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We study the action of space-time symmetries on quantum fields in the presence of small departures
from locality determined by dynamical gravity. It is shown that, under such relaxation of locality the
symmetries of the theory cannot be described within the usual framework of Lie algebras but rather in
terms of noncocommutative Hopf algebras or ‘‘quantum groups.’’ Similar ‘‘quantizations’’ of space-time
symmetries are expected to emerge in the low-energy limit of certain quantum gravity models and have
been used to describe the symmetries of various noncommutative space-times. Our result provides an
intuitive characterization of the mechanism that could lead to the emergence of deformed coproducts in
models of quantum relativistic symmetries.
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I. INTRODUCTION

Symmetries play a prominent role in theoretical physics
as they allow to establish constraints and make predictions
for physical processes without knowing the detailed struc-
ture of the system under study. Exact symmetries, however,
are rarely realized in nature. Indeed it seems that our
present knowledge of particle physics, up to the energies
probed by experiments so far, owes much to a systematic,
‘‘controlled,’’ symmetry breaking. Moreover, as we gain
sensitivity in the probes which test the symmetry principles
we assume as fundamental, often such exact symmetries
appear only as approximations, at leading order in some
physical scale, of more fundamental ones. In some cases
the need for such generalizations is suggested by a radical
incompatibility between the framework in which the sym-
metries are described and certain fundamental aspects of
the theory at hand. A nice example of this is given by the
transition from Galilean to Lorentz/Poincaré relativistic
symmetries: the old Galilean framework for the description
of symmetries was at odds with the intrinsic Lorentzian
nature of Maxwell’s theory of electromagnetism.

Nowadays theoretical physics is facing a puzzle which
might reflect a similar state of affairs. Local quantum field
theory (LQFT), even if extremely successful as an effective
field theory in its range of validity, seem to grossly over-
count the number of degrees of freedom in a given region
of space. In fact ‘‘holographic’’ arguments predict a non-
extensive scaling of the number of degrees of freedom for a
given region of space determined by the area of the region
[1] while the degrees of freedom of local quantum fields
scale with the volume. The emergence of nonlocality is
usually indicated as the cause for such tension. Indeed,
according to a common intuition (see [2,3] for recent
discussions), locality (or microscopic causality) should
be an approximate concept in quantum gravity since once
the background metric becomes dynamical and is allowed
to fluctuate the notion of spacelike separation of two events

potentially loses its meaning. Our description of particle
physics in terms of local field theory thus relies on the
assumption that in an ideal setting even if an intrinsic
nonlocality is present its negligibly small effects will be-
come important only in the ultraviolet where the effective
description is supposed to break down anyway. This ex-
pectation, however, turns out to be wrong [3] when, for
example, such tiny effects are amplified by a very large
number of states. In these special cases the knowledge of
how our effective theory is modified by nonlocality be-
comes of vital importance.

In this paper we argue that there is a qualitative differ-
ence between usual LQFT and quantum fields in the pres-
ence of an intrinsic nonlocality. In fact, while in the former
case external space-time symmetries are described by the
action of a Lie algebra on the asymptotic free states, in the
presence of deviations from locality the characterization of
such symmetries requires the use of nontrivial Hopf alge-
bras known as ‘‘quantum groups.’’

In the next section we will briefly recall how symmetries
are described in the framework LQFT with particular em-
phasis on the relation between locality and the additive
action of symmetry generators on asymptotic states. In
Sec. III we present our main argument, namely, that the
failure of strict locality requires a description of the sym-
metries of the theory in terms of noncocommutative Hopf
algebras (‘‘quantum groups’’), and we link our consider-
ations to specific models of quantum group symmetries
that have been studied in the literature. The last section
contains a summary and outlook.

II. SYMMETRIES AND LOCAL QUANTUM FIELDS

Let us start by recalling the notion of locality (micro-
causality) in quantum field theory and its implications for
the symmetries of the theory.

Strictly speaking a field operator in LQFT, ��x�, is an
‘‘operator valued distribution.’’ This means that the corre-
sponding operator acting on the Hilbert space of the theory
is obtained by smearing ��x� with an appropriate C1 test*marzano@perimeterinstitute.ca
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function

 ��f� �
Z
��x�f�x�dx: (1)

If the function f vanishes outside a bounded region��f� is
a localized operator, if f does not vanish but is fast de-
creasing with all its derivatives then ��f� is a quasilocal
operator [4]. A localized operator is said to be local if

 ���f�; ��g�� � 0 (2)

when the supports of the test functions f and g are space-
like separated. Now consider the translated operator

 ��f; x� � U�x���f�U�1�x�; (3)

due to (2) the commutator

 ���f; t; ~x1�; ��g; t; ~x2�� (4)

vanishes for some finite value of j ~x1 � ~x2j if��f� and��g�
are localized operators. On the other hand the commutator
(4) for quasilocal operators does not vanish but falls off to
zero faster than any inverse power of the spatial separation
j ~x1 � ~x2j [4].

The construction of the asymptotic states of a general
LQFT relies exclusively on quasilocal operators. Indeed, in
the Haag-Ruelle formalism [4,5], one constructs from
appropriately smeared polynomials of the field operators
a quasilocal operator q�f; t� which creates a one-particle
state q�f; t�j0i � jfi with ‘‘wave function’’ h ~pjfi � f� ~p�
independent of t. One can show that q�f1; t� . . . q�fn; t�j0i
has a strong limits for t! �1 leading to the asymptotic
free states jf1; . . . ; fniout;in [4,5]. Under the assumption of
asymptotic completeness the collections of jf1; . . . ; fniout;in

span the entire Hilbert (Fock) space of physical states
F �H � [4,5]. There will be a unitary operator, the
S-matrix, such that jf1; . . . ; fniout � Sjf1; . . . ; fniin. We
are interested in the interplay between external (geometri-
cal) symmetries and quantum fields. A key fact is that any
symmetry describes certain properties which are preserved
by the dynamics and thus is fully characterized in terms of
its action on the asymptotic, free state configurations.

Let us consider the simple example of a massive real
scalar field. A symmetry transformation of the theory is a
one-parameter, continuous, Abelian unitary operator U���
in the space of physical states which commutes with the
S-matrix and transforms one-particle states into them-
selves. The symmetry transformation is said to possess a
generator if it can be written as U��� � exp�iG�� with G a
self-adjoint operator. In LQFT such generators act on
multiparticle states according to a generalized Leibnitz
rule (additive action). This last requirement is intimately
related to the notion of locality. To see this we look at how
the symmetry generators are characterized in terms of the
fundamental field observables.

Given a local and locally conserved current j��x� one
can construct a symmetry generator corresponding to the
‘‘formal charge’’ Q. The latter can be defined as the limit

 Q � lim
T!0

lim
R!1

j0�fR; fT� (5)

of the ‘‘partial charge’’

 j0�fR; fT� �
Z
dxfR� ~x�fT�x0�j0�x� (6)

with fR and fT appropriate smearing functions. In particu-
lar fR� ~x� cuts the tails of the current for large spatial
distances and fT�x0� averages the current around the point
x0 � 0 (for details see [6]). The question is whether or not
the formal charge Q defines a symmetry generator G. The
positive answer to this is given by a fundamental theorem
due to Kastler, Robinson and Swieca (KRS) (see [6] and
references therein) which states that the commutator
�j0�fR; fT�; A� between the partial charge and any localized
or quasilocal operator A is independent of fR and fT for
sufficiently large R. In particular this is true for any qua-
silocal operator Afi such that Afi j0i � jfii. The KRS
theorem allows one to define the action of the generator
G associated with the formal charge Q through the adjoint
action

 GAj0i � �Q;A�j0i � lim
T!0

lim
R!1
�j0�fR; fT�; A�j0i; (7)

as it guarantees that the limit in the last term exists and is
independent of the particular choice of smearing functions.
One immediate consequence of the definition (7) is that
Gj0i � 0. Additivity of the action of G immediately fol-
lows from the definition (7) and the linearity of the com-
mutator. Such property is also manifest when one writes
the generator in terms of the asymptotic creation and
annihilation operators

 G �
Z
d3 ~k�� ~k�ayin;out�

~k�ain;out� ~k� (8)

where the kernels �� ~k� characterize the action of the
generator on one-particle states. Indeed the expression
above can be derived from the one-particle matrix elements
of G

 h ~kjGj ~k0i � �� ~k���3�� ~k� ~k0� (9)

and

 �G; ayin;out�
~k�� � �� ~k�ayin;out�

~k� (10)

 �G; ain;out� ~k�� � ��� ~k�ain;out� ~k�: (11)

There is a nice algebraic way to characterize the additivity
of a symmetry generator. Let G be an element of the Lie
algebra g describing the symmetries of the space on which
our quantum fields live (in Minkowski space g is simply
the Poincaré algebra P ). The one-particle Hilbert space H
is an irreducible representation of g. ‘‘Multiparticle’’
(asymptotic) free states are given by appropriately symme-
trized tensor products of H . What is the action of G on
such states or, in other words, how do we construct repre-
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sentations of g on tensor products of H ? It turns out that
the usual construction of tensor product representation for
a Lie algebra g is best understood in terms of the universal
enveloping (UE) algebra U�g� associated to g. In fact, UE
algebras are an example of Hopf algebras which in turn are
a generalization of standard (unital, associative) algebras.
Hopf algebras come equipped with additional structures
which, among other things, allow one to properly define
tensor product representations of g. In particular the ‘‘cop-
roduct’’ (or comultiplication) � is a map �: U�g� !
U�g� 	U�g� defined by

 ��G� � G 	 1
 1 	G (12)

where 1 is the unit element of U�g�. Given two represen-
tations of g, ��1;H 1� and ��2;H 2�, the tensor product
representation ��;H 1 	H 2� is given by

 � � ��1 	 �2��: (13)

The coproduct (12) is just telling us that G acts on a ‘‘two-
particle’’ state of H 1 	H 2 according to the Leibnitz rule
i.e. the action of G on such states is additive. An important
property of the coproduct (12) is that it is cocommutative
i.e.

 � � � � � � id

with �: U�g� 	U�g� ! U�g� 	U�g� the ‘‘flip’’ map
��a 	 b� � b 	 a, id the identity map and � the compo-
sition of maps. Hopf algebras possessing a cocommutative
coproduct are called trivial. It is easy to see that cocom-
mutative coproducts lead to an additive action of G on
multiparticle states.1 But that’s not all. The (trivial) Hopf
algebra structure of the symmetries is present already at the
one-particle level. In fact, the action of G 2 U�g� on the
algebra of asymptotic creation and annihilation operators
given by (10) is nothing but the ‘‘adjoint action’’

 ad G�ain;out� � ��id 	 S���G���ain;out � �G; ain;out� (14)

where S is the antipode map2 S�G� � �G and �F 	
G��a � FaG. This shows how the Hopf algebra structure
of the UEU�g� associated to the Lie algebra of symmetries
g is hidden behind the familiar ‘‘commutator’’ action of G
on linear operators on F �H �. It turns out that there exist
‘‘quantum’’ deformations of UE algebras which lead to
nontrivial Hopf algebras which are also known in the

literature as quantum groups. In the next section we will
discuss how quantum deformations of UE algebras, in the
context of quantum field theory, can be related to the
presence of an irreducible nonlocality.

III. QUANTUM SYMMETRIES FROM QUANTUM
FIELDS

Consider the quantum theory of a massive real scalar
field for which a set of asymptotic ‘‘in’’ and ‘‘out’’ states is
given. Under the assumption of asymptotic completeness
these states span the full Hilbert (Fock) space of the theory
F �H �. A unitary S-matrix connects the two sets of states.
From a ‘‘purely’’ quantum mechanical point of view a
symmetry of the theory is a mapping of rays of the
Hilbert space which leaves invariant the transition proba-
bilities. According to Wigner’s theorem (see e.g. [7])
space-time symmetries will be described by unitary opera-
tors U on the asymptotic states. Such operators commute
with the S-matrix, map one-particle states into themselves
and leave the vacuum invariant. An infinitesimal trans-
formation will be of the form U � 1
 i�G with � an
infinitesimal parameter and G the generator of the symme-
try. In particular, if we denote the action of the generator G
on an operator A defined on F �H � with G�A, one has
h0jG�Aj0i � 0 [7]. The properties we described above are
the minimal requirements that an external symmetry of our
quantum fields has to fulfill.

We assume now that, according to the results of [2,3,8],
the observables of the theory possess an intrinsic, irreduc-
ible, nonlocality. In [2] it is discussed how, starting from
diffeomorphism invariant observables of an effective the-
ory of quantum gravity, one could recover the familiar
observables of local quantum field theory. The conclusions
reached in [2] seem to indicate a fundamental limitation in
obtaining such local observables. From a relational point of
view in order to ‘‘localize’’ an observable in a diffeo-
invariant theory one needs a reference frame given by
some dynamical field. The question is whether or not one
is able to define a reference frame which in a certain limit
reproduces standard local observables of LQFT. It turns out
that to do so one has to pick a reference dynamical field
which is itself intrinsically nonlocal [8]. As discussed in
[3], dynamical gravity is the crucial ingredient which
changes the rules of the game. The heuristic argument
given in [3] shows that switching on gravity has the effect
of introducing an irreducible error in the measurement of
quantum local observables which is nonperturbative in the
coupling GN and is of the order e�r

2=GN where r is the
‘‘size’’ of the apparatus used in the measurement (or
equivalently the spatial separation of two local observ-
ables). The nonperturbative nature of the nonlocal effects
discussed in [3] suggests that, in a quantum gravitational
setting, even though a sharp notion of locality is lost,
weaker causality properties like those of quasilocal opera-
tors can be preserved. Motivated by these considerations

2Beside standard multiplication m, unit map � and the cop-
roduct � defined above, a Hopf algebra possesses two additional
maps, the counit ": U�g� ! C and the antipode S: U�g� ! U�g�
satisfying the following axioms

 �� 	 id�� � �id 	 ��� co-associativity

�id 	 "�� � �" 	 id�� � id co-unit

m�S 	 id�� � m�id 	 S�� � � � " antipode:

1The definition of an n-fold tensor product of representations
of g can be obtained by simply iterating the definition above.
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we assume that when fluctuations of the background space-
time are present the only sensible notion of locality in a
theory of quantum fields is that of quasilocality. As dis-
cussed in the previous section this does not conflict with
the construction and existence of asymptotic free states.
However the failure of ‘‘strict’’ microscopic causality has
deep consequences for the symmetries of the theory. In fact
local commutativity is a crucial ingredient in the proof of
the KRS theorem (see Sec. 4.A of [6]). The presence of an
irreducible nonlocality renders void its statement i.e.
�j0�fR; fT�; A�, and consequently �Q;A� are not necessarily
independent of fR and fT for large R. Now, as we saw in
the preceding section, the action of a symmetry generator
G is characterized by its associated conserved charge Q.
The failure of the KRS theorem does not guarantee that (7)
consistently defines an operator G associated to the charge
Q on the asymptotic states. Once the invariance of the
vacuum is taken into account, a necessary condition for
(7) to be a consistent definition is that h0j�Q;A�j0i � 0 for
any quasilocal operator A. If the generator of a given
symmetry G cannot be defined in terms of the ‘‘adjoint’’
action �Q;A� one then has

 0 � h0jG�Aj0i � h0j�Q;A�j0i: (15)

This is somewhat reminiscent of spontaneous symmetry
breaking [9] where one has a locally conserved current but
for its associated charge h0j�Q;A�j0i � 0. The crucial
difference is that in our case we want to keep the vacuum
invariant under the action of G. Thus we see that the
presence of an intrinsic nonlocality, no matter how mild,
requires a generalization of the adjoint action �Q;A�.
Below we will show how nontrivial Hopf algebras natu-
rally provide such a generalization.

Let us consider a charge Q which fails to define an
adjoint action due to the intrinsic nonlocality between the
locally conserved current and any quasilocal operator.
Taking into account (15) and specializing to creation op-
erators as in (10) we can write
 

h0jG�ay� ~k�j0i � h0j�G; ay� ~k��j0i 
 �1E�1
p F�1�� ~k�


O�E�2
p � (16)

where the nonlocal corrections are given by model-
dependent functions of the momentum ~k suppressed by
inverse powers of the Planck energyEp. It turns out that the
‘‘deformed’’ adjoint action above can be effectively de-
scribed by the ‘‘semiclassical’’ expansion of the quantum
adjoint action of a nontrivial Hopf algebra with deforma-
tion parameter h � E�1

p . In particular the nonlocal behav-
ior in (16) is reproduced by a symmetry generators G
belonging to a noncocommutative Hopf algebra obtained
by a deformation of the universal enveloping algebra U�g�
of a Lie algebra g. These deformations are known as
quantized universal enveloping (QUE) algebras and are
one of the most important examples of quantum groups

(see e.g [10,11]). As mentioned at the end of the last
section, QUE algebras exhibit nontrivial (noncocommuta-
tive) coproducts together with possible additional defor-
mations of the coalgebra sector. The nontrivial coproduct
of a QUE algebra can be written in semiclassical approxi-
mation [12] as

 ��G� � ��0��G� 
 h��1��G� 
O�h2� (17)

with ��0��G� � G 	 1
 1 	G, the trivial coproduct.
Similarly for the deformed antipode one can write

 S�G� � S�0��G� 
 hS�1��G� 
O�h2�; (18)

with S�0��G� � �G. It is clear now that according to the
definition of adjoint action given in (14) the generator
belonging to a QUE algebra will act through the quantum
adjoint action

 ad G�a
y� ~k�� � ��id 	 S���G���ay� ~k�

� �G; ay� ~k�� 
 h���id 	 S�1����0��G���ay� ~k�


 ��id 	 S�0����1��G���ay� ~k�� 
O�h2�

(19)

which reproduces the ‘‘symmetry breaking’’ of (16) with
the leading-order terms of the deformed coproduct and
antipode determined by the model-dependent, Planck-
scale suppressed, nonlocal corrections.

QUE algebras have been studied extensively in recent
years as candidate models for quantum relativistic symme-
tries. Two notable examples are the 	-deformed and

-‘‘twisted’’ Poincaré algebras [13,14]. Both ‘‘quantum
algebras’’ can be viewed as symmetries of different
types of noncommutative space-times [13,15,16]. The
	-Poincaré algebra was originally obtained as a contrac-
tion of Uq�so�3; 2��, the quantization of the UE algebra of
the anti–de Sitter algebra, with deformation parameter q.
In the contraction procedure the deformation parameter
acquires dimension of a mass and is denoted by 	. This
type of deformation of the Poincaré algebra has gained
popularity as a way to introduce a fundamental (Planckian)
length � � 1=	 in a relativistic framework [17]. In the last
few years it has also been shown how such 	-symmetries
naturally emerge in the description of the low-energy limit
of certain 2
 1-dimensional quantum gravity models
[18,19]. The 	-Poincaré algebra in its most studied ver-
sion, the so-called ‘‘biscrossproduct basis’’ [15], exhibits
both deformed coproduct and antipode in the boost and
translation sector (rotations are left untouched):
 

��P0� � P0 	 1
 1 	 P0

��Pj� � Pj 	 1
 e�P0=	 	 Pj

��Nj� � Nj 	 1
 e�P0=	 	 Nj 

�jkl
	
Pk 	 Nl:

(20)

and
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S�Pl� � �eP0=	Pl

S�P0� � �P0

S�Nl� � �eP0=	Nl 

1

	
�ljkeP0=	PjMk:

(21)

The 
-Poincaré algebra was obtained by ‘‘twisting’’ the
coproduct of the UE algebra of the Poincaré algebra [13].
In this case only the coproduct for the boost-rotation sector
is deformed while the antipodes are the same as in the
standard case
 

��M�� � M� 	 1
 1 	M�

�
1

2

���g���P 	 P� � P� 	 P�

� g��P� 	 P� � P� 	 P���: (22)

In the limits 	! 1 and 
! 0 one recovers in both cases
the trivial Hopf algebra structure of the UE algebra of the
Poincaré algebra. 
 and 	-deformed quantum fields are
currently the subject of active study (see e.g. [20,21]). Such
theories exhibit several nontrivial features; most important,
they seem to lead to interesting behaviors in their multi-
particle sectors hinting for possible deviations from usual
statistics.

IV. CONCLUSIONS

We have discussed how a description of space-time
symmetries in terms of quantum groups could arise in

quantum field theory when the notion of strict locality is
blurred by the effects of dynamical (quantum) gravity. This
result provides a physical motivation for the emergence of
‘‘noncocommutative coproducts’’ which characterize the
nontrivial Hopf algebra structure of the symmetries of
certain noncommutative space-times. Our argument sug-
gests that these frameworks should in principle provide a
‘‘finer’’ resolution than standard effective field theory in
describing processes in which the latter ceases to be a good
approximation. An important task left for future studies is
to investigate the nonlocal behaviors of different effective
quantum gravity models and the relations with their coun-
terparts in terms of space-time quantum group symmetries.

ACKNOWLEDGMENTS

I am indebted to Bianca Dittrich for several stimulating
conversations and for comments on a preliminary draft of
this letter and to Giovanni Amelino-Camelia for a critical
reading of the manuscript. I would also like to thank
Florian Koch, Tim Koslowski and Giuseppe Policastro
for discussions and useful remarks. Research at Perimeter
Institute for Theoretical Physics is supported in part by the
Government of Canada through NSERC and by the
Province of Ontario through MRI.

[1] R. Bousso, Rev. Mod. Phys. 74, 825 (2002); A. G. Cohen,
D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971
(1999); U. Yurtsever, Phys. Rev. Lett. 91, 041302 (2003).

[2] S. B. Giddings, D. Marolf, and J. B. Hartle, Phys. Rev. D
74, 064018 (2006).

[3] N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E.
Trincherini, and G. Villadoro, J. High Energy Phys. 05
(2007) 055.

[4] R. Haag, Local Quantum Physics: Fields, Particles,
Algebras, Texts and Monographs in Physics (Springer,
Berlin, Germany, 1992), 356.

[5] L. J. Landau, Commun. Math. Phys. 17, 156 (1970); K.
Kraus and L. J. Landau, Commun. Math. Phys. 24, 243
(1972).

[6] C. A. Orzalesi, Rev. Mod. Phys. 42, 381 (1970).
[7] V. Bargmann, J. Math. Phys. (N.Y.) 5, 862 (1964).
[8] B. Dittrich and J. Tambornino, Classical Quantum Gravity

24, 757 (2007).
[9] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,

965 (1962).
[10] V. Chari and A. N. Pressley, A Guide to Quantum Groups

(Cambridge University Press, Cambridge, England, 1995),
667.

[11] T. Tjin, Int. J. Mod. Phys. A 7, 6175 (1992).

[12] H. Ruegg and V. N. Tolstoi, Lett. Math. Phys. 32, 85
(1994).

[13] M. Chaichian, P. P. Kulish, K. Nishijima, and A. Tureanu,
Phys. Lett. B 604, 98 (2004); M. Chaichian, P. Presnajder,
and A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005).

[14] J. Lukierski, A. Nowicki, and H. Ruegg, Phys. Lett. B 293,
344 (1992).

[15] S. Majid and H. Ruegg, Phys. Lett. B 334, 348 (1994).
[16] A. Agostini, G. Amelino-Camelia, M. Arzano, A.

Marciano, and R. A. Tacchi, Mod. Phys. Lett. A 22,
1779 (2007).

[17] G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002).
[18] G. Amelino-Camelia, L. Smolin, and A. Starodubtsev,

Classical Quantum Gravity 21, 3095 (2004).
[19] L. Freidel and E. R. Livine, Phys. Rev. Lett. 96, 221301

(2006).
[20] A. P. Balachandran, A. Pinzul, and B. A. Qureshi,

arXiv:0708.1779; A. P. Balachandran, T. R.
Govindarajan, G. Mangano, A. Pinzul, B. A. Qureshi,
and S. Vaidya, Phys. Rev. D 75, 045009 (2007).

[21] G. Amelino-Camelia and M. Arzano, Phys. Rev. D 65,
084044 (2002); M. Arzano and A. Marciano, Phys. Rev. D
76, 125005 (2007).

QUANTUM FIELDS, NONLOCALITY AND QUANTUM GROUP . . . PHYSICAL REVIEW D 77, 025013 (2008)

025013-5


