eqs. (25) and (26) is given by

 M2�x0� � m2
B � 24�

Z d3p

�2
�3
GF�x

0; x0; p�:

Using the notation

 S V�x
0; y0; k� �

k

k
SV�x

0; y0; k�

the statistical and spectral Higgs self-energies can be writ-
ten in the form

 �F�x
0; y0; k� � �8�2

Z d3p

�2
�3
Z
d3q��k� p� q�

�

�
�S0

V;F�x
0; y0; q�S0

V;F�x
0; y0; p�

�
1

4
S0
V;%�x

0; y0; q�S0
V;%�x

0; y0; p�

� SV;F�x
0; y0; q�SV;F�x

0; y0;p�

�
1

4
SV;%�x

0; y0; q�SV;%�x
0; y0;p�

�

and
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 �%�x
0; y0; k� � �16�2

Z d3p

�2
�3
Z
d3q��k� p� q�

� ��S0
V;%�x

0; y0; q�S0
V;F�x

0; y0; p�

� SV;%�x0; y0; q�SV;F�x0; y0;p��:

The simplified lepton self-energies are given by

 �0
V;F�x

0; y0; k� � �4�2
Z d3p

�2
�3
Z
d3q��k� p� q�

�

�
GF�x

0; y0; q�S0
V;F�x

0; y0; p�

�
1

4
G%�x

0; y0; q�S0
V;%�x

0; y0; p�
�
;

�0
V;%�x

0; y0; k� � �4�2
Z d3p

�2
�3
Z
d3q��k� p� q�

� �G%�x
0; y0; q�S0

V;F�x
0; y0; p�

�GF�x0; y0; q�S0
V;%�x

0; y0; p��;

�V;F�x0; y0; k� � �4�2 k

k

Z d3p

�2
�3
Z
d3q��k� p� q�

�

�
GF�x0; y0; q�SV;F�x0; y0;p�

�
1

4
G%�x0; y0; q�SV;%�x0; y0;p�

�
;

and

 �V;%�x0; y0; k� � �4�2 k

k

Z d3p

�2
�3
Z
d3q��k� p� q�

� �G%�x0; y0; q�SV;F�x0; y0;p�

�GF�x0; y0; q�SV;%�x0; y0;p��:

APPENDIX B: QUANTUM-KINETIC EQUATIONS

Here we give the complete set of quantum-kinetic equa-
tions, which are obtained from the simplified Kadanoff-
Baym equations (25)–(30) once one performs a Wigner
transformation and a first-order gradient expansion. The
quantum-kinetic equations for the scalars read:
 

�f�;GFgPB � �%GF ��FG% � f�F; Re�GR�gPB;

�f�;G%gPB � f�%; Re�GR�gPB;

GR �
1

�!2 � k2 �M2�t� ��R
: (B1)

It can be shown that [18]

 G% � 2 Im�GR� �
��%

�2 � 1
4 �2

%

indeed satisfies the kinetic equation for the scalar spectral
function (B1). The quantum-kinetic equations for the fer-

mionic statistical propagators and spectral functions read:

 fW; S0
V;FgPB � �0

V;%S
0
V;F � �0

V;FS
0
V;% � �V;%SV;F

� �V;FSV;% � f�
0
V;F; Re�S0

V;R�gPB

� fRe��V;R�; SV;FgPB

� f�V;F; Re�SV;R�gPB;

fW; SV;FgPB � �0
V;%SV;F � �0

V;FSV;% ��V;%S
0
V;F

��V;FS
0
V;% � fRe��V;R�; S

0
V;FgPB

� f�0
V;F; Re�SV;R�gPB

� f�V;F; Re�S0
V;R�gPB;

fW; S0
V;%gPB � �f�

0
V;%; Re�S0

V;R�gPB � fRe��V;R�; SV;%gPB

� f�V;%; Re�SV;R�gPB;

and

 fW; SV;%gPB � f�
0
V;%; Re�SV;R�gPB � fRe��V;R�; S

0
V;%gPB

� f�V;%; Re�S0
V;R�gPB:

The quantum-kinetic equations for the retarded lepton
propagators read

 S0
V;R �

W � i
2 �0

V;%

�W � i
2 �0

V;%�
2 � �k� Re��V;R� �

i
2 �V;%�

2

and

 SV;R � �
k� Re��V;R� �

i
2 �V;%

�W � i
2 �0

V;%�
2 � �k� Re��V;R� �

i
2 �V;%�

2 :

APPENDIX C: SIMPLIFYING THE BOLTZMANN
COLLISION INTEGRALS

This appendix reveals the details of the calculation
leading from the Boltzmann equations (38) and (39) to
their simplified versions (40) and (41) [1,52]. For zero
momentum the evaluation of the collision integral in
Eq. (38) is literally trivial:
 

@tns�t; k � 0� � �
m�2

4

��ns�t; k � 0� � 1�

� nf�t; p�nf�t; q� � ns�t; k � 0�

� �nf�t; p� � 1��nf�t; q� � 1��p�q�m=2:

For k > 0 a little more work has to be done. We rewrite
Eq. (38) using the Fourier representation of the momentum
conservation � function

 �3�k� p� q� �
Z d3�

�2
�3
exp��ik� � ip� � iq��

and spherical coordinates. The scalar product of two vec-
tors is then given by
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 pq � pq�sin#p sin#q cos�’p � ’q� � cos#p cos#q�:

We perform the integrals over the solid angles in the order
�q, �p, ��. Using the notation

 j�x� �
sin�x�
x
� cos�x�

we find
 Z

d�q exp�iq��
�
pq

pq
� 1

�

�
4

q�
�i cos�#p�j�q�� � sin�q���;

Z
d�p exp�ip���i cos�#p�j�q�� � sin�q���

� �
4

p�
�j�p��j�q�� � sin�p�� sin�q���;

Z
d�� exp��ik��

�
4

k�

sin�k��:

After defining the auxiliary function

 Js�k; p; q� � �pq
Z 1

0
d�

sin�k��
k�

�j�p��j�q�� � sin�p��

� sin�q���

� �



16k
�k2 � �p� q�2��sign�k� p� q�

� sign�k� p� q� � sign�k� p� q�

� sign�k� p� q��

and integrating over q, we eventually arrive at Eq. (40),
where

 q0 � E�k� � p:

Next, we work out the collision integral for the fermions.
First of all, we integrate Eq. (39) over �k. On the left-hand
side this gives a factor of 4
. On the right-hand side we
evaluate the integrals over the solid angles in the order �q,
�p, �k, ��:
 Z

d�q exp�iq��

�
4

q�

sin�q��;

Z
d�p exp��ip��

�
kp

kp
� 1

�

�
4

p�
�sin�p�� � i cos�#k�j�p���;

Z
d�k exp��ik���sin�p�� � i cos�#k�j�p���

�
4

k�
�sin�k�� sin�p�� � j�k��j�p���;

Z
d�� � 4
:

Defining the auxiliary function

 Jf�k; p; q� � p
Z 1

0
d�

sin�q��
k�

�sin�k�� sin�p��

� j�k��j�p���

�



16k2 ��k� p�
2 � q2��sign�k� p� q�

� sign�k� p� q� � sign�k� p� q�

� sign�k� p� q��

and integrating over p yields Eq. (41), where

 p0 � E�q� � k:
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