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We find the full spectrum of fermion bound states on a Z2 kink. In addition to the zero mode, there are
int�2mf=ms� bound states, where mf is the fermion and ms the scalar mass. We also study fermion modes
on the background of a well-separated kink-antikink pair. Using a variational argument, we prove that
there is at least one bound state in this background, and that the energy of this bound state goes to zero
with increasing kink-antikink separation, 2L, and faster than e�a2L where a � min�ms; 2mf�. By
numerical evaluation, we find some of the low lying bound states explicitly.
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I. INTRODUCTION

A novel feature of fermion-topological defect interac-
tions is the appearance of fermion zero modes [1–3]. The
existence of zero modes has important implications, lead-
ing to phenomena such as fractional quantum numbers [4]
and superconducting cosmic strings [5]. In any physical
setting, however, the system is expected to contain both
defects and antidefects, and extended topological defects
will frequently occur as closed structures, for example,
closed loops of cosmic string, or closed branes in brane
cosmology. Then it is important to determine the fate of a
fermion zero mode in these situations.

The fate of fermion zero modes on topologically trivial
structures, such as kink-antikink or cosmic string loop, has
been addressed in Ref. [6]. The expectation that the fer-
mion zero modes would be recovered as the kink-antikink
separation, or the size of the cosmic string loop, is in-
creased indefinitely, was not met in Ref. [6]. In the present
paper, our primary aim is to reconsider the problem of
fermions on kink-antikink backgrounds. Contrary to
Ref. [6], we find that there are bound states on kink-
antikink pairs whose energy vanishes exponentially fast
with separation of the kink and antikink.

We start by finding all fermion bound states on a single
kink. If 2mf < ms where mf and ms are the fermion and
scalar masses, we find that the bound state spectrum only
contains a zero mode. However, as we increase the fermion
mass further, the number of bound states increases and is
bounded by 2mf=ms as described in Sec. III. We then turn
to the kink-antikink system, proving first that a bound state
exists if the kink and antikink are well-separated. Our proof
is based on a variational argument and allows us to obtain
an upper bound on the energy of the bound state. The
bound itself shows that the energy goes to zero with
separation (2L) faster than exp��a2L� where a �
min�ms; 2mf�. Next, we evaluate the bound state energies
numerically and confirm the exponential dependence on L.
We also find an exponential decay of the ground state
energy with increasing 2mf=ms.

In the next section we set up the problem. We summarize
our results in Sec. V. Identities involving hypergeometric
functions are included in the appendix.

II. SETUP

The 1� 1 dimensional field theory we are interested in
is described by the Lagrangian

 L �
1

2
�@���2 �

�
4
��2 � �2�2 � i � ��@� � g� �  

(1)

where� is a real scalar field,  is a two-component spinor,
and the �� are defined as

 �t � �3 �
1 0
0 �1

� �
; �z � i�1 � i

0 1
1 0

� �
: (2)

There are two masses in the model. The scalar mass is
ms �

������
2�
p

� and the fermion mass is mf � g�, where we
are taking g > 0.

The Z2 kink solution has the well-known form (e.g. see
Ref. [3])

 � � � tanh
�
msz

2

�
; (3)

and the antikink is obtained simply by letting z! �z. We
shall also be interested in the system that contains a well-
separated kink and antikink, for which the scalar field
configuration can be chosen to be

 � � � tanh
�
ms

2
�z� L�

�
� � tanh

�
ms

2
�z� L�

�
� �:

(4)

The kink-antikink separation is 2L.
Fermionic modes are found in the fixed scalar field

background by solving the Dirac equation,

 �i��@� � g�� � 0; (5)

where we will consider � to be the kink solution of Eq. (3)
and the kink-antikink configuration in Eq. (4). The modes

PHYSICAL REVIEW D 77, 025006 (2008)

1550-7998=2008=77(2)=025006(7) 025006-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.025006


will contain a set of bound states (jEj<mf) and contin-
uum states. In this paper, we will only be interested in
determining the bound states with E> 0.

We write

  � e�iEt ��� � ���=
���
2
p

��� � ���=
���
2
p

" #
(6)

to get

 �@z � g���� � �E��; (7)

 �@z � g���� � �E��: (8)

Before proceeding further, it is convenient to perform a
change to dimensionless variables defined by

 z0 �
msz

2
; L0 �

msL
2
; E0 �

2E
ms
; g0 �

����
2

�

s
g�

2mf

ms
:

In what follows, we will drop the primes for notational
convenience. The Dirac equations are then still given by
Eqs. (7) and (8), though with all variables having their
dimensionless meanings, and the (rescaled) kink and kink-
antikink backgrounds read

 �K � tanhz; (9)

 �K �K � tanh�z� L� � tanh�z� L� � 1: (10)

By substitution of one of Eqs. (7) and (8) into the other,
we obtain the 1-dimensional Schrödinger equations for
�	,

 � @2
z�	 � g�g�2 
 @z���	 � E2�	; (11)

allowing us to identify the potentials

 V	��� � g�g�2 
 @z��: (12)

Note that Eq. (11) actually contains two Schrödinger equa-
tions and the solutions of both must yield the same eigen-
value E2.

The single kink (and antikink) backgrounds are odd
functions of z; we see that under z! �z, their first order
equations transform into

 � �@z 	 g���	 � 
E�
: (13)

That is, the parity reversed positive energy solutions are the
parity unreversed negative energy solutions. In other
words, since kink and antikink are parity reversed func-
tions of each other, the positive energy solutions on the
kink are the negative energy solutions on the antikink; the
negative energy solutions on the kink are the positive
energy solutions on the antikink. Further, since the deriva-
tive of an odd function is an even function we observe that
the corresponding Schrödinger equation, Eq. (11), is in-
variant under parity transformation: hence, if the energy
eigenstates turn out to be nondegenerate (they are, as we
will see below), they must be of a definite parity.

For even �, the first order Eqs. (7) and (8) transform
under parity z! �z into

 �@z 
 g���	 � 	E�
; (14)

and hence ���z� � ����z�. This includes the case of the
kink-antikink background. An alternate way to see this is
that @z� is an odd function of z, and the Schrödinger
equation for ���z� is identical to that for ����z�. Hence
if we have a solution to Eq. (11) for ���z� for the kink-
antikink background, ���z� � ����z� will be a solution
for the�� Schrödinger equation with the same value of E2.
In what follows, for the kink-antikink background, we will
simply work with the �� equation.

III. FERMION BOUND STATES ON A KINK

We begin by solving the Schrödinger equation for a
fermion on a single kink.

 � @2
z�	 � VK;	�z��	 � E2�	 (15)

where

 VK;	�z� � g2 � g�g	 1�sech2z: (16)

For any value of g > 0, VK;� has the shape of a potential
well with asymptotic maximum of g2, and minimum value
of �g at z � 0. We know from quantum mechanics in 1
dimension that every nonpositive potential that tends to
zero asymptotically necessarily has at least one bound
state. Hence VK;��z� has at least one bound state for every
g. Also, since VK;��z� gets deeper with increasing g, we
expect more and more bound states to appear with larger
values of g. This expectation will be confirmed below.
However, we also need a nontrivial bound state of the
�� Schrödinger equation which has the same energy ei-
genvalue as for ��. Only then will �	 solve the first order
equations, Eqs. (7) and (8), except if E � 0 for then we can
take �� � 0. For 0< g � 1, VK;� is in the shape of a
potential barrier and clearly has no bound states. This
shows that for 0< g � 1, the only possible bound state
is with E � 0 and �� � 0; the solution is

 ��0�� � sechgz: (17)

More bound states do appear for g > 1 as we now find by
explicit calculation.

Employing the prescription in Refs. [3,7] we write

 �	 �N 	sechbzF	�z� (18)

with b2 � g2 � E2, or b � �
�����������������
g2 � E2

p
, the positive

choice of sign to ensure square integrability. Next we
switch variables to

 u �
1

2
�1� tanhz� (19)

and obtain the hypergeometric equation,
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u�u� 1�F00	�u� � �b� 1��2u� 1�F0	�u� � �b�b� 1�

� g�g	 1��F	�u� � 0: (20)

It can be inferred that the arguments of the hypergeometric
function F��	; �	;�	; u� must be
 

�	 � b�
1

2
�

�
g	

1

2

�
; �	 � b�

1

2
�

�
g	

1

2

�
;

�	 � b� 1: (21)

Observe that the �g	 1=2� actually comes from taking a
square root, so it ought to be contained within an absolute
value sign, jg	 1=2j; but including � and � without the
absolute value sign already covers both cases g	 1=2> 0
and g	 1=2< 0, since the hypergeometric function obeys
the symmetry F��	; �	;�; u� � F��	; �	;�; u�.

The general solutions for �	 are therefore
 

�	�z� � C1sechbzF��	; �	;�	; u�

� C2ebzF��	 � �� 1; �	 � �� 1; 2� �; u�:

(22)

As z! �1, tanhz! �1 and from Eq. (A1) the hyper-
geometric function after the ebz term goes to 1. As a result,
we see that the second C2 term becomes unbounded be-
cause of the ebz factor. Hence we need to set C2 � 0 for
normalizability.

As z! �1, we use the identity in Eq. (A2) to inform us
that

 lim
z!�1

���z� �N �

�
ebz

��b� 1����b�
��g� 1����g�

� e�bz
��b� 1���b�

��b� g� 1���b� g�

�
; (23)

 lim
z!�1

���z� �N �

�
ebz

��b� 1����b�
��g���1� g�

� e�bz
��b� 1���b�

��b� g���b� g� 1�

�
: (24)

The e�bz term would be unbounded if its coefficient is
finite. Recalling that the gamma function has poles at the
negative integers and zero, we can then set the e�bz term to
zero by requiring that the argument of one of the gamma
functions in the denominator be a negative integer or zero.
Since both b� g and b� g� 1 are strictly positive, we
need

 b	n � g�
1

2



1

2
� �n	 2 Z� (25)

which implies

 En� �
����������������������������
n��2g� n��

q
;

En� �
����������������������������������������������������
�n� � 1��2g� �n� � 1��

q
:

The solution for �	 is valid only if their energy eigenval-
ues coincide; we get the additional requirement

 n� � n� � �1: (26)

The range of n� is determined by noting that b�n � g� n�
from Eq. (25) and normalizability requires b�n > 0.
Therefore

 0 � n� < g: (27)

We then need to determine the relationship between the
normalization constants N 	 of these�� and�� solutions
by plugging them back into our first order equations (7) and
(8). With some algebra involving the hypergeometric func-
tion identities (A3) and (A4), we can verify that our solu-
tions do satisfy the first order equation provided we have

 

N �n�
�

N �n�
�

� �
En
n

(28)

where n � n� labels the nth mode.
To summarize, on the kink background the positive

energy fermionic bound states are given by

 ��n�� �z� � �N nEnsechg�nz;

F
�
�n; 2g� n� 1; g� n� 1;

1

2
�1� tanh�z��

�
;

(29)

 

��n�� �z� �N nnsechg�nzF
�
�n� 1; 2g� n; g� n� 1;

1

2
�1� tanh�z��

�
;

En �
���������������������
n�2g� n�

q
; 0 � n < g; n 2 Z�; (30)

where we highlight that, because �n and �n� 1 are
negative integers or zero, we see from (A1) the hyper-
geometric functions are really finite order polynomials in
u � �1� tanhz�=2:

 F��n; 2g� n� 1; g� n� 1; u�

�
Xn
m�0

��n�m�2g� 1� n�m
m!�g� n� 1�m

um;

F��n� 1; 2g� n; g� n� 1; u�

�
Xn�1

m�0

��n� 1�m�2g� n�m
m!�g� n� 1�m

um:

These bound state solutions have been obtained in a
different form in [8].

As an example, we can recover the bound state found in
Ref. [6] by setting n � 1,
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 ��1�� �z� � �N
���������������
2g� 1

p
sechg�1z tanhz;

��1�� �z� �N sechg�1z; E1 �
���������������
2g� 1

p (31)

where N is a normalization factor.

IV. BOUND STATES ON KINK-ANTIKINK

As discussed below Eq. (14), at the end of Sec. II, it is
sufficient to find the solution for���z� in the kink-antikink
background and then set ���z� � ����z�. So we will
only focus on finding ��.

On inserting the kink-antikink background of Eq. (4),
the Schrödinger equation (11) becomes

 HK �K�� � ��@
2
z � VK �K��� � E2

n�� (32)

where the potentials are
 

VK �K � VK;� � VK;� � g2

� 2g2e�2Lsech�z� L�sech�z� L� (33)

where the expressions for VK;	 are given in Eq. (16). The
shape of this potential is illustrated in Fig. 1 for g � 0:5
and 1.3.

A. Proof of existence of bound states

There is a theorem by Simon [9] which states that a
potential 	V�z� admits at least one bound state for all 	 > 0
if and only if

R
1
�1 V�z�dz � 0.1 Applying this criterion to

our potentials (shifted by �g2),

 

Z �1
�1
�VK �K�z� � g

2�dz � �4g2 � 8g2L
e�2L

sinh�2L�
: (34)

At large L, 8g2Le�2L= sinh�2L� is small compared to 4g2,
and hence the integral is negative. Solving for the zero of
the right-hand side amounts to solving

 4L� 1 � e4L: (35)

But y � 4L� 1 is the tangent line to y � e4L at L � 0.
That is, the only solution to the above equation, and hence
the only instance the integral of the potential becomes non-
negative, is when L � 0. For all L> 0, therefore, we see
that the kink-antikink background, as specified by Eq. (4),
supports at least one fermion bound state for all nonzero
values of the coupling g. Contrary to the claim by Postma
and Hartmann [6], we see that spin does not pose any
obstacle to the existence of fermion bound states on the
kink-antikink.

B. A lowest energy upper bound

As mentioned in [6], the fermion zero mode (E � 0)
solution on the kink-antikink is not normalizable, as can be

verified by integrating (7) and (8) directly. That means E2
0

is strictly positive. From the variational principle in quan-
tum mechanics, we also know that the ground state energy
E2

0 is always less than or equal to the expectation value of
the Hamiltonian HK �K with respect to an arbitrary square
integrable wave function j i, namely,

 E2
0 �
h jHK �Kj i
h j i

: (36)

Motivated by the fact that

 ’�z� � sechg�z� L� (37)

is the �� zero mode solution to a single kink at z � �L
and the only normalizable �� solution to the antikink at
z � �L is zero, we shall use ’ as our trial wave function.

Inserting the Hamiltonian in Eq. (36) and using the
equation obeyed by the zero mode state [Eq. (15) with E �
0] we get
 

0<E2
0 �

��g� 1
2�����



p

��g�

Z 1
�1

dzsech2gz�sechz�

� ��g�g� 1�sechz� � 2g2e�2Lsechz�� (38)

where we have denoted z	 � z	 L and also used the
result [11,12]

 

Z 1
�1

sech2gzdz �

����


p

��g�

��g� 1
2�
: (39)

The second term in the bracket in Eq. (38) gives a con-
tribution proportional to

 2g2e�2L
Z
dzsech2g�1z�sechz�

< 8g2e�4L
Z
dzezsech2g�1z (40)

where we have used the inequality sechz� < 2ez� . The first
term in the bracket also gives a contribution proportional to
e�4L for g > 1. However, for 0< g< 1, the contribution is
estimated using

– 10 – 5 5 10
z

– 1

– 0.5

0.5

1

1.5

VK K(z)

g = 1.3

g = 0.5

FIG. 1. Kink-antikink potentials VK �K for g � 0:5 and g � 1:3.

1An elementary proof by computing the expectation value of
the Hamiltonian with respect to some trial wave function can be
found in [10].
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g�1� g�
Z
dzsech2gz�sech2z�

< g�1� g�22ge�4gL
Z
dze2gzsech2z (41)

where we have used the inequality sech2gz� < 22ge2gz� .
The end result is

 0<E2
0 < e�4L ��g� 1

2�����


p

��g�
8g2

Z
dzezsech2g�1z (42)

if g > 1, and

 0<E2
0 < e�4gL ��g� 1

2�����


p

��g�
g�1� g�22g

Z
dze2gzsech2z

(43)

if 0< g< 1 in the large L limit where the first term in
Eq. (38) dominates over the second term.

These results provide an upper bound for the energy of
the ground state in the kink-antikink background, the ex-
istence of which we proved in the previous subsection.

C. Numerical solutions

We proceed to numerically solve the fermion bound
state on the kink-antikink.

First we note that it is impossible for �	 to both vanish
at the same z. Recall that first order equations are solved
uniquely by specifying one boundary condition for each �.
So if it were the case that ���z0� � ���z0� � 0 for some
z0, then looking at (7) and (8), the unique solution is simply
���z� � ���z� � 0 8 z. In particular, we cannot have
both �	 go to zero at z � 0. As discussed earlier, since
���z� � ����z� for the kink-antikink we can thus set
�	�z � 0� � 1 and rescale the solutions later if necessary.

The eigenvalues are written as E0 �
������������������
j2g� 1j

p
� and,

for n 
 1, En � �En�1� ��, with �En �
���������������������
n�2g� n�

p
. They

are searched for by solving repeatedly with various values
of �, and watching the large jzj asymptotic behavior of the
solutions, as in the ‘‘shooting method.’’ All of them even-
tually blow up, but as one tunes �, the �� may say switch
from going to negative infinity to going to positive infinity,
as z! �1. The exact eigenvalue lies between these two
values of � where this transition takes place, and the search
for the eigenvalue primarily involves narrowing the gap
between these two �’s until the desired accuracy is
achieved.

We selected g � 
 and investigated how the energy
levels near those of the single kink,

����������������������
n�2
� n�

p
, n 2

f0; 1; 2g, are varied as the kink-antikink separation is al-
tered from L � 2:5 through L � 7. Referring to Fig. 2, one
can infer that the first three energy levels roughly have an
exponential dependence on the kink-antikink distance:
En � e�aL, for some a > 0 dependent on n. This indicates
the fEng approach that of their single kink counterparts as L
is increased, in accordance with physical intuition.

FIG. 2. Ground state and excited energy levels of fermion on
kink-antikink near �En �

���������������������
n�2g� n�

p
, which are the energy

levels on the single kink, for g � 
. Here we plot the absolute
value of the deviation from �En to show, for the first three levels,
the roughly exponential dependence on L, i.e. �En �
jEn � �Enj � e

�aL, with a > 0. From dark to light, the dots are
for n � 0, 1, and 2, with best-fit slopes of �6:28, �3:41, and
�2:25, respectively.

FIG. 3. Ground state energy vs g, the Yukawa coupling, for
L � 5. We see that E0 � e

�8:36g.

–40 –20 20 40
z

0.2

0.4

0.6

0.8

1

β+(z)

FIG. 4. Ground state of fermion on kink-antikink with g �
0:1, L � 5, and E0 � 0:04. The solid line is the ground state
�� � sechg�z� L� solution on a single kink centered at z �
�L. The dashed line is the numerical solution to the kink-
antikink system.
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For L � 5, we varied the coupling g from 0.1 through 4
to examine the effect on the ground state energy eigenval-
ues. Figure 3 provides evidence that the energies decrease
roughly exponentially with increasing strength of the
coupling.

The remaining figure, Fig. 4, shows the numerical ��
solution to the kink-antikink system for the ground state of
fg; Lg � f0:1; 5g. It is compared against the corresponding
analytic solution ���z� � sechg�z� L� for the single kink
at z � �L; the �� solution for the single antikink at z �
�L is zero. The numerical solution is normalized so that its
approximate peak at z � �L coincides with that of
sechg�z� L�.

V. CONCLUSIONS

We have tackled the problem of solving for bound states
of the Dirac equation in (1� 1) dimensions on kink and
kink-antikink backgrounds. The resulting coupled first
order equations can in turn be uncoupled to yield two
Schrödinger equations, which we solve exactly for the
single kink and antikink case. We find that the number of
bound states on a kink, excluding the zero mode, is given
by the greatest integer less than g � 2mf=ms. For fermions
on a kink-antikink, we used the Schrödinger equations and
results from nonrelativistic quantum mechanics to prove
that at least one bound state has to exist, for all nonzero
values of the Yukawa coupling g. We then derived an upper
bound for the lowest energy squared E2

0 value which al-
lowed us to prove that the ground state energy of the
fermion on the kink-antikink tends to zero as the kink-
antikink separation tends to infinity (L! 1). Appropriate
boundary conditions for the first order equations were
devised and employed to solve numerically the energy
eigenvalues and eigenfunctions. For the specific examples
we looked at, the lower lying bound states approached that
of their single kink counterparts exponentially quickly as
the kink-antikink distance was increased. Similarly, the
ground state energy approached zero exponentially quickly
as one increased the strength of the Yukawa coupling.

We expect our results to be valid also for the case of
vortex-antivortex pairs, especially in the case of global
vortices since then we can hope to reduce the problem to
that of bound states of a Schrödinger equation in two
spatial dimensions. If the vortices are local, there will be
additional gauge interactions that might possibly alter our
conclusion. If there is a low lying bound state on a vortex-
antivortex pair in two spatial dimensions then, by including
a third dimension, we can argue that there is a low lying
bound state on a parallel string-antistring pair. Since one
might view the string-antistring pair as being a very long
loop that is closed off asymptotically, we expect that even a
large cosmic string loop should have a low lying fermionic
bound state. Then the lowest non-negative energy state on a
loop of cosmic string will have positive energy that is
suppressed by exp��cR=w� where R is the radius of the
loop, w is a width associated with the string and c is a

numerical constant of order unity. In cosmological appli-
cations, this is an enormous suppression and we expect the
picture derived on the assumption of exact zero modes to
still hold true. Exceptions could occur if a loop shrinks and
becomes small, or where a cusp occurs on a loop. For the
case of superconducting strings [5], the small but nonzero
energy of the lowest positive energy state means that
charge carriers now have to jump from the Dirac sea to
positive energy, requiring 2m energy, where m is the mass
of the lowest positive energy state. An applied electric field
with strength <m2=e along the string can cause this jump
as in Schwinger pair production, but the process is due to
tunneling and is exponentially suppressed [13]. At stronger
electric fields, the process would be unsuppressed. The
critical value of the electric field for unsuppressed pair
production is �m2

f exp��cL=w�=e where e is the electric
charge of the fermion.

Another setting where fermion zero modes are believed
to play an important role is in brane cosmology where
fermions are trapped on 3� 1 dimensional branes in a
higher dimensional bulk universe. If the fermions have
zero modes in the brane background, it corresponds to
massless fermions that are trapped on the brane and this
is a possible explanation for massless standard model
fermions living in a 3 dimensional space. In light of our
results, if the brane can be thought of as a domain wall, in
addition to the fermion zero modes, we may also expect
other bound states to exist for a range of parameters. If the
brane is closed or the bulk contains neighboring antibranes,
the fermion zero modes will become bound states with an
exponentially small mass. This may either be viewed as an
undesirable feature of the particular brane system, or else
may be viewed as a means to probe brane configurations in
the bulk via the properties of standard model fermions.
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APPENDIX: HYPERGEOMETRIC FUNCTION
IDENTITIES

In this appendix we collect various hypergeometric
identities [7,11,14,15] used in this paper.
 

F��;�;�; u� �
X1
m�0

���m���m
m!���m

um;

���m � ������ 1� . . . ���m� 1�; juj< 1:

(A1)
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F��;�;�;u� �
������������
������������

F��;�; 1������;

1�u�� �1�u������
������������

��������

�F����;���; 1������; 1�u�;

jarg�u�j<
; jarg�1�u�j<
;

������ 0;	1;	2; . . . : (A2)

 u
d
du
F��;�;�; u� � ��F��� 1; �;�; u�

� F��;�;�; u��: (A3)

 

��� 1� ���1� u�F��� 1; �;�; u�

� ��� 1� ��F��;�;�; u� � ��� ��

� F��� 1; �� 1;�; u�: (A4)
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