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Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this
nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum
field theories that involve only couplings between matter fields, or between matter fields and minimally
coupled U�1� gauge fields are causal in this sense. On the other hand, interactions between matter fields
and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules
emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not
Lorentz- and CPT-invariant.
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I. INTRODUCTION

Quantum field theories on the Groenewold-Moyal (GM)
plane can be made Poincaré covariant, provided their
statistics are twisted along with the coproduct on the
Poincaré group [1,2]. It is also possible to write interacting
quantum field theories including gauge theories, and dis-
cuss scattering amplitudes. Such models are unitary as long
as the interaction Hamiltonian is Hermitian.

However, twisted quantum fields are also nonlocal [2].
Naively, this might suggest that the scattering matrix for
these theories cannot be Lorentz-invariant. In this article,
we will show that for a large class of noncommutative field
theories, the S-matrix is indeed Lorentz-invariant because
of the presence of a weakened form of locality. (The
connection between locality and Lorentz-invariance of
the S-matrix for noncommutative theories has also been
noticed by [3]) We will also show that noncommutative
non-Abelian gauge theories with matter field interactions
violate even this weakened notion of locality, as a result of
which the S-matrix in these theories is not Lorentz invari-
ant (They also violate CPT [4]).

It is not difficult to understand the origin of such non-
invariance. The density HI of the interaction Hamiltonian
is not a local field when ��� � 0 in the sense that

 �HI�x�; HI�y�� � 0; x� y (1.1)

where x� y means that x and y are spacelike separated.
But S involves time-ordered products of HI and the equal-
ity sign in (1.1) is used to prove its Lorentz invariance
already when ��� � 0. This condition on HI, known as
Bogoliubov causality [5], has been reviewed and refined by
Weinberg [6,7]. For ��� � 0, a certain generalization of
this condition is sufficient for Lorentz invariance. It is
fulfilled in the absence of non-Abelian gauge fields, but

is violated in the presence of the latter if nonsinglet matter
fields are also present. The nonperturbative Lehmann-
Symanzik-Zimmermann formalism [7] also leads to the
time-ordered product of relatively nonlocal fields and is
not compatible with Lorentz invariance for ��� � 0 and
matter-non-Abelian gauge field interactions. Such a break-
down of Lorentz invariance is very controlled and may
provide unique signals for noncommutative spacetimes, a
point which requires further study.

In Sec. II, we show that these noncommutative theories
without gauge interactions obey a weaker form the the
condition (1.1). Consequently, the S-matrix of such theo-
ries is Lorentz-invariant. In Sec. III, we remark that this
feature is maintained in the presence of just abelian gauge
fields. Next we discuss noncommutative non-Abelian
gauge theories with nonsinglet matter fields, and show
that we lose even this generalized notion of locality. As a
result, the Lorentz invariance of the S-matrix is lost at the
quantum level.

As an application of these ideas, we will derive the
Feynman rules for noncommutative QCD (as a specific
example) and identify specific diagrams that violate
Lorentz invariance in Secs. III and IV. The Pauli principle
is not violated by the S-matrix for scattering of particles of
definite momenta, as we also discuss.

The phenomenology of such Lorentz and CPT viola-
tions remains to be studied.

II. LOCALITY AND LORENTZ INVARIANCE

For the purposes of our discussion, locality (causality)
will have the meaning it takes in standard local quantum
field theories. Thus if ���� is an observable local field �
like the electric charge density localized at a spacetime
point �, and x and y are spacelike separated points (x� y),
then causality (locality) states that

 ���x�; ��y�� � 0: (2.1)

It means that ��x� and ��y� are simultaneously measurable.
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Causal set theory (see for example [8] for a recent
review) uses a sense of causality which differs from
(2.1). There is also a criticism of the conceptual founda-
tions of (2.1) by Sorkin [9].

Let HI be the interaction Hamiltonian density in the
interaction representation. The interaction representation
S-matrix is

 S � T exp
�
�i

Z
dNxHI�x�

�
: (2.2)

For commutative spacetimes, Bogoliubov and Shirkov [5]
long ago deduced from causality and relativistic invariance
that HI is a local field:

 �HI�x�; HI�y�� � 0; x� y: (2.3)

Later Weinberg [6,7] discussed the fundamental signifi-
cance of (2.3) for these spacetimes: if (2.3) fails, then S is
not relativistically invariant.

In these previous discussions, where ��� � 0, HI and
their products were taken to transform in the standard way
under Lorentz transformations �:

 U���HI�x� � HI��
�1x�U���; (2.4)

 U���HI�x�HI�y� � HI��
�1x�HI��

�1y�U���; etc:

(2.5)

For ��� � 0, the Lorentz transformation condition on
HI reduces to (2.4) in the first order term of (2.2), as our
previous work shows [2], and as we explain later in this
section.

However, we must use the twisted coproduct to trans-
form tensor products of HI. For this twisted coproduct as
well, causality or rather a certain simple generalization of
it, is essentially adequate to guarantee the Lorentz invari-
ance of the S-matrix. The generalization allows for cau-
sality, but allows also for weaker possibilities. It is only
‘‘essentially’’ adequate: as Weinberg has shown [6], for a
Lorentz-invariant S-matrix, there are also conditions on
singularities supported at x � y in the product HI�x�HI�y�.

Let us show these results.
(i) Lorentz transformation law for the S-matrix
The second order term in (2.2) is the leading term

influenced by time-ordering. It is

 S�2� �
��i�2

2!

Z
dNxdNyT�HI�x�HI�y��; (2.6)

 T�HI�x�HI�y�� � ��x0 � y0�HI�x�HI�y� � �x$ y�:

(2.7)

Thus S�2� is the sum of two terms S�2�1 and S�2�1 corre-
sponding to terms in (2.7):

 S�2� � S�2�1 � S
�2�
2 : (2.8)

In terms of the Fourier transforms ~HI of HI,

 

~H I�p� �
Z dNx
�2��N

eip	xHI�x�; (2.9)

S�2�1 has the expression

 S�2�1 � �
1

2

Z dNx
�2��N

dNy
�2��N

��x0 � y0�



Z
dNk1dNk2

~HI�k1� ~HI�k2�ek1
�x�ek2

�y�; (2.10)

where ek�x� :� e�ik	x.
Elsewhere [2], we worked out the twisted transformation

of ek1
� ek2

under U���:

 U���ek1
� ek2

� e�k1
� e�k2

ei=2k1	���	k2U��2�; (2.11)

 �2 � e�1=2��k1��k2�����@��e1=2�k1�k2�����@� ; (2.12)

 ��� � ��1��� �; k1 	 �� 	 k2 � k1��������k2�:

(2.13)

We can hence write
 

U���S�2�1 ��
1

2

Z
dNk1d

Nk2
~HI�k1� ~HI�k2�

Z dNx
�2��N

dNy
�2��N


��x0�y0�e��i=2��@=@x���������1����@=@y��




�
e�k1
�x�e�k2

�y�
�
e��i=2���@

 
=@x����@

 
=@y������@�


U���e�i=2����1�����@
 
=@x����@

 
=@y������@�

��

(2.14)

where the derivatives do not act on ��x0 � y0�.
Now we note certain simple, but important facts:
(i) Since

 ��x0 � y0�
@
 

@x
�
@
 

@y

0
@

1
A
�

� 0; (2.15)

we can let � @@x�
@
@y��;� to act on ��x0 � y0� as well.

(ii) The expression @
@x� �������1��� @

@y� gives zero
when applied to ��x0 � y0� because of the antisym-
metry of �������1�:
 

@
@x�
�������1���

@
@y�

��x0� y0�

�

�
@

@x0 �������1�0i
@
@yi
�

@
@xi
�������1�i0

@

@y0

�


 ��x0� y0� � 0: (2.16)

Hence it too can be permitted to act on ��x0 � y0�.
Each term in the expression

 f̂�x; y� �
@
@x�
�������1���

@
@y�

(2.17)
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contains at least one spatial derivative. In particular only
the following terms have time derivatives:

 

@

@x0
�������1�0i

@
@yi
�

@
@xi
���	���1�i0

@

@y0 :

Thus suppose we encounter a term like the following:

 
�x; y� � ��x0 � y0�

�
f̂�x; y��1�x��2�y�

�
(2.18)

where f̂�x; y� acts only on �i. Then it is a total spatial
divergence:

 
�x; y� �
@
@xi

�
���	���1�ij

@
@yj
���x0 � y0��1�x��2�y��

�

�
@
@yi

�
���	���1�0i��x0 � y0�

@�1�x�

@x0 �2�y�
�

�
@
@xi
�������1�i0��x0 � y0�

�
�1�x�

@�2�y�

@y0

�
:

(2.19)

Here time derivatives do not act on ��x0 � y0�.
It follows that

 

Z
d4xd4y
�x; y� � 0 (2.20)

and hence that

 

Z
d4xd4y��x0 � y0�

�
e��i=2�f̂�x;y��1�x��2�y�

�

�
Z
d4xd4y��x0 � y0��1�x��2�y�: (2.21)

This identity incidentally easily generalizes to the fol-
lowing sort of identity as well:
 Z YN

i�1

d4xiTe��i=2�ff̂�x1;x2��f̂�x2;x3��			�f̂�xn�1;xn�g�1�x1�


 �2�x2� 	 	 	�N�xN�

�
Z YN

i�1

d4xiT��1�x1��2�x2� 	 	 	�N�xN��: (2.22)

Here in the left-hand side, the f̂’s do not act on the step
functions in time-ordering.

We can hence write
 

U���S�2�1 ��
1

2

Z
dNk1d

Nk2
~HI�k1� ~HI�k2�

Z dNx
�2��N

dNy
�2��N


���x0� y0�e�k1
�x�e�k2

�y��


 e��i=2���@
 
=@x����@

 
=@y������@�


U���e�i=2����1�����@
 
=@x����@

 
=@y������@� : (2.23)

We now expand the exponentials, integrate term by term
and throw away surface terms. A similar calculation can be

done for U���S�2�2 as well. We thus finally find,
 

U���S�2�U����1 � �
1

2

Z
dNxdNyT�HI��

�1x�HI��
�1y��

� �
1

2

Z
dNxdNyf����x�0 � ��y�0�


HI�x�HI�y� � x$ yg (2.24)

just as for ��� � 0.
As such a calculation extends to all orders in HI, we

have

 U���SU����1 � T exp
�
�i

Z
dNxHI��

�1x�
�
: (2.25)

If x and y are timelike separated, then time-ordering is
invariant under � 2 L"� (and parity): ����x�0 � ��y�0� �
��x0 � y0�. But that is not the case if x and y are spacelike
separated, x� y. In a causal theory, the result

 �HI�x�; HI�y�� � 0; x� y (2.26)

holds and helps restore Lorentz invariance of S despite
time-ordering. Weinberg [6,7] can be consulted for a de-
tailed proof.

The condition (2.26) is only a sufficient condition for
Lorentz invariance, it is not necessary as well. We shall see
below that nongauge noncommutative theories fulfill a
weaker form of (2.26) and are still Lorentz-invariant.

(ii) Nongauge noncommutative theories
The qft’s on the GM plane are not local. This is the case

even without gauge fields. Still in the absence of gauge
fields, we showed elsewhere [10] that the S-operator has no
�-dependence. Hence it is Lorentz-invariant if its associ-
ated ��� � 0 theory is.

This result comes about as follows.
Let us consider a spin zero field � for simplicity as in

[10]. For �, the annihilation operators for momentum p
will be denoted by ap. Then using eq. (7.11) of [11], we get

apep � cpepe
�1=2�@

 

����P� (where cp is the annihilation
operator for ��� � 0 and P� is the Fock space momentum
operator) so that

 ��x� � ��0��x�e�1=2��@
 
=@x�����P� : (2.27)

where ��0��x� is made of cp’s and cyp’s.
We must take -products of ep’s when evaluating prod-

ucts of �’s at the same point since ep 2A��R
N�. It

becomes the ordinary product when we substitute (2.27)
as proved in [10] and we get for the -product of n �’s,

 ��x� ��x� 	 	 	 ��x� � ���0��x��ne�1=2��@
 
=@x�����P�

(2.28)

(���0��x��n involves only commutative products of
functions.)
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Thus in the absence of gauge fields,

 HI�x� � H�0�I �x�e
�1=2��@

 
=@x�����P� ; (2.29)

H�0�I �x� being the interaction density for ��� � 0.
Notice that

 

Z
d4xHI�x� �

Z
d4xH�0�I �x�; (2.30)

because the exponential factor in (2.29) becomes 1 on
integration over x. Also, the Lorentz transformation prop-

erties of HI can be obtained by transforming the operators
H�0�I and P� in the standard way [2,10,12]. Hence the
Lorentz transformation property of the left-hand side of
(2.29) can be obtained assuming (2.4).

Since

 �P�;HI�y�� � �i
@
@y�

HI�y�; (2.31)

(2.29) gives for example

 HI�x�HI�y� � H�0�I �x�e
�1=2��@

 
=@x��������i��@=@y���H�0�I �y�e

�1=2���@
 
=@x����@

 
=@y������P� : (2.32)

Hence,

 T�HI�x1�HI�x2� 	 	 	HI�xk�� � T�H
�0�
I �x1�e

�1=2��@
 
=@x�1 ��

��P�1�� H�0�I �x2�e
�1=2��@

 
=@x�2 ��

��P�2�� 	 	 	H�0�I �xk�e
�1=2���@

 
=@x�1 ��			�@

 
=@x�k ���

��P��;

(2.33)

 P�j�� � �i
�

@
@x�j�1

� 	 	 	
@
@x�k

�
; j � k� 1 (2.34)

where the derivatives in (2.33) do not act on the step-
functions in the definition of the time-ordered product.
But we can let them act on the step functions as well in
view of the discussion from (2.15) to (2.22). [We must
adapt it only slightly to reach this conclusion.] Then in-
tegrating over xi’s and discarding surface terms as in
(2.22), we find that S is independent of ���.

This is a fundamental result of [10] in proving the
absence of UV-IR mixing in nongauge noncommutative
theories.

In the same way, we can show that U���SU���1� given
in (2.25) is independent of ���:

 U���SU���1� � T exp
�
�i

Z
dNxHI��

�1x�
�

:� S�0�:

(2.35)

Thus if the ��� � 0 theory has a causal interaction
Hamiltonian density H�0�I and the operator product
H�0�I �x�H

�0�
I �y� is not too singular at x � y so that S�0� is

Lorentz invariant, then S is also Lorentz invariant.
(iii) Generalized causality
We see from (2.35) that the following generalized cau-

sality condition holds in nongauge theories for any ���: for
some choice of the constant 	, the operator

 H�	�I �x� � HI�x�e
��1�	=2��@

 
=@x�����P� (2.36)

is local:

 �H�	�I �x�; H
�	�
I �y�� � 0; x� y: (2.37)

This is our generalized causality relation. Our arguments
show that if

 S � Te��i
R
dNxdHI�x�� (2.38)

and

 S�	� � Te

�
�i
R
dNxdH�	�I �x�

�
; (2.39)

then

 S � S�	�: (2.40)

Weinberg’s arguments show that S�0� is Lorentz-invariant if
(2.26) holds unless singularities at coincident points (men-
tioned before) spoil it. Therefore S�	� will also be Lorentz-
invariant if (2.37) holds and singularities at coincident
points do not spoil it.

III. GAUGE THEORIES WITH MATTER FIELDS

Suppose we have a charged scalar field �,

 ��x� �
Z
d��p��ape�ip	x � by�p�eip	x� (3.1)

that obeys twisted statistics. Then � can be written in
terms of the corresponding commutative counterpart ��0�

using (2.27), where

 P� �
Z
d��q�q��ay�q�a�q� � by�q�b�q��

� the total momentum operator: (3.2)

As we discussed in Section 7 of [11], we require that the
definition of the covariant derivative D� of the field �
preserves statistics, transforms covariantly under Poincaré
transformations and has the commutator �D�;D�� given by
the curvature Fc�� of the commutative gauge fields. This
immediately tells us that D� is of the form
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 D�� � �D�0�� ��0��e�1=2�@
 
���P� (3.3)

where

 D�0�� � @� � A
�0�
� (3.4)

and A�0�� is the commutative gauge field. This choice sat-
isfies all our requirements of a covariant derivative. It also
obeys gauge invariance at the quantum level [11]. Any
gauge group can be treated in this approach, unlike some
other approaches.

Note that since the gauge symmetry generators are the
same as those for ��� � 0, the �F�0����2 term of the gauge
field ‘‘kinetic energy term’’ also transforms correctly.

Similar arguments can be made about the transformation
properties under the Poincaré group.

The interaction Hamiltonian splits into two parts:
 

HI
� �

Z
d3x�HMG

� �H G
� �;

MG � matter-gauge;

G � pure gauge field

(3.5)

 H MG
� �HMG

0 e1=2@
 
����P� ; (3.6)

 H G
� �H G

0 : (3.7)

We include matter-gauge field and pure matter field cou-
plings in HMG

� , while H G
� contains only gauge field

terms.
For QED, H G

� � 0 and the S-operator of the theory is
the same as in the commutative case:

 SQED
� � SQED

0 : (3.8)

[However, in [13], we developed another approach to
gauge theories where (3.8) is not true.)

For the standard model (SM), H G
� �H G

0 � 0. As this
term has no statistics twist,

 SSM
� � SSM

0 (3.9)

because of the cross-terms in the S-matrix between HMG
�

and H G
� . In particular, this inequality happens in QCD.

Processes like qg! qg via a gluon exchange interaction
actually also violate Lorentz invariance, as we explain
below.

The generalized causality condition (2.37) is not fulfilled
in non-Abelian gauge theories with matter-gauge field
couplings. It is enough to show this in QCD as we now will.

We have, as in (2.27),

 ��x� � ��0��x�e�1=2��@
 
=@x�����P� : (3.10)

P� is the total momentum operator of the quark and gluon
fields as in (2.27). That is so for the following reason.
Under covariant transport, � and D�� must have similar

braiding properties. In particular since
 

��x���y� � e��i=2��@=@x�������@=@y�����0��x���0��y��


 e�1=2�@�
 
���P� ; (3.11)

we need
 

D���x�D���y� � e��i=2��@=@x�������@=@y���D�0�� ��0��x�


D�0�� ��0��y��e1=2@�
 
���P� : (3.12)

So this requires

 �P�;D	�� � �i@�D	�: (3.13)

As D	 involves the gluon field, P� must contain its mo-
mentum too. It follows that

 HI
� �

e
2
� ���0�� 	 A��0��e�1=2�@�

 
���P� �HG

� (3.14)

where HG
� � HG

0 contains three- and four-gluon terms and
gluon fields are free.

As

 �P�;H
G
� � � �i@�H

G
� ; (3.15)

it is clear that

 �HI
��x�; H

I
��y�� � 0 if x� y; (3.16)

the nonvanishing term coming from

 �HMG
� �x�; H

G
� �y�� � x$ y: (3.17)

Thus HI
� is not local. It does not fulfill our generalized

locality condition as well. Thus in the next subsection, we
explicitly show that diagrams involving HMG

� HG
� lead to

violations of Lorentz invariance in scattering. This proves
that HI

� does not fulfill our generalized causality.

Feynman rules and examples

Let ��x� be the noncommutative quantum field repre-
senting the quark. Using (2.27), it can written in terms of
the field ��0��x� (with the ��� � 0 creation-annihilation
operators) as

 ��x� � ��0��x�e�1=2��@
 
=@x�����P� : (3.18)

P� is the total momentum operator of the quark and gluon
fields as emphasized above.

Diagrams involving HMG
� HG

� lead to violations of
Lorentz invariance in scattering, as we will show below.

The discussion generalizes to the �-deformed standard
model (SM�) or any such �-deformed theory.

In the expansion of S, terms involving just HMG
� or just

HG
� � HG

0 are independent of �. The dependence on �
comes from terms which involve product HMG

� with HG
� .

The simplest such term is
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 S�2� �
��i�2

2!

Z
d4x1d

4x2T�H
MG
� �x1�H

G
0 �x2��: (3.19)

It contributes to quark-gluon �qg� scattering at the tree
level, as shown in Fig. 1.

We now simplify S�2�. Such simplifications generalize to
arbitrary terms in S as we later indicate.

(i) Simplifications for Fig. 1
(a) The first simplification comes from integrating

over d3x1 and throwing away surface terms from

spatial derivatives in @
 

��
��P�. This lets us replace

HMG
� �x1� by

 Ĥ MG
� �x1� � HMG

0 �x1�e
�1=2��@

 
=@x10��0iPi : (3.20)

(b) We have for i � 1, 2, 3,

 

�
Pi;

Z
d3x2HG

0 �x2�

�
� 0: (3.21)

Hence we can move Pi to the right extreme:
 

S�2� � �
1

2

Z
d4x1d

4x2T




�
HMG

0 �x1�H
G
0 �x2�e�1=2��@

 
=@x10��

0iPi

�
(3.22)

where @
 

@x10
does not act on the step functions in time

defining T.
From (3.22) we see that Pi can be replaced by the
total incident momentum Pinc;i � �p1 � q1�i when
considering the process in Fig. 1:

 S�2� � �
1

2

Z
d4x1d4x2

�
��x10 � x20�




�
HMG

0 �x1�e
1=2�@

 
=@x10� ~�

0	 ~PincHG
0 �x2�

�

� ��x20 � x10�




�
HG

0 �x2�H
MG
0 �x1�e�1=2��@

 
=@x10� ~�

0	 ~Pinc

��
;

(3.23)

 

~� 0 	 ~Pinc � �0iPinc;i: (3.24)

Now
 

HMG
0 �x1�e�1=2��@

 
=@x10� ~�

0	 ~Pinc

� HMG
0

�
~x1; x10 �

1

2
~�0 	 ~Pinc

�
: (3.25)

The �-deformation thus twists the fields at the q�
q� g vertex.

(c) By a change of variables, we can shift the deforma-
tion to the g� g� g vertex instead:
 

S�2� ��
1

2

Z
d4x1d

4x2

�
�
�
x10�x20�

1

2
~�0 	 ~Pinc

�


�HMG
0 �x1�H

G
0 �x2��

��
�
x20�

1

2
~�0 	 ~Pinc�x10

�
�HG

0 �x2�H
MG
0 �x1��

�

��
1

2

Z
d4x1d

4x2T
�
HMG

0 �x1�H
G
0




�
~x2;x20�

1

2
~�0 	 ~Pinc

��
: (3.26)

The ability to shift the twist between a quark-quark-
gluon and a 3- or 4-gluon vertex connected to it in
this manner is often useful. It is thus sufficient (see
also below) to give the twisted gluon propagator to
calculate Feynman diagrams.

(ii) The twisted gluon propagator
The twisted gluon propagator coming from (3.26) is

 ThA���x1�A

� � ~x2; x20 �

1
2
~�0 	 ~Pinc�i � �����D

�
F�x1 � x2�

(3.27)

where in the Lorentz gauge, D�
F is just the twisted propa-

gator of a massless scalar field A:

 D�
F�x� � ThA�x�A�~0; 1

2
~�0 	 ~Pinc�i: (3.28)

The Fourier expansion of A is

 A�x� �
Z d3k

2k0

�
ckek�x� � c

y
k e�k�x�

�
;

ek�x� � e�ikx � e�i� ~k	 ~x�k0x0�; k0 � j ~kj

(3.29)

where ck, c
y
k are the ��� � 0 annihilation and creation

operators. Hence
 

A
�
~0;

1

2
~�0 	 ~Pinc

�
�
Z d3k

2j ~kj
�cke�i=2�j ~kj ~�0	 ~Pinc�cyk e

��i=2�j ~kj ~�0	 ~Pinc�:

(3.30)

Note that we pick up the second term here in the ��x0�
term of the T-product, and the first term in the ���x0�
term, and these have opposite phases.

p q 1

p                                 q2 2

1

FIG. 1. A Feynman diagram with a nontrivial �-dependence.
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Now

 D0
F�x� � 2�i

Z d3k

2j ~kj
���x0�e

ikx � ���x0�e
�ikx�; (3.31)

which comes from
 

D0
F�x� �

Z
d4k

e�ikx

k2 � i�

� �
Z
d3ke�i ~k	 ~x

Z dk0

2j ~kj
eik0x0




�
1

k0 � j ~kj � i�
�

1

k0 � j ~kj � i�

�
: (3.32)

Hence
 

D�
F�x� � �

Z
d3ke�i ~k	 ~x

Z dk0

2j ~kj
eik0x0




�
e��i=2�j ~kj ~�0	 ~Pinc

k0 � j ~kj � i�
�

ei=2j ~kj ~�0	 ~Pinc

k0 � j ~kj � i�

�

�
Z
d4k

e�ikx

k2 � i�

�
cos

�
j ~kj ~�0 	 ~Pinc

2

�

� i
k0

j ~kj
sin
�
j ~kj ~�0 	 ~Pinc

2

��

�
Z
d4ke�ik	x ~D�

F�k�: (3.33)

(iii) General rules

In any scattering process, the twist factors e�1=2�@
 

����P�

can all be replaced by e�1=2�@
 

0
~�0	 ~Pinc where ~Pinc is the

incident total momentum and @
 

0 differentiates an appro-
priate time argument.

The propagator of a quark or of a gluon connecting two
q� q� g vertices is not changed. That is because for
example
 Z
d4x1d4x2��x10 � x20�H

MG
0

�
~x1; x10 �

1

2
~�0 	 ~Pinc

�


HMG
0

�
~x2; x20 �

1

2
~�0 	 ~Pinc

�

�
Z
d4x1d

4x2��x10 � x20�H
MG
0 �x1�H

MG
0 �x2�: (3.34)

In an arbitrary diagram, a priori, the twisted vertices are
the q� q� g vertices. By a change of variables, we can
then shift the twist to appropriate gluon propagators. In this
way, we can tell which of the gluon propagators in the
diagram are twisted.

IV. LORENTZ INVARIANCE AND PAULI
PRINCIPLE

(i) Violation of Lorentz invariance

Consider Fig. 1. It carries the propagator

 

~D�
F�k�

cos�j
~kj ~�0	 ~Pinc

2 � � i k0

j ~kj
sin�j

~kj ~�0	 ~Pinc

2 �

k2 � i�
: (4.1)

The numerator is frame-dependent. It is unity if

 

~� 0 	 ~Pinc � 0; (4.2)

in particular in the center-of mass system. Hence all twist
effects are absent in S in any frame fulfilling (4.2).
Otherwise it depends on �. Thus as anticipated, the process
violates Lorentz invariance.

The discussion of C, P, T and CPT can be found in [4].
(ii) Pauli principle violation
In [13], based on a different treatment of dynamics, we

found Pauli principle violation in processes like electron-
electron scattering. Such violation was present even for
cross-sections for scattering of particles with definite
momenta.

In the present approach, there is no such violation in any
scattering cross-section of particles with definite momenta.

But there are expected to be signals of Pauli principle
violations if initial and final particles do not have definite
momenta, for example, if they are spatially localized wave
packets. See for example [1,14].

The proof is very general and very simple too: we just
show below that the initial and final states of definite
momenta differ from those for ��� � 0 only by a phase,
a result well-known. The phase disappears when we com-
pute cross-sections, that is, in the modulus of scattering
amplitudes. Hence the modulus of scattering amplitudes in
the momentum basis inherits exactly the same symmetry
properties from the states under particle exchange as those
for ��� � 0. The nontrivial dependence of S-matrix on

external momenta through the term ~�0: ~Pin does not spoil
this argument because this dependence always involves the
total momentum, which is, of course, symmetric under
permutation of the individual momenta. We can even re-
place the actual scattering amplitudes with ones with the
same symmetries under particle exchange as those for
��� � 0 by setting the above-mentioned phase to 1. The
result on Pauli principle follows.

The difference between arbitrary states (such as spatially
localized wave packets) for ��� � 0 and ��� � 0 is not a
phase [15]. Hence we cannot readily assert that the modu-
lus of scattering amplitudes for ��� � 0 and ��� � 0 have
the same symmetry under particle exchange in any basis.

Now for the demonstration. Consider, for example, an
N-particle state of identical spin- 1

2 particles. Their creation

operators a�	�yp for spin basis label 	 and momentum p are
related to those for ��� � 0 by

 a�	�yp � c�	�yp e�i=2�p^P; p ^ P :� p��
��P�; (4.3)

where P is the total momentum operator.
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For the gauge field, the creation operators ��m�yq are
independent of ���.

Let us first look at a two spin- 1
2 particle state:

 a�	1�y
p1

a�	2�y
p2
j0i � c�	1�y

p1
c�	2�y
p2
j0ie�i=2�p1^p2 : (4.4)

The �-dependent term on the right side is just a phase. A
similar calculation can be made for any N spin- 1

2 particles
and also for any state with bosons, fermions and gauge
particles. Thus in the state

 a�	1�y
p1

a�	2�y
p2
	 	 	 a�	N�ypN ��m1�y

q1
��m2�y
q2

	 	 	��mM�y
qM j0i; (4.5)

we can move all P�’s to the right extreme, where they
contribute only a phase. For example, for N � 2 and M �

1, the above expression is

 c�	1�y
p1

c�	2�y
p2

��m1�y
q1
j0ie�i=2�p1^�p2�q1�e�i=2�p2^q1 : (4.6)

In this way, we arrive at our conclusion about Pauli
principle.
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