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Volume stabilization in models with flat extra dimensions could follow from vacuum energy residing in
the bulk when translational invariance is spontaneously broken. We study a simple toy model that
exemplifies this mechanism which considers a massive scalar field with nontrivial boundary conditions at
the end points of the compact space, and includes contributions from brane and bulk cosmological
constants. We perform our analysis in the conformal frame where the radion field, associated with volume
variations, is defined, and present a general strategy for building stabilization potentials out of those
ingredients. We also provide working examples for the interval and the Tn=Z2 orbifold configuration.
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I. INTRODUCTION

Extra compact spatial dimensions are a well-known
fundamental ingredient of string theory, which needs to
be formulated in at least ten dimensions (or 11 for M
theory) to be consistent. The space generated by the six
(seven) spacelike extra dimensions may have a nontrivial
configuration and topology, and be characterized by a
variety of sizes, which, according to some speculations
[1], may even be as large as a few micrometers, in contrast
with the much smaller Planck length, ‘P � 10�33 cm. The
idea seems to find some motivation from the study of the
nonperturbative regime of the E8 � E8 theory by Witten
and Horava [2], where one of these extra dimensions
appears to be larger than the naively expected Planck
size for quantum gravity physics. The possibility that there
could be such extra dimensions has renewed the interest in
a class of models once inspired by the works of Kaluza and
Klein [3] and lately suggested by several authors [4,5]. It
has also motivated a large number of studies oriented to
explore phenomenological uses of such new dimensions.

Of particular interest are the so-called brane models, in
which our observable world is constrained to live on a four
dimensional hypersurface (the brane) embedded in a flat,
higher dimensional space (the bulk), such that the extra
dimensions can only be tested by gravity, and perhaps
standard model singlets, a setup that resembles D-brane
theory constructions. Further modifications to this basic
scenario have also considered the possibility that some or
even all standard model fields may probe some of the extra
dimensions. Nonetheless, most models are studied only in
the effective field theory limit, valid below the fundamental
string scale. These models have the extra feature that they

may provide an understanding of the large difference
among Planck (MP) and electroweak (mew) scales almost
by construction, since now the Planck scale ceases to be
fundamental. It is replaced by the truly fundamental grav-
ity scale, M�, associated with quantum gravity in the 4� n
dimensional theory. Both scales are then related by the
volume of the compact manifold, voln, throughout the
expression [1]

 M2
P � Mn�2

� voln; (1.1)

which indicates that the so far unknown value forM� could
be anywhere within mew and MP. If it happens to be in the
TeV range there would be no big hierarchy, but a rather
large volume is required. A number of possible theoretical
uses of such extra dimensions has been explored, including
new possible ways for the understanding of mass hierar-
chies [6], the origin of neutrino masses [7], the number of
matter generations [8], baryon number violation [9], the
origin of dark matter [10], new mechanisms for symmetry
breaking [11], and model building [12], among many
others. Experimental implications of some of those models
have also been under the scope of many investigations (for
references, see for instance [13,14]).

Most phenomenological models built on this scenario
usually assume that the extra dimensions are stable, which
typically becomes a fundamental requirement since most
effects of extra dimensions on low energy physics depend
either on the effective size of the compact space b0 �

vol1=nn or the effective Planck scale. However, if the com-
pact space were dynamical, those quantities would become
time dependent, against observations.

As it can be easily realized, during the early inflation
period and the later evolution of the Universe, a static bulk
appears to be hard to accept against an expanding 4D
world. Indeed, there are indications that the contrary is
rather more likely to happen [15]. Inflaton energy may also
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induce dynamical effects on the extra space, by driving the
so-called radion field, associated with the overall extra
volume variations, beyond its desired stable point. This
may particularly affect the large extra dimensional case
where the inflaton contribution might increase the effective
volume by a factor of a few.

Understanding the stability of the compact space can be
seen as finding the mechanism that provides the force
which keeps the radion fixed at its zero value. Thus, in
order to have a stable bulk volume, there has to be a
potential which provides such a force. Some ideas on the
possible origin of this potential can be found in the litera-
ture, ranging from pure quantum effects to string theory
nontrivial flux constructions; see for instance [16–24]. In
this paper we explore an idea first introduced in the context
of warped extra dimensions [22], and later discussed for a
single, flat extra dimension in Ref. [24], where vacuum
energy is regarded as the one responsible for generating the
stabilization potential. Although the use of this mechanism
on flat backgrounds might look trivial at first sight, we
believe an extended and careful analysis is worthwhile for
two reasons. First of all, the mechanism on flat compact
space mimics the stringy scenario where fluxes are used for
stabilization, providing a bottom-up toy model where other
problems, such as metric backreactions and quantum
stability, could be tested. Second, as we shall observe,
the definition of the radion field on the frame where gravity
action becomes standard implies the introduction of con-
formal factors on matter actions, which have a nontrivial
impact on the stabilization analysis. This is a feature that
has usually been overlooked in previous works (see for
instance [24]).

We will consider the generic model where a massive
scalar bulk field develops a vacuum configuration that
explicitly violates translational invariance along the extra
space. Such a vacuum, in the effective four dimensions,
appears as a potential energy that depends on the size of the
extra dimension, and thus it is interpreted as a radion
potential. We argue that these potentials can be built to
have a minimum at a finite and nonzero value of the extra
dimensional size, providing a successful stabilization at the
tree level of the theory. Our analysis will concentrate
mainly on the phenomenological modeling for the stabili-
zation potential on flat backgrounds, which, given the
number of particle physics models built on such an as-
sumption [6–12], we believe have some interest on their
own. Such an approximation, however, would lack the
immediate link with the more fundamental string theory
that motivates it. And, although the ingredients we shall
consider are the minimum we expect to come from a real
string theory construction, this is an issue we will not
address here. Our main goal will be to demonstrate in a
practical constructive way that vacuum energy could be
enough to provide the required bulk stabilization, and to
keep things simple, we will work in the assumption that
backreactions are negligible.

The paper is organized as follows. First, we discuss the
general aspects of radion stabilization by vacuum energy
on flat extra dimensions. To clarify the basis of the mecha-
nism, we start by briefly reviewing the definition of the
radion field, conformally mapping the initial action to the
physical Einstein frame, where the 4D gravity action is
kept as usual and gravity coupling remains constant. We
discuss the effect of such a metric conformal transforma-
tion on other Lagrangian terms on the action, particularly,
on those that would later contribute to the stabilization
potential. We show that, in general, when the radius is
away from its stable value, some conformal factors remain
on the potential energy. Such factors define the couplings
of the radion to matter fields, both in the bulk and on the
brane. They also affect the stabilization potential by in-
troducing overall inverse volume factors. In Sec. III, we
discuss the mechanism for radion stabilization based on
vacuum energy. We first show that, surprisingly, stabiliza-
tion can be accomplished with the sole introduction of
cosmological constants, which exemplifies the nontrivial
features of the mechanism. Next, we shall consider brane
and bulk cosmological constants as well as bulk scalar
vacuum contributions. We provide some general guidelines
for building a successful radion potential, which, aside
from having a nontrivial minimum, may also insure a
zero 4D effective cosmological constant in the Einstein
frame. Finally, in Sec. IV, we investigate the implementa-
tion of the present mechanism for the interval and for
Tn=Z2 orbifolds. For these examples, we show that brane
and bulk cosmological constants play an important role to
control the profile of the stabilization potentials. We end
with some concluding remarks and observations.

II. THE RADION IN THE EINSTEIN FRAME

A. Dimensional reduction and the radion field

We start the discussion by assuming that Einstein gravity
holds in the complete �4� n�D theory, and proceed with
dimensional reduction to introduce the definition of the
radion field and its couplings. Thus we first write down the
Einstein-Hilbert action

 S �
M2�n
�

2

Z
d4xdny

����������������
jg�4�n�j

q
R�4�n� (2.1)

where R�4�n� stands for the �4� n� dimensional scalar
curvature, and jg�4�n�j is the absolute determinant of the
�4� n�D metric. We then consider the background metric
parametrization ds2 � gABdxAdxB � g��dx�dx� �
habdy

adyb, which is conformally consistent with 4D
Poincaré invariance and describes a compact and flat extra
space. So we assume ya as dimensionless coordinates on a
unitary and closed manifold. Thus, hab has length dimen-
sion 2. Here we use, for the indices, the convention A;B �
�; a where � � 0; . . . ; 3 and a � 5; . . . ; 4� n. Notice we
are not considering the usual vectorlike Aa� connection
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pieces. This is because we want to concentrate only on the
variations of the metric along the transverse directions for
the rest of our discussion.

Upon dimensional reduction, one obtains at the zero
mode level

 S �
M2
P

2

Z
d4x

�����������
jg�4�j

q ������
jhj

p
voln

�
R�4� �

1

4
@�hab@�hab

�
1

4
hab@�hab 	 hcd@�hcd

�
; (2.2)

where voln stands for the volume of the extra space at the
desired stable configuration, as defined above in Eq. (1.1).
In this initial frame, gravity is not well defined. There is an
extra factor which is, in general, different from unity when
the compact volume differs from that of voln. In order to
get a proper gravity action, one has to go to a different
frame. Thus, we perform the conformal transformation

 g�� ! e2’g��; (2.3)

with e2’ � voln=
������
jhj

p
, to obtain the 4D gravity in canoni-

cal form,

 S �
M2
P

2

Z
d4x

�����������
jg�4�j

q �
R�4� �

1

4
@�h

ab@�hab

�
1

8
hab@�hab 	 h

cd@�hcd

�
; (2.4)

in what we shall refer to as the conformal (or Einstein)
frame. Next, g�� can be assumed to be the standard metric
for a Poincaré invariant brane Universe or the Friedmann-
Robertson-Walker metric for cosmology. We will, how-
ever, keep g�� undefined as far as possible. Nevertheless,
to simplify, we shall take hab � b2�ab, such that b repre-
sents the actual size of the compact space.

If the bulk had the desired stable configuration, the
physical size of the extra dimension would be given by
the identification b � b0, such that voln � bn0 . However,
on cosmological grounds at least, it is plausible that b
would be a time dependent field; thus, the actual physical
volume of the bulk would, rather, be given as volphys �������
jhj

p
� bn�t�. A more general dependence b�x� on the four

space-time coordinates may also be possible. This would
describe local variations on the bulk radius along the brane.
Although we will not explicitly refer to this case here, we
will kept most expressions as general as possible.

As it can be read from the action, in the conformal frame
the effective Planck scale is well defined and constant.
However, volume variation effects appear as the scalar field

 ��t� � MP

������������������
n�n� 2�

2

s
ln
�
b
b0

�
: (2.5)

This field is usually called the radion, and it is defined in
such a way that it sets to zero when the stabilized volume is

reached. Indeed, with the use of this radion, the last effec-
tive 4D action becomes

 S �
M2
P

2

Z
d4x

�����������
jg�4�j

q
R�4� �

1

2

Z
d4x

�����������
jg�4�j

q
�@����@���;

(2.6)

where the last term corresponds to the action of a runaway
scalar mode. Hence, without potential, the radion field can
take any value. Furthermore, under any perturbation, the
volume of the extra space is totally unstable. In general, an
active radion means a variable bulk, and it could be seen as
an unwanted and harmful scenario. As we will discuss
below, this field couples to all other fields in the theory,
affecting dispersion relations and the definition of coupling
constants. Also, its couplings to the inflaton may introduce
potential threats to standard cosmology (see for instance
Ref. [15]). This can be disastrous, and thus, it is important
to provide a radion potential capable of keeping the radion
at its zero value.

Some comments are in order. The very definition of the
radion depends on the background metric we have chosen.
Different geometries would mean different mathematical
forms for the radion field, but the latter would always be
present. Flat backgrounds are the simplest examples where
calculations can be worked out very clearly. Thus, here-
after we will assume the bulk to be flat. Nevertheless, one
has to keep in mind that, in any realistic scenario, back-
reactions due to the energy that sources the stabilization
potential may require refining the compactification analy-
sis to take such effects into account. To keep our analysis
simple, however, we will neglect such effects.

As already mentioned, in what follows, we shall con-
sider two possible sources of energy contributing to stabi-
lization: first, pure cosmological constants, which are
usually seen as the zero level energy produced by the actual
physics living on the space-time of the theory. The actual
cosmological constant is rather small and one can safely
take it to be zero for simplicity, but in a theory with extra
dimensions what we see in four dimensions is just the
result of all contributions that come from the various
sectors of the theory. Thus, in a bulk-brane scenario, both
bulk and brane cosmological constants could be expected.
Branes, of course, should be located at the fixed points on
the compact dimension. The next possible source comes
from position dependent vacuum configurations on the
bulk, which can be modeled using bulk scalar fields.
These could actually come from many sectors of string
theory, usually as extra degrees of freedom of vectorlike or
tensorlike fields. However, we will not need to make any
assumption on the origin of such fields, other than them
having nontrivial bulk configurations. That will allow us to
keep our analysis general, and to address the question of
whether such ingredients could be enough to build appro-
priate stabilization potentials from a phenomenological
perspective.
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B. Radion couplings and effective potentials

Before entering into the discussion of the stabilization
mechanism, we shall first make a note of the effect of the
above introduced conformal transformation [Eq. (2.3)] on
other physical actions besides that of gravity. Consider for
instance a bulk scalar field, ��x; y�. The corresponding
action, in the initial 4� nD frame, before performing the
conformal transformation on the metric, goes as

 S� �
Z
d4xdny

�����������
jg�4�j

q ������
jhj

p �
1

2
GAB@A�@B��U���

�
:

(2.7)

Without loss of generality, we can always assume that �
has a proper Kaluza-Klein (KK) mode decomposition,
which should be defined for each given topology of the
compact space. Such modes are, in general, the orthogonal
solutions to the free equation of motion, only considering
up to mass terms in the above general action, with the
proper boundary conditions. A typical expansion should
have the formal expression

 ��x; y� �
X
~n

� ~n�y����������
voln
p �~n�x�; (2.8)

where ~n stands for all the KK indices, and the KK modes,
�, should obey the formal normalization condition

 

Z
dny�~n� ~n0 � �~n ~n0 : (2.9)

By introducing this expression in the action, and including
the conformal transformation, we get

 S� �
Z
d4x

�����������
jg�4�j

q �X
~n

�
1

2
g��@��~n@��~n

�

� e���=MPUeff��~n�

�
; (2.10)

where we have replaced the conformal factor terms in favor
of the radion field, explicitly using the equivalent expres-
sions

 e2’ �

�
voln������
jhj

p �
�

�
b0

b

�
n
� e���=MP (2.11)

with � �
�����������������������
2n=�n� 2�

p
. Thus, we notice that in the con-

formal frame the radion couples exponentially to an effec-
tive potential, which is formally defined through the
integral

 Ueff � voln 	
Z
dny

�
1

2

~ry� 	 ~ry�

b2 �U���
�
; (2.12)

with ~ry the gradient on the compact space coordinates.
Note also that the last expression actually corresponds to
the potential energy, Uini, one calculates in the initial
frame, but for the global factor voln instead of the physical

volume
������
jhj

p
. In fact, one can also write Ueff �

e���=MPUini. The first term in the above equation would
contribute to the whole potential in Eq. (2.10) with the KK
mass term. The KK squared mass, as usual, appears pro-
portional to the squared inverse physical radius, b�2, up to
an overall conformal factor �b0=b�

n. So, in the Einstein
frame, the effective mass of KK modes should follow the
time dependence of radius variations with a power law
modulation.

The overall conformal factor on potential terms is in fact
a general feature for most actions. It also appears, for
instance, in the case of a bulk cosmological constant,

where the action S� �
R
d4xdny

����������������
jg�4�n�j

q
� is easily inte-

grated over the extra dimensions, to become in the Einstein
frame

 S� �
Z
d4x

�����������
jg�4�j

q
�ne

���=MP; (2.13)

with the effective cosmological constant �n � voln 	�.
We must take into account these overall factors when
discussing any bulk generated potential.

Similarly, for brane fields, although 4D actions do not

involve a
������
jhj

p
factor but just

�����������
jg�4�j

q
for the induced metric

on the brane, the conformal transformation we used for the
rest of the theory shall introduce a radion coupling at least
for brane scalar and fermion fields as well as the brane
cosmological constant. Indeed, for a scalar field, �, one
obtains

 

Z
d4x

�����������
jg�4�j

q
e���=MP

�
1

2
g��@��@��� e

���=MPU���
�
;

(2.14)

whereas one gets

 

Z
d4x

�����������
jg�4�j

q
e��3=2���=MPg��ea��i � D�	a � (2.15)

for a massless brane fermion,  . In the case of a 3-brane
cosmological constant, 
, one has

 

Z
d4x

�����������
jg�4�j

q
e�2��=MP
: (2.16)

There is no coupling of the radion field to massless gauge
fields, though. The above couplings affect the definition of
the canonical brane field through the modification of the
kinetic terms, and hence the corresponding dispersion
relations. They also transform cosmological constants
into radius functions. Clearly, all these results reduce to
the usual ones for a stable bulk, when b � b0 (� � 0), and
certainly, one can use standard expressions at first order,
when the radion is close to the minimum, such that its
couplings can be treated perturbatively.
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III. RADION STABILIZATION BY VACUUM
ENERGY

As we already mentioned, some ideas on how to gen-
erate a stabilization potential for the radion can be found
already in the literature [16–24]. In particular, for a single
extra dimension, it has been pointed out [22,24] that a
radion potential can be produced if translational invariance
is broken in the bulk by the vacuum expectation value (vev)
of a scalar field. Here, we will further explore this idea for
flat extra dimensions. We shall perform our analysis in the
conformal frame where the radion has been identified. The
basics of the mechanism we are exploring are rather sim-
ple. Bulk field configurations may provide an effective 4D
energy. Furthermore, if the bulk energy density breaks
translational invariance along the bulk coordinates, one
gets different amounts of energy for different volume sizes,
thus generating a potential energy, which we shall find
convenient to write in terms of the radius as Urad�b�. Of
course, if there is a nontrivial minimum for Urad�b�, this
would be identified as b0.

A. Stabilization by cosmological constants

Let us first notice that the use of only a cosmological
constant, either from 3D-branes located at fixed points or
the bulk, does not provide a desirable scenario. For any
individual case the radion potential is just an exponentially
decaying function without a nontrivial minimum.
However, the combination of both contributions may
work. From Eqs. (2.13) and (2.16), the most general radion
potential one can build in this case is

 U

rad��� � e���=MP��n � e

���=MP
�: (3.1)

Clearly U

rad�0� � �n � 
, whereas U


rad ! 0 for �! 1.
This potential has a minimum at �0 � �MP=���
ln��2
=�n�, provided 
 > 0. The requirement that �0 �
0 be a minimum implies that �n � 2
 � 0. At first sight
this condition might be seen as a fine-tuning; nevertheless,
this is actually what fixes the stable radius to b0 �

��2
=��1=n. Therefore, the only appropriate potential
for this case goes as

 U

rad��� � 
e���=MP�e���=MP � 2�: (3.2)

In Fig. 1 we have plotted the general profile for this
potential. It is worth noticing that the potential diverges
exponentially for negative values of�, or radii smaller than
b0. This suggests that our configuration of bulk and brane
cosmological constants works perfectly to keep the extra
dimension from collapsing into itself. However, as it is
clear, the depth of the potential is given by a single pa-
rameter which by construction can not be fixed to zero—
the brane cosmological constant 
. This implies, at the
stable volume configuration, a nonzero and negative effec-
tive 4D cosmological constant, U


rad�0� � �
. This is
troublesome since the observed cosmological constant is

rather small and positive. Furthermore, from the potential
one gets a Planck suppressed effective radion mass at the
minimum,

 m� � �
������
2

p

=MP; (3.3)

which may also imply a radion mass that is too light,
against observational limits on gravity strength coupled
scalars, that indicate m� > 10�3 eV, which would require
that 
 > TeV4. These features are indeed a potential prob-
lem, and thus, one is forced to depart from this simple
model. We should notice that the same conclusions are
reached when one does the analysis for the radius instead
of the radion field, as expected.

It is worth stressing the fact that the potential naively
calculated in the initial frame, that is, without properly
including the conformal factors, is only a polynomial
function of the radius, bn�� 
, whose only minimum,
at the best, resides at b � 0. This clearly shows the risk of
getting misleading results when the analysis is not properly
performed in the Einstein frame, and the conformal factors
are taken into account.

An alternative for n > 1 could be to add brane tensions
at the natural boundaries of the compact space, too. A
realization of such a scenario from string theory may of
course need the introduction of intersecting brane configu-
rations. For instance, a �n� 2�-brane tension, �, would
contribute to the effective action with the term

 

Z
d4x

�����������
jg�4�j

q
e���=MP�n; (3.4)

where � � �n� 1��=n and �n � bn�1
0 �. Now, U�

rad �

e���=MP��n � e���=MP
� � e���=MP�n has a minimum
for � � 0, provided that ���n � 2
� � ��n � 0. An ad-
ditional condition can now be imposed by requiring that
U�

rad�� � 0� � 0, which gives �n � 
� �n � 0. This
condition would always imply that at least one of the

-1 0 1 2 3 4
α σ/MP

-1

-0.5

0

0.5

1

1.5

2

U
λ ra

d (
σ)

 / 
λ

FIG. 1 (color online). Radion stabilization potential profile
generated by the sole introduction of brane and bulk cosmologi-
cal constants according to Eq. (3.2).
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cosmological constants we are considering is negative, and
conspire to (almost) cancel the effective cosmological
constant. By combining these two equations we find the
unique solution �n � �n� 1�
, which fixes the radius at
b0 � 
�n� 1�
=��1=n, and also �n � �n
. Thus, the po-
tential becomes

 U�
rad � 
e���=MP
n�1� e���=nMP� � �e���=MP � 1��;

(3.5)

whereas the associated radion mass is now

 m2
� �

�
n� 1

n

�
�2

M2
P


: (3.6)

Note that the last expression has a similar form as the result
given above [Eq. (3.3)]. Again, it now implies that all
cosmological constants in the model obey

;��n;�j�nj> TeV4. Notice that U�

rad decays exponen-
tially for large �. Thus, the potential profile presents a
potential barrier that isolates the local minimum � � 0
from infinity, as it is depicted in Fig. 2. This is going to be a
constant feature for the examples we shall discuss below.
This, of course, may indicate the risk of a possible sponta-
neous decompactification by quantum tunneling. However,
notice that the width is given in Planck mass units, above
which we cannot really trust our effective analysis due to
possible stringy (or quantum gravity) effects, that we do
not have under control here, and that could substantially
modify the potential for larger values of�. This issue is out
of the scope of the present paper, and therefore, we will not
discuss it any further, nor will we do so for the cases
presented below, when it appears.

B. Potential building

The next simplest example one can provide for bulk
energy is a y-dependent vacuum. This arises in models
where nontrivial boundary conditions are imposed on a
bulk scalar field configuration. To elaborate, let us consider

a massive scalar field, �, described by the action given in
Eq. (2.7) for U��� � 1

2m
2�2. Therefore, the vacuum con-

figuration in the initial frame, with a given volume of size
b, should be a solution to the equation of motion

 
�r2
y � 
2�h�i�y� � 0; (3.7)

where 
 � mb and r2
y is the Laplacian operator on the

extra dimension coordinates. Notice also that we are con-
sidering only those vacuums which do not break transla-
tional invariance along the brane. The above equation
should be complemented with the boundary conditions
defined at the end points of the compact manifold.
Without them, there would be no y-dependent vacuum
energy in the minimal configuration. On the orbifold, for
instance, these conditions are given on 3-branes located at
the fixed points. They define localized sources for the bulk
vacuum. These boundary conditions may be due to some
other physics sited on the branes, which forces the bulk
field to pick up a nontrivial vacuum expectation value. As
an example, one can consider the coupling to some brane
scalar field, �, as ����y� y0�, where y0 is a fixed point
where the brane is located. If � develops a vev, this shall
induce a vev on � that varies along the bulk. This mecha-
nism has been used in several models to explain small vevs
in distant branes [25]. Another possibility may be the
existence of localized potential terms for the bulk field
on the branes, which favors a nontrivial localized vev.
This happens, for instance, if one considers a Higgs-type
localized potential ��2 � v�2��y� y0�.

Regardless of the mechanism that fixes the boundary
conditions for h�i, these induce a nontrivial profile for the
vev along the bulk. Once such a vev is given, by setting it
back into the Lagrangian, L, at any given radius b, one
formally gets in the Einstein frame the radion potential
contribution:

 U�
rad�b� �

�
b0

b

�
2n
Uini�b�; (3.8)

here written in terms of the radius, and where we have
conveniently used the potential as it is read in the initial
frame (before conformal transformation),

 Uini�b� � �bn 	
Z
dnyL�h�i�: (3.9)

By writing the potential this way, it becomes clear that, in
general, a minimum for Uini is not a minimum of U�

rad. The
conformal factor deforms the potential, and may even
compromise stabilization in some cases. Nevertheless,
the function Uini will prove to be a useful reference when
analyzing the radion potential, as we shall see in the
examples below.

On the other hand, even if one has a nontrivial minimum
for the above potential, there is no guarantee that the
potential would be zero at minimum. Such a case can,
however, be controlled with the addition of cosmological
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FIG. 2 (color online). Radion potential profile generated by
cosmological constants according to Eq. (3.5), for n as indicated.
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constants. Therefore, the generic potential one can build
goes as

 Urad�b� �
�
b0

b

�
n
��
b0

b

�
n

Uini�b� � 
� ��n

�
: (3.10)

It is worth noticing that the explicit b0 dependence on the
above equation, although it may be annoying, is actually
harmless. It is introduced by the conformal factors, and we
keep it everywhere just for dimensional reasons.
Nevertheless, it is actually ignored for the minimization
of the potentials, since we can always factor it away using
�n � bn0�.

Before working out some examples, we notice that the
radion mass provided by our mechanism has the general
form

 m2
� �

�
b0�
nMP

�
2
�
d2Urad�b�

db2

�
b�b0

: (3.11)

Therefore, it always comes with a Planck suppression,
which may, however, be overcome provided the potential
well is steep enough.

Among the many situations in which a minimum could
appear for the radion potential in Eq. (3.10), two are of
special interest for model building. Both are realized when
Uini�b� already has a nontrivial minimum, bi.

(i) First, one can always guarantee that the actual mini-
mum in the conformal frame remains the same, such
that b0 � bi. This actually happens when the brane
cosmological constant is used to shift the minimum
of Uini�b� to zero in the initial frame, by choosing

 � �Uini�b0�, and one takes � � 0 to insure a zero
effective cosmological constant in the conformal
frame. In this case, the overall power law factor in
Eq. (3.10) has no impact on the location of the
minimum of the potential. As a matter of fact, it is
easy to see that within these conditionsUrad�b0� � 0,
whereas U0rad�b0� � U0ini�b0� �

2n
b0

Uini�b0� � 
� �

0, and U00rad�b0� � U00ini�b0�, from a similar reasoning.
The last equation also shows that the radion mass can
be calculated directly from Uini�b�. Hence, it is
usually enough to establish the existence for a non-
trivial minimum on Uini�b� to know that there is a
working situation in the Einstein frame.

(ii) Second, one can take advantage of the interplay
among the two cosmological constants to provide
more control on the potential depth. The key obser-
vation is that, for any given function f�b�, its zeros
are fixed points under the modulation by a 1=bn

factor, provided b � 0. This is actually the analytical
reason why the minimum of Uini�b� is kept in the
previous situation despite the conformal factors.
Also, since 1=bn is always positive, it does not
change the sign of any given value of f�b�.
However, it suppresses the function for large b.
Thus, one can subtract a large cosmological con-

stant, 
�� k Uini�bi� k , to Uini�b�, to shift the
minimum towards negatives values, as to compen-
sate for the 1=bn modulation, and provide a deeper
well for the effective potential:

 Ueff�b� �
�
b0

b

�
n

Uini�b� � 
�: (3.12)

Finally, a large positive �n � �Ueff�b0� should be
chosen in order to cancel the radion potential at the
minimum. It is not hard to see that in this scenario
b0 � bi. As a matter of fact, the minimum of Ueff

shall now also become the minimum of the above
radion potential (3.10). Moreover, since U00rad�b0� �
U00eff�b0� also, the radion mass may, in this case, be
calculated directly from the effective potential
instead.

It is not difficult to understand what a mismatching
�
 � Uini�bi� � 
 � 0 does for the deviation of the actual
minimum, b0, from bi in previous scenarios. We can
imagine a simple situation where �
 is small, such that
in the limit where it is neglected we start with the minimum
at bi, as described in the first item above. By switching on
�
 we shall be moving into the second scenario just
described. So, the actual minimum should now be dis-
placed from bi by �b � b0 � bi. Being the minimum of
Ueff , b0 fulfills the condition b0U0ini�b0� � n�
 � 0, which
at first order gives

 �b 

�

n
biU

00
ini�bi�

�
�
: (3.13)

As the coefficient within parentheses is positive by defini-
tion, we conclude that the minimum is shifted according to
the sign of �
, and clearly, we require �n 
 ��
. On the
other hand, by looking at the second derivatives of the
potentials, we find that at b0 one gets U00eff � U00ini � �U

00,
where

 �U00 
 �
n�n� 1�

b2
i

�
: (3.14)

Therefore, for �
 < 0, the potential around the minimum
gets tightened and the radion mass is increased.

The case where the Uini minimum is trivial, meaning
bi � 0 or infinity, is hard to handle, in general. However, as
in the case of the sole cosmological constants, there may be
some scenarios where Urad do have a nontrivial minimum.
Whether this is so would have to be studied for each
particular case, though. We will illustrate this situation in
the next section.

IV. RADION STABILIZATION ON ORBIFOLDS

A. The interval

To exemplify the mechanism let us elaborate on the
simplest case of one single extra dimension where the
coordinate y takes values in the interval [0,1]. The general

RADION STABILIZATION FROM THE VACUUM ON FLAT . . . PHYSICAL REVIEW D 77, 025023 (2008)

025023-7



solution to the equation for the vacuum state (3.7) is then

 ��y� � Ae
y � Be�
y; (4.1)

where the constants A and B are given in terms of the
boundary conditions, which we assumed to be ��0� � v0

and ��1� � v1, where v0;1 have mass dimension 3=2 by
definition. Thus, one gets

 A �
v1 � v0e�


e
 � e�

and B �

v0e
 � v1

e
 � e�

: (4.2)

It is straightforward to calculate the potential in the initial
frame according to Eq. (3.9), which goes as

 Uini�b� �
m
2

�v2
0 � v

2
1� cosh
� 2v0v1

sinh

: (4.3)

Note that the potential is invariant under the exchange
v0 $ v1. This was expected because the physical situation
we are describing within the interval (equivalent to the one
dimensional orbifold S1=Z2) is invariant under exchange of
the boundaries, which can be seen as an effect of parity
symmetry. This potential has a sizable minimum at

 mbi � arccosh
�
v2

0 � v
2
1

2v0v1

�
: (4.4)

Hence, the stable radius is proportional to the inverse mass
of the bulk scalar field by a factor fixed by the boundary
conditions, which ranges from zero to infinity. This pro-
vides great freedom on the bulk scalar mass, and allows for
a simple realization of large extra dimensions, at the price
of moving the hierarchy to the boundary conditions.
Particularly, for large v0=v1 ratios, one gets the approxi-
mate expression mb0 
 
ln�v0=v1��

2. At the minimum we
get

 Uini�bi� �
m
2
k v2

0 � v
2
1 k; (4.5)

and so the potential is always positive. Notice also that the
potential goes asymptotically to a constant: Uini�b!
1� � m�v2

0 � v
2
1�=2, and for small b, behaves like��v0 �

v1�
2=2b, provided b0 � 0.

Clearly, v0 � v1 is not a favored scenario. First of all, it
implies bi � 0, where the potential vanishes. Nevertheless,
the 1=b2 squared modulation removes this minimum and
kills the asymptotic behavior, such that the only possible
minimum in the Einstein frame becomes b! 1.
Furthermore, by including brane and bulk cosmological
constants one gains new terms that go as �=b� 
=b2. As
we have shown, this piece of the potential has a nontrivial
minimum by itself, provided 
 > 0 and �< 0. The same
situation holds for the whole radion potential. This can be
easily seen as follows. First, consider that close to zero
Urad�b� diverges as 
=b2. Thus b � 0 requires a positive 
.
Next, we notice that � has to be negative to compensate the
other monotonic and positive defined parts of the potential
to provide a minimum. However, we now notice that the

asymptotic form for the potential goes as ��=b, and thus
Urad�b� reaches zero asymptotically from below, which
implies that Urad�b0� is strictly negative. Therefore, we
are driven to this conclusion: one can find a way to provide
a stabilization potential in this case, but one always ends
with a nonzero cosmological constant, which is not very
attractive. This suggests that asymmetric boundary condi-
tions on both ends of the interval may be preferred. Notice,
however, that for either v0 or v1 null, b0 would go to
infinity, and we will end in a similar situation.

Next, we proceed to study the radion potential in the
Einstein frame by assuming that v0 > v1, for simplicity.
The opposite case is actually equivalent due to the v0 $ v1

exchange symmetry. As the potential in the initial frame
already has a minimum, the two scenarios for model
building described in the previous section shall be useful.

As the first approximation, we add a brane cosmological
constant 
 � �m�v2

0 � v
2
1�=2, and take � � 0. Thus, the

resulting radion potential, Urad�b� � �b0=b�2
Uini�b� � 
�,
keeps the minimum at b0 � bi, as defined by Eq. (4.4), and
fixes Urad�b0� to zero. However, now Urad�b� approaches
zero asymptotically like�mb2

0v
2
1=b

2 for large b, and so an
infinite b also appears as a possible stable configuration.
Both minima are separated from each other by a potential
barrier, and so there is the slight possibility of tunneling for
the radion when perturbed. Of course, the height and the
width of the potential barrier depend on the parameters of
the theory, particularly on the size of the boundary con-
ditions, and one may hope that some configurations with
large values for mv2

1 would ameliorate this possible prob-
lem. All these features can be observed in Fig. 3, where we
have plotted this radion potential (continuous lines) in units
of mv2

1=2 to make it dimensionless, for different values of
the v0=v1 ratio. Notice that, as expected, a larger v0=v1

ratio tends to increase the relative height and width of the
potential barrier, making the potential well deeper and
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FIG. 3 (color online). Radion stabilization potential profiles
generated by vacuum energy in the interval, in units of mv2

1=2,
for given values of a � v0=v1, as indicated.
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narrower, and, at the same time, raising the hierarchy
among b0 and m.

Using Eq. (3.11) we calculate the radion mass for this
case and obtain

 m2
� �

4

3

�
m
MP

�
2 v2

0v
2
1

m k v2
0 � v

2
1 k

�
arccosh

�
v2

0 � v
2
1

2v0v1

��
2
:

(4.6)

Thus, the radion mass is also sizable by adjusting the
boundary conditions, just as is the size of the extra dimen-
sions, according to Eq. (4.4). For a large v0=v1 ratio the
above equation can be approximated as m2

� 
 �4=3��

ln�v0=v1��

2mv2
1=M

2
P, which means that, if ln�v0=v1� �

O�1�, then mv2
1 > TeV4 to maintain m� > 10�3 eV, but

this also would indicate that b0 cannot be too large. On the
contrary, a larger hierarchy would easily provide a large
radion mass, without implying a large m, thus allowing for
a larger compactification radius.

In a second approach, one can use the cosmological
constants to greatly improve on the potential depth, as
described in the previous section. Notice, however, that
this procedure will not substantially change the asymptotic
behavior of the radion potential, because we shall only
choose a different set of cosmological constants, keeping
the functional form of the potential as given in Eq. (3.10)
with Uini replaced by Eq. (4.3). Yet, for large b we get
Urad�b� � b

2
0�=b, where now the chosen � � �Ueff�b0�

could actually become quite large. Thus, the radion poten-
tial shall remain with two local minima, b0 and infinity, but
now with a wider and taller potential barrier in between.
The corresponding effective potential does have a non-
trivial minimum, as the nonzero solution for 
 � mb in
the equation

 4
 sinh
�m�v2
0 � v

2
1��sinh2
� 2
�

� 4mv0v1�sinh
� 
 cosh
�:

There is no analytical solution to the last expression, and
thus, one has to proceed numerically in most cases, or at
least perturbatively for small displacements. As discussed
already, since we are now using �
 < 0, we can expect a
minimum shifted to smaller values, and a tighter potential
well for larger values of j
j. All this is confirmed by the
numerical analysis, as it can be checked in Fig. 4, where we
have plotted the radion potential profile for the ratio
v0=v1 � 50, and for some different values of 
, chosen
as numerical multiples of Uini�b! 1�, for example.

B. The Tn=Z2 orbifold

Let us now explore in some detail a more general
example. Next, we shall consider a model where the bulk
manifold is given by a Tn=Z2 orbifold, where the Z2

corresponds to the identification of points on the symmet-
ric Tn torus with common radii b, according to the map-
ping ~y! � ~y. To simplify matters, we will consider only
the whole volume variations which do not alter this overall
geometry, such that the metric on the compact space re-
mains of the form ds2

compact � b2�ijdy
idyj, where the yi

coordinates on the torus have values in the interval I �

�1; 1�. Of course, on the orbifold, physical compact space
is smaller. It can be chosen to be represented by the
reduced 
0; 1� � I � 	 	 	 � I space. In this orbifold, there
are 2n fixed points which correspond to the vertices of the
unitary hypercube In0 � I0 � 	 	 	 � I0, where I0 �

0; 1�. This symmetric Tn=Z2 orbifold has a residual dis-
crete symmetry Rn

�=2, given as the set of rotations by �=2

around any yi coordinate axis. This symmetry transforma-
tion maps fixed points, located at the same distance from
the origin, among themselves.

Since the potential we are to build is due to boundary
conditions on the fixed points, the fact that all y directions
should have the same size suggests a totally symmetric
potential under the same Rn

�=2 symmetry. Thus, in princi-
ple, only n� 1 boundary conditions on equal classes of
fixed points can be allowed to be different, if this symmetry
is to be unbroken. Moreover, we can work out our analysis
considering only the contribution of the vacuum that re-
sides on the hypercubic slice In0 . The total potential energy
on the orbifold shall be just a 2n�1 multiple of this.

The solution, �, to the equation of motion (3.7) on the
flat n-dimensional space we are considering can be fac-
tored as �� ~y� � �n

i ’i�yi�, where each independent factor
is a solution to the generic equation ’00i � k

2’i � 0, where
nk2 � 
2 � m2b2, with the boundary conditions ’i�0� �
vi0 and’i�1� � vi1, such that the whole field configuration
has boundary conditions given by products of vi’s.
However, these 2n boundary conditions are not all inde-
pendent. The Rn

�=2 symmetry indicates that vi1vj0 is a

0 5 10 15 20
mb

0

5

10

15
U

ra
d (

b)
 

ε=1

ε=1.01

ε=1.03

FIG. 4 (color online). Radion stabilization potentials for one
extra dimension, with nonzero �. As before, potentials are
plotted in units of mv2

1=2, for the ratio v0=v1 � 50 and for
slightly different values of 
 � �"�v2

0=v
2
1 � 1� in the same units

as the potential, with " as indicated.
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constant for all i � j, and so both vi1 and vi0 are indepen-
dent of the index. This way, only two independent bound-
ary conditions are actually needed, which we now choose
as v0;1, and thus, all ’i would be the same function already
given in Eq. (4.1), but evaluated for the corresponding yi
coordinate: ’i�yi� � ’�yi� � Aekyi � Be�kyi , with the
global constants A��v1�v0e

k�=sinhk and B � �v0e
�k �

v1�= sinhk. In this scenario different directions along any
coordinate axis look alike for the scalar field. That is the

reason why volume varies as a whole while the basic
geometry stands still. We also note that vn0;1 should now
have mass dimension 1�n=2 as the bulk scalar field �.

The potential energy from this vacuum, as calculated in
the initial frame, is given now by the general expression
Un

ini�b��2n�1�1
2b

n�2
R

1
0dy
n�’

0�y��2�
2’2�y��	

R

1
0dy�

’2�y��n�1. After some algebra, one gets the rather compli-
cated expression

 Un
ini�b� �

nn=2

2mn�2

�
�v2

0 � v
2
1� coshk� 2v0v1

sinhk

��
2v0v1�k coshk� sinhk� � �v2

0 � v
2
1��coshk sinhk� k�

sinh2k

�
n�1

; (4.7)

for which one cannot establish the existence for a mini-
mum by exact analytical methods. A numerical analysis,
however, shows that a minimum exists only for n � 1,
which reduces to the case we discussed already in the
previous section. One can get some understanding for the
reasons of this fact by looking at the behavior at small and
large b. For a small radius one gets Un

ini / �1� a
2�2�1�

a� a2�n�1bn�2, where a � v0=v1, such that for n � 1 it
diverges linearly as we already know, whereas it goes to a
constant for n � 2 and to zero with a power law for larger
n. In contrast, for a large radius the potential goes expo-
nentially to a constant value / �1� a2�n. Interpolating
between these two extreme values with exponentially
dominating pieces, like those in the potential, leaves little
room to develop any additional minimum.

As before, a minimum for the corresponding radion
potential with n > 1 may exist for some added configura-
tion of bulk and brane cosmological constants. Consider
once more the radion potential in Eq. (3.10) with our
present Un

ini. It is clear from the previous analysis that
Un

rad / const:=b2�n � 
=b2n, for small b, and thus, one
would require 
 > 0. On the other hand, at large b one
gets Un

rad / �=bn. This is altogether a similar behavior as
the one already seen in the case of the interval for v0=v1 �
1 (the symmetric case). Nevertheless, here the conclusion
arises regardless of the value of the v0=v1 ratio. As before,
a negative � would be enough to get a nontrivial minimum,
but at the unwanted cost of a strictly negative value for
Un

rad�b0�.
A more appealing scenario emerges if instead of 
 we

assume that the boundaries of the hypercube contribute to
the potential energy with some surface energy, fed by �n�
2�-brane tensions. Thus, we add a potential term similar to
the one provided in Eq. (3.4). Next we consider the effec-
tive potential written as

 Un
eff �

�
b0

b

���
b0

b

�
n�1

Un
ini�b� � �n

�
: (4.8)

The term between squared parentheses in the above equa-
tion still has no local minimum by itself, but now we can
choose �n to insure that Un

eff will have one, by using a

variation of the second strategy discussed at the end of
Sec. III. First, notice that Un

ini=b
n�1 goes as �const:=b for

small b, so it is linearly divergent at zero. Second, the same
term vanishes asymptotically as ��v2

0 � v
2
1�
n=bn�1.

Hence, when shifting Un
ini=b

n�1 by adding a negative �,
we still get a function with no local minimum, which now,
however, crosses to negative values at some point, and
approaches � for large b. Hence, the observation we
made in the previous section will apply: the crossing is a
fixed point under the modulation by the overall 1=b factor,
yet to be included in order to buildUn

eff . As a matter of fact,
the multiplication by 1=b also changes the asymptotic
form, and now Un

eff shall reach zero at infinity from below,
as ��n=b. Therefore, a local minimum, b0, must now
emerge within the region beyond the crossing point, where
Un

eff is negative. Finally, we shall consider a positive � �
�Un

eff�b0�, to shift the minimum value of

 Un
rad �

�
b0

b

�
n
��
b0

b

���
b0

b

�
n�1

Un
ini�b� � �n

�
��n

�
(4.9)
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FIG. 5 (color online). Radion stabilization potentials generated
for the Tn=Z2 orbifold, in units of nn=2v2n

1 =2mn�2 and for
v0=v1 � 10. Continuous lines plot the profile for n � 2 and � �
�"�1� v2

0=v
2
1�
n in the same units as the potential, with " as

indicated. We also depict the profile for n � 3 and " � 0:1
(dashed line) with the potential conveniently scaled by a factor
of 1=100.
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to zero. A further contribution of 
 is not required now,
although it may be included, too.

As an example we have chosen �n � �"�1�
v2

0=v
2
1�
n � �nn=2v2n

1 =2mn�2� and made plots for the poten-
tial profile for v0=v1 � 10 and for n � 2, 3, using values
of " as shown in Fig. 5. Notice again the characteristic form
of these profiles, which interpose a potential barrier be-
tween the local minimum and infinity, and whose width is
actually sizable. Note also that the narrower and taller
barrier in the n � 3 case (shown in the figure with an
appropriate scaling factor to fit it within the used scale)
is actually an apparent effect due to the use of a numeri-
cally larger value of �, although we are using the same
value for ". This is also the reason why we now look at
larger mb0 values, when compared to previous figures.

V. CONCLUSIONS

Summarizing, our present work pinpoints a clear con-
clusion: the combination of bulk and brane cosmological
constants and bulk vacuum energy from scalar fields does
provide successful and manageable scenarios for the
understanding of the stabilization of the radion field, within
the context of the four dimensional effective theory, in flat
extra dimension models. We have developed some basic
strategies to handle and build radion potentials, with local
minima and a zero effective cosmological constant, out of
the two above-mentioned minimal ingredients.

Our analysis has been properly done in the Einstein
frame, where the radion is defined as a scalar field asso-
ciated with volume variations, and gravity is written in the
standard form. We properly included the volumetric sup-
pressions introduced by conformal factors in all the differ-
ent contributions to the radion potential we considered. We
have shown that, due to these factors, the use of a bulk
cosmological constant and brane tension configurations
may be enough to provide stabilization for the radion.
However, for the one extra dimension case, an effective
four dimensional negative cosmological constant arises.

The further addition of a nontrivial y-dependent vacuum
energy introduces the required freedom to obtain working
scenarios for the stabilization of the radion. These scenar-
ios are good toy models where other common problems of
dynamical stabilization could be consistently analyzed, as
other moduli stabilization or metric backreactions, that we
have not discussed in here. For example, a generalization
of the present ideas to the stabilization of other moduli
fields is, in principle, possible. A trivial extension for the
Tn=Z2 orbifold may consider a separate stabilization of
each bulk direction, using scalar fields located at the differ-
ent boundaries on the orbifold, such that the problem
would get reduced to one dimensional cases. Other con-
figurations may also be possible. Backreactions, on the

other hand, are less trivial to analyze and still require
some study.

Our results are an indication that it is well possible to
build phenomenological stabilization potentials out of the
most common ingredients that any bulk-brane theory could
have: brane and bulk cosmological constants, and bulk
scalar degrees of freedom with nontrivial bulk configura-
tions. We made no claims on the possible size of the extra
compact space, but, rather, emphasized the fact that, even
though the size always appears related to the scalar mass,
in our constructions there are many possible situations
where the hierarchy on those parameters is conveniently
sizable. Nevertheless, such freedom usually means moving
such hierarchy to the boundary conditions on the scalar
vacuum.

On the other hand, and mostly due to the conformal
factors, all examples we have provided suffer from the
same potential illness: a decompactified extra dimensional
volume also appears as a plausible scenario. We have not
consider, however, any string correction or quantum grav-
ity effect in our analysis. This is due to the very nature of
our effective low energy (4D) approach. We believe this
problem might be ameliorated in a real quantum gravity
theory calculation, and it probably should not be a matter
of concern here. Moreover, close to the minimum and due
to the Planck suppressions, our model provides a workable
scenario on which an effective theory approach should
properly describe radion physics. In particular, the ap-
proach may supply the physical radion mass, characteristic
of each particular model, and certainly the profile of the
radion potential close to the minimum, too.

As a final note, let us mention that, because cosmologi-
cal constants contribute nontrivially to the radion potential,
any redefinition of these, either introduced by hand or due
to quantum contributions, may alter the stabilization of the
volume in two possible ways. It may shift the minimum of
the potential and introduce a nontrivial contribution to the
effective 4D cosmological constant. Intriguingly, this
seems to establish a connection of the cosmological con-
stant hierarchy problem with the volume stabilization
which may deserve further study.
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