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In an external constant magnetic field, so strong that the electron Larmour length is much shorter than
its Compton length, we consider the modification of the Coulomb potential of a point charge owing to the
vacuum polarization. We establish a short-range component of the static interaction in the Larmour scale,
expressed as a Yukawa-like law, and reveal the corresponding ‘‘photon mass’’ parameter. The electrostatic
force regains its long-range character in the Compton scale: the tail of the potential follows an anisotropic
Coulomb law, decreasing away from the charge slower along the magnetic field and faster across. In the
infinite-magnetic-field limit the potential is confined to an infinitely thin string passing though the charge
parallel to the external field. This is the first evidence for dimensional reduction in the photon sector of
quantum electrodynamics. The one-dimensional form of the potential on the string is derived that includes
a � function centered in the charge. The nonrelativistic ground-state energy of a hydrogenlike atom is
found with its use and shown not to be infinite in the infinite-field limit, contrary to what was commonly
accepted before, when the vacuum polarization had been ignored. These results may be useful for studying
properties of matter at the surface of extremely magnetized neutron stars.
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I. INTRODUCTION

The fact that the vacuum, in which an external magnetic
field is present, is an optically anisotropic medium, has
been known, perhaps, since the time when the nonlinearity
of quantum electrodynamics was first recognized: in a
nonlinear theory electromagnetic fields do interact with
one another, provided that the strength of at least one of
them is of the order of or larger than the characteristic
value B0 � m2=e ’ 4:4� 1013 G, where m and e are elec-
tron mass and charge, respectively. (Henceforth, we set
@ � c � 1 and refer to the Heaviside-Lorentz system of
units.) If the external field is strong, other fields interact
with it, the result of the interaction depending upon the
direction specified by the external field, hence the anisot-
ropy. Depending on the wave amplitude, the electromag-
netic wave propagation in this medium may be considered
as a nonlinear process [1], including the transformation of
one photon into two [2] or more photons, or taken in the
linear approximation with respect to the amplitude. In the
latter case, the second-rank polarization tensor is respon-
sible for the properties of the medium. In the kinematic
domain where the photon absorption processes like
electron-positron pair creation are not allowed, the polar-
ization tensor is symmetric and real, and the medium is
transparent and birefringent [3]. In the absorption domain
the medium is dichroic [4]. The limit of low frequency and
momentum belongs to the transparency domain and corre-

sponds to a constant anisotropic dielectric permeability of
the medium. In this limit the polarization tensor may be
obtained by differentiations with respect to the fields of an
effective Lagrangian, calculated on the class of constant
external electric and magnetic fields. For small values of
these fields [5] and for extremely large [4] fields the
polarization operator was in this way considered using
the effective Lagrangian of Heisenberg-Euler calculated
[6] within the one-loop approximation. (The two-loop
calculations are also available [7].) The knowledge of
this limit is useful for studying the dielectric screening of
the fields that are (almost) static and (almost) constant in
space. For more general purposes, however, this limit is not
sufficient, and one should calculate the polarization tensor
directly, using the Feynman diagram technique of the Furry
picture in the external magnetic field. On the photon mass
shell, i.e., when the photon energy, k0, and 3-momentum,
k, are related by the free vacuum dispersion law k2

0 � k2,
such calculations were done by Adler [8] and Con-
stantinescu [9]. The results obtained are appropriate for
handling the photon propagation in a weakly dispersive
medium, when the dispersion law does not essentially
deviate from its vacuum shape. The polarization operator
for the case of the general relation between the photon
mass and momentum was calculated by Batalin and
Shabad [10], Tsai [11], Baier et al. [12], and Melrose and
Stoneham [13]. This gave the possibility of studying the
photon propagation [14] under the conditions where the
deviation from the vacuum dispersion law may be very
strong either due to the phenomenon of the cyclotron
resonance in the vacuum polarization [15]—this phenome-
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non is responsible for the effect of photon capture by a
magnetic field [16–18]—or due to magnetic fields, much
larger than B0 [19–22], or due to both circumstances (see
Ref. [23] where the photon capture effect was extended to
low frequencies for extra-large fields).

Although much work has been devoted to the study of
electromagnetic wave propagation in the magnetized vac-
uum, problems of electro- and magnetostatics in this me-
dium did not attract sufficient attention, save Refs. [24,25],
where corrections to the Coulomb law were found when
these are small: for B=B0 � 1 in [24], or at large distances
from the source for 1� B=B0 � 3���1 in [25], where
� � e2=4� � 1=137 in the fine-structure constant. Here
we proceed with an investigation of some electrostatics in
the presence of a strong external magnetic field in the
vacuum to find that for sufficiently large b � B=B0 � 1
the electric field produced by a pointlike charge at rest may
be significantly modified by the vacuum polarization, the
modification being determined by the characteristic factor
�b. We note first of all that expressions for the dielectric
permeability of the magnetized vacuum obtained from the
Heisenberg-Euler Lagrangian are applicable only as far as
the fields slowly varying in the space are concerned.
Otherwise, the spatial dispersion becomes important. For
this reason, when considering the electric field produced by
a pointlike electric charge in the present paper, we address
again to the polarization tensor calculated off shell in [10–
14], taking it in the static limit k0 � 0, but keeping the
dependence on k. The corresponding spatial dispersion
effects will be essential for getting some important features
of the modified Coulomb potential.

Using the tensor decomposition of the polarization op-
erator and the photon Green function, established in
[10,14] in an approximation-independent way, we find
that photons of only one polarization mode (mode 2 in
the nomenclature of these references; see below) may be
carriers of electrostatic force. This is in agreement with the
fact that the electromagnetic field of these photons is, in the
static limit, purely electric and longitudinal. The photons
of the other two modes mediate in this limit the magneto-
static field of constant currents.

In magnetic fields B� B0, which we are dealing with
when describing the static field, produced in the magne-
tized vacuum by a point electric charge, the electron
Larmour length LB � �eB�

�1=2 � �Cb
�1=2 is much less

than the electron Compton length �C � m�1. Therefore,
two different scales occur in the problem: the Larmour
scale and the Compton scale.

A simplifying expression for the mode-2 eigenvalue of
the polarization operator is used, valid for such fields. It
was first obtained by Loskutov and Skobelev [25] within a
special two-dimensional technique intended for large
fields, and by Shabad [19] and Melrose and Stoneham
[13] as the asymptote of the mode-2 eigenvalue calculated
[10–14] in the one-loop approximation (see [23] for the

detailed derivation of the large-field asymptotic behavior.)
The most important, now widely accepted, fact about this
asymptotic behavior (see, e.g., the monographs [20,26,27])
is that the mode-2 eigenvalue contains a term linearly
growing with the magnetic field, seen already [4] if one
deals with the nondispersive small momentum approxima-
tion, inferable from the Heisenberg-Euler Lagrangian. It is
sometimes expected that this term—it appears in the de-
nominator of the photon propagator and hence of the
expression for the potential—should lead to suppression
of the interaction mediated by mode-2 photons. In a differ-
ent problem we already had an opportunity to show that
this is not exactly the case [28]. In [23] the impact of the
linear term on the refractive index was considered. In the
present paper we demonstrate that this term is also crucial
for the most important features of the potential of a point
charge.

Correspondingly to the two scales inherent in the prob-
lem, the potential is divided into two additive parts, out of
which the first one, called short range, decreases exponen-
tially at distances r of a few Larmour lengths from the
source, but retains the usual q=4�r singularity near the
origin r � 0, where the charge q is placed. (The anisotropy
shows itself no sooner than in the third term of the Laurent
expansion around the singular point r � 0—see Ap-
pendix A.) The second part, called long range, slowly
decreases away from the charge following an anisotropic
Coulomb law, but remains finite close to the charge. The
linear term mentioned above is responsible for the fact that
a scaling regime of the short-range part occurs, character-
ized by a comparatively simple universal function, inde-
pendent of the magnetic field. This function gives the
potential of a point charge in energy units of L�1

B �

�eB�1=2 as a dimensionless function of the space coordi-
nates in the units of the electron Larmour length LB.
Excluding the closest vicinity of the charge, its form co-
incides with the Yukawa law [see Eq. (25) below] charac-
terized by the dimensionless mass parameter 2�=� (which
is the topological mass of the two-dimensional Schwinger
electrodynamics [29], measured in inverse Larmour
lengths). Thus, this mass governs the exponential (iso-
tropic) decrease of the potential away from its source at
the distances, large in the Larmour scale. In the formal
limit of infinite-magnetic-field the short-range part be-
comes the � function with its center in the charge. As
one moves farther from the source, the Yukawa decrease
ceases, and the potential coincides with its long-range part.
It approaches, for distances from the charge large in the
Compton scale, the anisotropic Coulomb shape of the form
of Eq. (38) (that might have been also derived disregarding
the spatial dispersion). The law of decreasing along the
magnetic field is unaffected by the latter; the decrease is
the fastest in the direction orthogonal to the magnetic field.
Thus, the linearly growing term in the mode-2 eigenvalue
of the polarization operator leads, first, to the faster de-
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crease of the potential in the direction across the magnetic
field for large distances, and, second, to its steeper shape
for small distances. This may be recognized as suppres-
sion, indeed. On the other hand, the long-distance behavior
along the magnetic field, as well as the standard Coulomb
singularity near the source [30] do not sense the magnetic
field at all, no matter how strong it is.

Perhaps the most interesting feature of the potential
produced by a point charge is that, as the external magnetic
field tends to infinity, the whole potential becomes con-
centrated inside an infinitely thin string that includes the
charge and is directed parallel to the magnetic field. The
electric lines of force produced by the charge are gathered
inside the string. The string is the b � 1 limit of an
ellipsoidal equipotential surface. The potential along the
string as a function of the longitudinal distance from the
charge is just the infinite-magnetic-field limit of the long-
range part of the potential (see Fig. 6 in Sec. IV) plus the �
function contribution from the short-range part. The string
potential first grows with distance logarithmically and
linearly (starting with negative values) in between the
Larmour and Compton distances and hence provides ‘‘con-
finement’’ in this scale. For the string formation, again, the
above-discussed term, linearly growing with the magnetic
field, is responsible. To conclude about its presence, a
consideration of the Heisenberg-Euler Lagrangian might
have been sufficient. However, for calculating the string
potential, the effect of spatial dispersion was important. In
contrast to the quark-antiquark string in the lattice QCD,
the string potential of the present paper stops growing after
reaching the Compton distances from the charge and ap-
proaches zero following the Coulomb law 1=4�r in accord
with the fact that the infrared singularity in QED is milder
than in QCD and insufficient to provide the infrared
custody.

The appearance of the string notifies the reduction of
QED to two dimensions (one time–one space) in the
photon sector in the infinite-magnetic-field limit, which
implies a new result [31], because what was known before
was the reduction to two dimensions in the electron sector.
The latter circumstance is common knowledge and is well-
understood referring to the fact that electrons are confined
to the lowest Landau level, so only 1 degree of freedom—
that along the magnetic field—survives to remain dynami-
cal. For instance, it was demonstrated in [28], that the
Bethe-Salpeter equation describing the interaction be-
tween electrons and positrons acquires in this limit a fully
Lorentz-covariant form in the two-dimensional space with
the metrics (1, �1).

Analogously, the nonrelativistic Schrödinger equation
for an electron in the field of the nucleus of a hydrogenlike
atom is known to become a differential equation with
respect to the longitudinal distance between the two parti-
cles. Unless the vacuum polarization is taken into account,
the standard result [32] is that due to the singularity of the

Coulomb potential in the origin, the ground-state energy in
this problem tends to negative infinity as the magnetic field
unlimitedly grows. The conclusion of the present paper is
that if the string potential obtained is used in the
Schrödinger equation the ground-state energy remains fi-
nite just because the singularity of the string potential in
the origin has the � function character.

Another conclusion concerns the critical nucleus charge
Zcr making the threshold of its instability manifested in
spontaneous free positron production. The known fact here
[33] is that Zcr becomes reasonably smaller than ��1 �
137 for large magnetic fields. This result depends on the
same unboundedness from below of the energy spectrum
of the Dirac operator caused by the same Coulomb singu-
larity of the static potential. Therefore, it should be revised
if the vacuum polarization of the Coulomb potential is
taken into account.

The paper is organized as follows. In Sec. II we present
an approximation-independent form of the potential of a
point charge in terms of the mode-2 component of the
photon propagator and define the division of the potential
corresponding to the one-loop polarization operator in the
asymptotical region of large magnetic fields into the short-
and long-range parts. In Sec. III we consider the short-
range part as determined by an expansion near the univer-
sal function corresponding to the scaling regime. It is
obtained as a one-fold integral. We also establish the �
function character of the short-range part in the limit of
infinite magnetic field. In Sec. IV the anisotropic Coulomb
law is obtained for large distances for the long-range part
of the potential by applying mathematical means, different
for different remote regions in the space. The limiting, b �
1, form of the long-range part is studied for short and long
distances on the string. In Sec. V we estimate the limiting
value of the ground-state energy of a hydrogenlike atom by
considering the Schrödinger equation with the vacuum-
polarization-modified potential and using the shallow-
well-potential method. Also a perturbation correction to
the ground state valid for the fields in the range 1� b�
2�=� is found. A role the radiative modification of the
Coulomb potential may play when the Dirac equation is
used is discussed. In Sec. VI we briefly discuss possible
applications of our results to physics of strongly magne-
tized neutron stars. In Appendix A serving Sec. II we
derive the asymptotic expansion of the potential near the
point r � 0 and study the coefficients in this expansion as
functions of the magnetic field. Also, an analog of the
Uehling-Silber [5] correction to the Coulomb potential
valid in the interval 1� b� 2�=� is derived. In
Appendix B we deal with a simplified potential that models
the short-range Yukawa-like potential and also has the �
function as a limiting form. In this case an explicit solution
of the Schrödinger equation can be obtained with the use of
the method of Ref. [34]. The finiteness of the ground
energy is demonstrated.
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Some results of the present paper were shortly reported
in our previous paper [35]. See also the preliminary pub-
lication [36], more detailed in certain points.

II. GENERAL REPRESENTATION FOR THE
STATIC POTENTIAL OF A POINTLIKE CHARGE:

ONE-LOOP APPROXIMATION IN THE LARGE
MAGNETIC FIELD DOMAIN

The electromagnetic 4-vector potential produced by the
4-current j��y� is

 A��x� �
Z
D���x� y�j

��y�d4y; �; � � 0; 1; 2; 3:

(1)

Here x and y are 4-coordinates, and D���x� y� is the
photon Green function in a magnetic field in the coordinate
representation. The metric in the Minkowski space is de-
fined so that diagg�� � �1;�1;�1;�1�. Equation (1) de-
fines the 4-vector potential with the arbitrariness of a free-
field solution, including the gauge arbitrariness. If the
photon Green function is chosen as causal, only the gauge
arbitrariness remains.

The current of a pointlike static charge q placed in the
point y � 0 is

 j��y� � q��0�
3�y�: (2)

Hence

 A��x� � q
Z 1
�1

D�0�x0 � y0;x�dy0

� q
Z 1
�1

D�0�x0 	 y0;x�dy0

� q
Z 1
�1

D�0�y0;x�dy0: (3)

This 4-vector potential is also static.
If there is no magnetic field, and the photon propagator

is free and taken in the Feynman gauge (with the pole
handled in a causal way)

 D���x� y� � DC
���x� y� �

g��
i4�2�x� y�2

; (4)

only the zeroth component of the 4-vector potential is
present:

 AC
0 �x� � q

Z 1
�1

DC
�0�y0;x�dy0 �

q

i4�2

Z 1
�1

dy0

y2
0 � x2

�
1

4�
q
jxj

: (5)

This is the Coulomb potential in the Heaviside-Lorentz
system of units used throughout.

Let there be an external magnetic field B directed along
axis 3 in the Lorentz frame where the charge q is at rest in
the origin x � 0, and no external electric field exists in this

frame. Call this frame special. Define the Fourier transform
as
 

D���x� �
1

�2��4
Z

exp�ikx�D���k�d4k;

�; � � 0; 1; 2; 3:
(6)

Then (3) becomes

 A��x� �
q

�2��4
Z

exp
i�k0y0 � kx��D�0�k�d4kdy0

�
q

�2��3
Z
D�0�0;k� exp��ikx�d3k: (7)

The four 4-eigenvectors [�a�� , a � 1, 2, 3, 4, of the
polarization tensor ��� [10,14,15] take in the special
frame (and arbitrary normalization) the form—the com-
ponents are counted downwards as � � 0, 1, 2, 3—

 [�1�� � k2

0
k1

k2

0

0BBB@
1CCCA
�

	 k2
?

k0

k1

k2

k3

0BBB@
1CCCA
�

; [�2�� �

k3

0
0
k0

0BBB@
1CCCA
�

;

[�3�� �

0
k2

�k1

0

0BBB@
1CCCA
�

; [�4�� �

k0

k1

k2

k3

0BBB@
1CCCA
�

:

(8)

Among them there is only one whose zeroth component
survives the substitution k0 � 0. It is [�2�� . This implies that
out of the four ingredients of the general decomposition of
the photon propagator
 

D���k� �
X4

a�1

Da�k�
[�a�� [

�a�
�

�[�a��2
;

Da�k� �
�
�
k2 	 �a�k��

�1; a � f1; 2; 3g;

arbitrary; a � 4;

(9)

where �a�k� are scalar eigenvalues of the polarization
tensor:

 ��
��k�[�a�� � �a�k�[

�a�
� ; �4�k� � 0; (10)

only the term with a � 2, D2�k�[
�2�
� [

�2�
� =�[�2��2, partici-

pates in (7), i.e., only mode-2 (virtual) photons may be a
carrier of electrostatic interaction, and not photons of
modes 1 and 2, nor the purely gauge mode 4. Bearing in
mind that �[�2��2 � k2

3 � k
2
0, we have

 A0�x� �
q

�2��3
Z e�ikxd3k

k2 � �2�0; k
2
3; k

2
?�
; A1;2;3�x� � 0:

(11)

Here k2
? � k2

1 	 k
2
2. Thus, the static charge gives rise to

electric field only, as it might be expected. The gauge
arbitrariness in the choice of the photon propagator
D4�k�[

�4�
� [

�4�
� �D4�k�k�k� indicated in (9) has no effect
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in (11). Certainly, the potential (11) is defined up to gauge
transformations.

The result that only mode-2 photons mediate electro-
static interaction may be understood, if we inspect electric
and magnetic components of the fields of the eigenmodes
obtained from their 4-vector potentials (8) in the standard
way: e�a� � k0b�a� � k[�a�0 , h�a� � k� b�a�: These are
[14]

 e �1� � �
k?
k?

k0; h�1� �
�
k?
k?
� k3

�
; (12)

 e �2�? � k?k3; e�2�3 �
k3

k3
�k2

3 � k
2
0�;

h�2� � �k0

�
k? �

k3

k3

�
;

(13)

 e �3� � �k0

�
k?
k?
�

k3

k3

�
; h?

�3� � �
k?
k?

k3;

h3
�3� �

k3

k3
k?;

(14)

where the cross stands for the vector product, and the
boldfaced letters with subscripts 3 and ? denote vectors
along the directions parallel and perpendicular to the ex-
ternal magnetic field, respectively.

The photon energy and momenta here are not, generally,
related by any dispersion law. Therefore, we may discuss
polarizations of virtual, off shell photons—carriers of the
interaction—based on Eqs. (12)–(14). The electric field e
in mode 1 is parallel to k?; in mode 2 it lies in the plane
containing the vectors k, B; in mode 3 it is orthogonal to
this plane, i.e., mode 3 is always transversely polarized,
e�3�k � 0. For the special case of the virtual photon propa-
gation transverse to the external magnetic field, k3 � 0
(this reduces to the general case of propagation under
any angle � � 0 by a Lorentz boost along the external
magnetic field), mode 2 is transversely polarized, e�2�k �
0, as is always the case for mode 3. Mode 1 for transverse
propagation, k3 � 0, is longitudinally polarized, e�3� �
k � 0, and its magnetic field is zero. The lowest-lying
cyclotron resonance of the vacuum polarization [15], the
one that corresponds to the threshold k2

0 � k
2
3 � 4m2 of

creation of the pair of electron and positron in the lowest
Landau state each, belongs to mode 2. It gives rise to the
photon capture effect with the photon turning into a free
[16] or bound [17,18] electron-positron pair. Another con-
sequence of the cyclotron resonance is that a real photon of
mode 2 undergoes the strongest refraction in the large
magnetic field limit [23] even if its frequency is far beyond
the pair production threshold.

In the static limit k0 � 0 the magnetic field in mode 2
disappears, h�2� � 0, while its electric field is collinear
with k, e�2� � k. It becomes a purely longitudinal virtual
photon. Unlike mode 2, in modes 1 and 3 in the static limit

k0 � 0 only the magnetic fields survive: e�1;2� � 0, h�1� �
k? � B, h�3�? � �k?k3, h�3�3 � k2

?, h�1;3�k � 0. (Here
normalizations are arbitrary and kept fixed only within
the same mode). A virtual mode-1 photon carries magneto-
static interaction. It is responsible for the magnetic field
produced by a current flowing through a straight linear
conductor oriented along the external magnetic field. In
accordance with the above formula for h�1� its magnetic
field is orthogonal both to B and to the radial direction in
the transverse plane k?, along which the magnetic field of
the current decreases. The mode-3 photon contributes as an
interaction carrier in the problem of a magnetostatic field
produced by a solenoid with its axis along axis 3. In the
present paper, however, we do not consider magnetostatic
problems.

In the asymptotic limit of high magnetic field eB� k2
3,

B� m2=e � B0, the eigenvalue �2�0;k�, as calculated
within the one-loop approximation [10–14], with the ac-
curacy of terms that grow with B only as its logarithm and
slower, is [19]

 �2�0; k
2
3; k

2
?� � �

2�bm2

�
exp

�
�

k2
?

2m2b

�
T
�
k2

3

4m2

�
; (15)

where b � B=B0 and

 T�y� � y
Z 1

0

�1� 	2�d	

1	 y�1� 	2�

� 1�
1

2
������������������
y�1	 y�

p ln

������������
1	 y
p

	
���
y
p������������

1	 y
p

�
���
y
p : (16)

Note that 0 � T�y� � 1 for y
�0;1�. It will be demon-
strated in the subsequent sections that the asymptote
T�y! 0�  2y=3 in (16) is responsible for the large-
distance Coulomb-like behavior of the potential in the
direction orthogonal to the field, while the asymptotic
value T�1� � 1 introduces a sort of photon mass and
governs the short-range Yukawa-like part of the potential
[see Eqs. (24), (25), and (38) below].

Other eigenvalues, �1;3, do not contain the coefficient b
that provides the linear increase of �2 (15) with the mag-
netic field. Therefore, in the polarization tensor, whose
covariant decomposition is

 ����k� �
X3

a�1

�a�k�
[�a�� [

�a�
�

�[�a��2
; (17)

the components �; � � �0; 3� dominate in the high mag-
netic field limit in accord with the idea about the two-
dimensioning of the photon sector.

The expression for �2 (15) is to be used in (11) or,
equivalently, in the expression
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 A0�x� �
q

2�2��2
Z 1

0
J0�k?x?�

�

�Z 1
�1

e�ik3x3 dk3

k2
? 	 k

2
3 � �2�0; k

2
3; k

2
?�

�
dk2
? (18)

obtained from (11) by integration over the angle between
the 2-vectors k? and x?, which are projections of k and x
onto the plane transverse to the magnetic field. In (18)

x? �
����������������
x2

1 	 x
2
2

q
and J0 is the Bessel function of order zero.

We explained in [35] why the k3-integration here may be
extended up to the value jk3j � 1 in spite of the limitation
on the validity of (15) indicated above.

The results of a computer calculation following Eq. (18)
of the shapes of the potential for the two cases, x? � 0 and
x3 � 0, are given in Figs. 1 and 2, respectively [37]. The
curves in Figs. 1 and 2 manifest the standard Coulomb
singularity 1=jxj when jxj ! 0. Then, they fall up rather
sharply, following a Yukawa-like law within the range of
several Larmour lengths LB to reach the asymptotic long-
range regime that is the Coulomb law AC

0 �x3; 0� � q=4�x3

for x? � 0 and jx3j � m�1 and A0�0; x?� � q=4�x0?,
x0? � x?

������������������������
1	 �b=3�

p
, for x3 � 0 and x? � m�1 [see

Eq. (38) below]. In what follows we shall be commenting
on the features of the computed curves referring to ana-
lytical considerations.

The nontrivial—other than the leading asymptote k2
3

near the point k3 � k? � 0—dependence of the polariza-
tion operator eigenvalue (15) on the photon momentum

components k3, k? is the spatial dispersion. We shall see in
Sec. III that it is important in the vicinity of the charge,
where the field has a large gradient. As for the anisotropic
behavior far from the charge, to be studied in Sec. IV, only
the above asymptote is essential, inferable also from the
Heisenberg-Euler Lagrangian.

In Appendix A we consider the singular asymptotic
behavior of the potential in the vicinity of the point charge
and present its expansion near jxj � 0. Now we shall
consider separately two additive parts of the potential
that decrease by different ways with increase of the dis-
tance x.

It is useful to subdivide identically the potential (18) as

 A0�x� � As:r:�x� 	 Al:r:�x� (19)

with

 As:r:�x� �
q

2�2��2
Z 1

0
J0�k?x?�

�

�Z 1
�1

e�ik3x3 dk3

k2
? 	 k

2
3 	

2�bm2

� exp��
k2
?

2m2b
�

�
dk2
?

(20)

and

 Al:r:�x� �
q

2�2��2
Z 1

0
J0�k?x?�

Z 1
�1

e�ik3x3dk3

�

�
1

k2
? 	 k

2
3 	

2�bm2

� exp��
k2
?

2m2b
�T�

k2
3

4m2�

�
1

k2
? 	 k

2
3 	

2�bm2

� exp��
k2
?

2m2b
�

�
dk2
?: (21)

Equation (20) is the potential (11) or (18) taken with the

0 0.2 0.4 0.6 0.8 1 1.2
|x3| [(2m)–1]
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–2

–1

0

–e
A
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 [

2α
Z

m
]

FIG. 1. Electron energy �eA0�x3; 0� in the modified Coulomb
potential (18) of the charge q � Ze plotted along the axis x3

passing through the charge q parallel to the magnetic field, x? �
0. Thin solid lines correspond to four values of the magnetic field
(from left to right): b � 106, b � 105, b � 104, and b � 103.
The bold solid line is the Coulomb law AC

0 �x3; 0� � q=�4�x3�.
The thin lines approach asymptotically the bold line at both
edges of the figure. The thick dashed broken line corresponds to
b � 1. The abscissa represents the distance in the units �2m��1.
The ordinate represents the potential in the units 2Z�m � Z�
7:46 keV.

0 0.2 0.4 0.6 0.8 1 1.2
x

⊥
[(2m)–1]

–4
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A
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FIG. 2. Electron energy �eA0�0; x?� in the modified Coulomb
potential (18) plotted along the axis x? passing through the
charge q transversely to the magnetic field, x3 � 0. Conventions
are the same as in Fig. 1. Thin lines approach asymptotically the
solid line at the left lower edge of the figure and the short dotted
lines (38) A0�0; x?� � q=�4�x0?� at the upper right edge.
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substitution T�
k2

3

4m2� ) T�1� � 1 inside �2 (15). We shall
see in what follows that As:r:�x� is a Yukawa-like potential,
singular in the origin, that exponentially decreases at dis-
tances of about

�������������
�=2�

p
’ 15LB, while Al:r:�x� is a finite

function that slowly decreases at large distances (greater
than the Compton length m�1) following what will be
called the anisotropic Coulomb law. This is the reason
why we shall call Eq. (20) the short-range part and
Eq. (21) the long-range part of the potential.

Consider first the short-range part (20) and the limiting
form it takes in the infinite-field limit.

III. SHORT-RANGE PART

A. The scaling regime

It is remarkable to note that the short-range part of the
potential (20), as measured in the inverse Larmour length
L�1

B �
������
eB
p

units, is a universal, magnetic-field-
independent function of coordinates measured in
Larmour units LB. To establish this scaling regime let us
make the change of variables in the integral (20) ~k3 �

k3LB, ~k? � k?LB and define the new dimensionless coor-
dinates x3 � ~x3LB, x? � ~x?LB. Then Eq. (20) becomes

 As:r:�x� �
q

2�2��2LB

Z 1
0
J0�~k?~x?�

�
Z 1
�1

e�i~k3 ~x3 d~k3d~k2
?

~k2
? 	

~k2
3 	

2�
� exp��

~k2
?

2 �
: (22)

This is an even function of x3. The ~k3-integration here can
be performed by calculating the residues in the poles on the
imaginary axis in the points

 

~k 3 � �i

������������������������������������������
~k2
? 	

2�
�

exp��
~k2
?

2
�

s
(23)

with the upper sign taken for x3 > 0 and the lower one for
x3 < 0. Finally one gets

 As:r�x� �
~A�~x�
LB

�
q

8�LB

Z 1
0
J0�~k?~x?�

�
e�j~x3j

�������������������������������������
~k2
?
	�2�=�� exp��~k2

?
=2�

p

��������������������������������������
~k2
? 	

2�
� exp��

~k2
?

2 �

q d~k2
?: (24)

Here the universal function ~A�~x� depends on the magnetic
field through its spatial arguments ~x only. Equation (20) [or
(22) and (24)] is illustrated in Fig. 3 drawn for x? � 0 by a
computer. The simple representation (24) can be further
simplified if x3 or x? are large in the Larmour scale:
j~x3j � 1, or j~x?j � 1. In this case the integration in (24)

is restricted to the domain ~k2
? � 1 where the exponential

exp��~k2
?=2� should be taken as unity. Then (24) is reduced

to the Yukawa law for the short-range part of the potential

 

As:r:�x� ’ AY
0 �x� �

q
4�LB

exp
��2�=��1=2
�����������������
~x2
? 	 ~x2

3

q
������������������

~x2
? 	 ~x2

3

q
�

q
4�

exp
��2�b=��1=2mjxj�
jxj

: (25)

It reflects the Debye screening of the charge by the polar-
ized vacuum. Equation (25) can be established if we return
to the previous representation (22), which can then be
traced back to (18) with

 � �2�0;1; 0� �
2�

�L2
B

T�1� � m2 2�b
�
� M2 (26)

substituted for ��2�0; k2
3; k

2
?� in the denominator. Here M

is the ‘‘effective photon mass’’ of Ref. [38]. Write it as

 M �
e

�
���
2
p
LB

: (27)

The deviation of (24) from (25) when ~x? and ~x3 are both
small is not very important against the background of the
singularity of the short-range part of the potential As:r:�x�
near the charge provided by the divergency of (20) in the
origin x � 0. (See Appendix A for the asymptotic expan-
sion of the potential near the origin). Therefore, the
Yukawa law (25) is approximately fulfilled also in the close
vicinity of the charge. Correspondingly, the curves in Fig. 3

FIG. 3. Electron energy �eAs:r:�x3; 0� in the short-range part
Eq. (20) of the potential plotted against the (absolute value of)
longitudinal distance x3 for x? � 0 (thin dashed lines from left
to right correspond to b � 106; 105; 104; 103). The thick dashed
broken line corresponds to b � 1. All the rest is the same as in
Figs. 1 and 2.
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could not be distinguished from the Yukawa law (25) in the
scale of the figure.

Equations (24) and (25) establish the short-range char-
acter of the static electromagnetic forces in the Larmour
scale. The corresponding effective mass (26) coincides
with the topological photon mass eSch=

����
�
p

in the 2-
dimensional Schwinger electrodynamics [29] provided
that the dimensional fermion charge eSch of that theory is
identified as eSch �

���������
�=2

p
e=LB. We stress that the zero

photon mass understood as its rest energy is also present as
a consequence of the gauge invariance reflected in the
approximation-independent relation �a�0; 0; 0� � 0.
Correspondingly, the potential, produced by a static
charge, should be long-range for sufficiently large dis-
tances. This is the case, indeed. The long-range character
of the electromagnetic interaction is restored at the dis-
tances of the Compton scale, as we shall see in the next
section. The carrier of the long-range interaction will be
Al:r:�x� (21). The Debye screening obtained here in the
vacuum completely depends on the fact that the function
(16) tends to unity for large longitudinal momentum k3 !
1, i.e., on spatial dispersion. In this point the situation is
different from the case of a medium, where the Debye
screening can be achieved [39] in expressions, obtained
from the thermodynamical potential, which is the analog of
the effective Lagrangian for that case. The difference with
the medium is also in that the long-range part of the static
potential is absent in that case in spite of the gauge invari-
ance, because it implies that the appropriate polarization
tensor components should disappear in the long-wave limit
k0 � 0, k � 0 only if k is set equal to zero first [40], thus
providing the zero value to the photon magnetic mass.

B. The limiting b � 1 form

The short-range part (20) and (22) tends to zero, when
b! 1 for any nonzero distance, x � 0, from the charge.
This follows from the fact that ~A�~x�, defined in (24), tends
to zero with the exponential speed (25) when ~x3 � x3=LB

or ~x? � x?=LB tends to infinity. As the magnetic field b
grows more and more, the curves representing the potential
(24) for the special case of x? � 0 in Fig. 3 stick closer and
closer to the vertical axis, the spacing between the curves
and this axis becoming infinitely thin in the limit b � 1.
The area �q=2��S of the region restricted by any curve (24)
and the x3-axis in the domain �1< x3 � �LB, LB �

x3 <1,

 

q
2�

S � 2
Z 1
LB

As:r:�x3; 0�dx3 � 2
Z 1

1

~A�~x3; 0�d~x3

�
q

4�

Z 1
0

e�
�������������������������������������
~k2
?
	�2�=�� exp��~k2

?
=2�

p
d~k2
?

~k2
? 	

2�
� exp��

~k2
?

2 �
; (28)

is a finite number, with S � 2:180, independent of the
magnetic field. If the Yukawa approximation (25) is used
in (28) in place of (24), approximately the same numerical
value for S is achieved: S � �Ei��

�������������
2�=�

p
� ’ 2:176,

where

 Ei �u� � �
Z 1
�u

exp��y�y�1dy (29)

is the exponential integral. In the limit b � 1, LB � 0 the
width of the strip jx3j � LB excluded from the integration
in Eq. (28) is zero, and the latter becomes the whole area
above the limiting potential. Thus, in the infinite-magnetic-
field limit the short-range part (20) of the potential taken on
the axis drawn through the point charge q along the mag-
netic field direction becomes the � function:

 As:r:�x3; 0�jb�1 � 2:180
q

2�
��x3�: (30)

The limiting � function here is understood in the following
sense. Given a test function t�x3�, one has
 

lim
b!1

�Z �LB

�1
As:r:�x3; 0�t�x3�dx3 	

Z 1
LB

As:r:�x3; 0�t�x3�dx3

�

� 2:180
q

2�
t�0�: (31)

[This equation directly follows from the scaling law, the
first equality in (24).] In this sense it will be used in Sec. IV
and Appendix B, where we shall see that the � singularity
of the potential (30) leads only to a finite contribution to
the atomic ground-state energy in an infinite-magnetic-
field in contrast to the contribution of the primary
Coulomb potential.

Analogously, we may write a � function for the limiting
form of the short-range part of the potential along any
direction x, jxj � x?, in the plane orthogonal to the mag-
netic field containing the point charge q. In place of (28)
one has

 

q
2�

S? � 2
Z 1
LB

As:r:�0; x�dx � 2
Z 1

1

~A�0; ~x�d~x �
q

2�

Z 1
0

1� ~k?J0�~k?� 	
�~k?

2 
J0�~k?�H1�~k?� � J1�~k?�H0�~k?����������������������������������������
~k2
? 	

2�
� exp��

~k2
?

2 �

q d~k?

�
q

2�
2:178: (32)

Here J0;1 and H0;1 are, respectively, the Bessel and Struve functions of orders zero and one. We used the integral 6.512.8
and the representation 8.551.1 in the reference book [41] for calculating (32). Note that the Struve functions at large
argument decrease and oscillate asymptotically like the Neuman functions; besides H1 includes a constant asymptotic term
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2=�. The integral (32) converges: the divergence caused by
the unity term in the nominator is canceled by the two
products of two oscillating asymptotic terms in the square
brackets.

From (32) and the fact that for x? � 0 the short-range
potential (24) disappears in the b! 1 limit we have

 As:r:�0; x�jb�1 � 2:178
q

2�
��x�: (33)

The different coefficients in (30) and (33) manifest the
anisotropy. Note that the Coulomb singularity of the
(short-range part of) the potential in the origin q=4�jxj
is isotropic [30].

IV. LONG-RANGE PART

We have finished the consideration of the short-range
part and will proceed with considering the long-range part
Al:r:�x� (21). Simplifying expressions will be obtained for
large-distance behavior in Sec. IVA and for the long-range
part taken on the axis x? � 0 in Sec. IV B. We shall see in
Sec. IV B that in the limit b � 1 the long-range part, as
well as the whole potential, is concentrated on this axis,
making an infinitely thin tube or string. We shall study the
potential along the string in more detail in Sec. IV B.

A. Long-distance behavior of the long-range part
Al:r:�x�

Once we have seen in the previous section that the short-
range part As:r:�x� is as a matter of fact concentrated within
the region of a few LB, for larger distances, jxj * m�1; the
whole potential (18) and its long-range part (21) are the
same. For this reason in this subsection we shall deal
directly with (18).

1. Large x? in Larmour scale

For large transverse distances the term linearly growing
with the magnetic field (15) leads to suppression of the
static potential in the transverse direction.

To be more precise, consider the region

 x? �
m�1������

2b
p �

LB���
2
p : (34)

Once the Bessel function J0 in (18) oscillates and decreases
for large values of its argument k?x?, the main contribu-
tion into the integral over k2

? in (18) comes from the
integration variable domain k2

? � 2m2b, and the depen-
dence upon k2

? in �2 may thus be disregarded. Then the
k2
?-integration in (18) can be explicitly performed to give

(we use Eq. 6.532.4 of the reference book [41])

 A0�x3; x?� ’
2q

�2��2
Z 1

0
K0�x?

����������������������������������
k2

3 � �2�0; k
2
3; 0�

q
�

� cos�k3x3�dk3; (35)

where K0 is the McDonald function of order zero, and

 �2�0; k
2
3; 0� � �

2�b
�

m2T
�
k2

3

4m2

�
: (36)

As the McDonald function K0 decreases exponentially
when its argument increases, only small values of the
square root contribute into integral (35), and the
k3-integration domain in it is restricted to the interval k2

3 �
4m2, wherein

 T
�
k2

3

4m2

�
’
k2

3

6m2 : (37)

Then the potential form (35) becomes (we use Eq. 6.671.14
of the reference book [41])
 

A0�x3; x?� ’
2q

�2��2
Z 1

0
K0

�
x?k3

����������������
1	

�b
3�

s �
cos�k3x3�dk3

�
1

4�
q�����������������������

�x0?�
2 	 x2

3

q ;

x0? � x?

�
1	

�b
3�

�
1=2
; x0? > x?: (38)

Equation (38) is an anisotropic Coulomb law, according
to which the attraction force decreases with distance from
the source along the transverse direction faster than along
the magnetic field (remember that b � �B=B0� � 1), but
remains long range. The equipotential surface is an ellip-
soid stretched along the magnetic field. The electric field of
the charge E � �rA0�x3; x?�, as written in Cartesian
components, is the vector �q=2���x2

3 	 �
2x2
?�
�3=2�

��2x1 �
2x2 x3�, where � � �1	 �b=3��1=2. It is not di-

rected towards the charge, but makes an angle � with the
radius vector r, cos� � �x2

3 	 �
2x2
?��x

2
3 	 �

4x2
?�
�1=2�

�x2
3 	 x

2
?�
�1=2. If x? � 0, in the limit of infinite-mag-

netic-field, �! 1, the electric field of the point charge
is directed normally to the axis x3, since the ratio
�E3=E?� ! 0 (although E3 and E? are both equal to
zero in this limit outside the string). But if x? � 0, the
electric field is directed along the external magnetic field. It
looks like the electric field compresses the string. This
regime corresponds to the dielectric permeability of the
vacuum independent of the frequency, with its dependence
on k (spatial dispersion) being reduced solely to that upon
the angle in the space (cf., [23]).

The result (38) is in agreement with the curves in Fig. 2
in the large x? domain.

2. Large x3

It remains to consider the remote coordinate region of
large x3, complementary to (34).

To this end we apply the residue method to the inner
integral over k3 in (18). Using the integral representation
(16) the function �2 (15) may be, for a fixed positive value
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of k2
?, analytically continued from the real values of the

variable k3 into the whole complex plane of it, cut along
two fragments of the imaginary axis. In the lower half-
plane the cut runs from Imk3 � �2m down to Imk3 �
�1, while in the upper half-plane it extends within the
limits 2m � Imk3 � 1. Other singularities of the
k3-integrand in (18) are poles yielded by zeros of the
denominator, i.e., solutions of the equation (associated
with the photon dispersion equation)

 k2
? 	 k

2
3 � �2�0; k2

3; k
2
?� � 0: (39)

As k? varies within the limits (0, 1) two roots of this
equation k�3 � �iK�k?� move along the imaginary axis
from the point K�0� � 0 to the points k�3 � �iK�1� �
�i2m [14,15,23]. There is yet another branch of the solu-
tion to Eq. (39), corresponding to the photon absorption via
the ! e	e�-decay, but the corresponding poles lie in
the nonphysical sheet of the described complex plane,
behind the cuts, and will not be of importance for the
consideration below.

Let us consider positive values of x3. Negative values
can be handled in an analogous way. Turning the positive
part of the integration path 0 � k3 � 1 clockwise to the
lower half-plane by the angle �=2, and the negative part
�1 � k3 � 0 counterclockwise by the same angle, and
referring to the fact that the exponential exp��ik3x3� de-
creases for x3 > 0, in the lower half-plane of k3 as jk3j !
1 so that the integrals over the remote arcs may be
omitted, we get a representation for the inner integral in
(18)

 

Z 1
�1

e�ik3x3 dk3

k2
? 	 k

2
3 � �2�0; k2

3; k
2
?�

� i
Z 1

2m
e�jk3jx3��jk3j

2; k2
?�djk3j

� i2� exp
�K�k2
?�x3�Res�k2

?�; (40)

where Res�k2
?� designates the residue of the expression

D2�0;�jk3j
2; k2
?� � �k

2
? � jk3j

2 � �2�0;�jk
2
3j; k

2
?��
�1 in

the pole k�3 � �iK�k
2
?�, while ��jk3j

2; k2
?� �

D2�0;�jk3j
2 	 i0; k2

?� �D2�0;�jk3j
2 � i0; k2

?� is the cut
discontinuity. It was explained above that 0<K�k2

?�< 2m
everywhere but in the limit k? ! 1, where K � 2m.
Consequently the residue term in (40) dominates over the
cut-discontinuity term everywhere in the k?-integration
domain in the outer integral in (18), except for the region
near k? � 1. In this limit, however, �2 disappears due to
the exponential in (15), together with the cut discontinuity,
since the latter is only due to the branching points in the
function (16). Therefore, keeping the residue term in (40)
as the leading one, we neglect the contribution that de-
creases with large longitudinal distance at least as fast as
exp��2mjx3j�: In this way we come to the asymptotic
representation of the potential (18) in the region of large
longitudinal distances jx3j � �2m��1 (negative values of

x3 at this step are also included—to handle them one
should rotate the fragments of the integration path in the
directions opposite to the above)

 A0�x� ’
q

8�

Z 1
0

J0�k?x?� exp
�K�k2
?�jx3j�dk

2
?

K�k2
?�
1	H��K

2�k2
?�; k

2
?��

; (41)

where

 H�k2
3; k

2
?� �

2�bm2

�
exp

�
�

k2
?

2m2b

�
d

dk2
3

T
�
k2

3

4m2

�
: (42)

Here K2�k2
?� is the solution of Eq. (39) in the negative

region of the variable k2
3 —see [23] for its form. K�1� �

2m, K�0� � 0. T is given by (16).
Because of the exponential factor in the integrand of

(41), for large x3 the main contribution comes from the
integration region of k? that provides a minimum to the
function K�k?�. The minimum value of K�k?� is zero. It is
achieved in the point k? � 0—a manifestation of the fact
that the photon mass defined as its rest energy is strictly
equal to zero owing to the gauge invariance: �a�k0 � k3 �
k � 0� � 0. In view of (36) and (37), near the point k? �
0 the dispersion Eq. (39) has the solution K�k?� �
k?=

������������������������
1	 �b=3�

p
. Simultaneously, near the minimum

point 1	H�0; 0� � 1	 �b=3�. With these substitutions
and the use of 6.611.1 of [41], Eq. (41) becomes again the
anisotropic Coulomb law (38) �q=4��=
�x0?�

2 	 x2
3�

1=2. We
have, therefore, established its validity everywhere in the
region remote from the center, irrespective of the direction.

In agreement with this result the curves in Fig. 1 for
A0�x3; 0� approach the Coulomb law q=4�jx3j as jx3j
grows. The difference between the potential A0�x3; 0� and

0 5 10 15 20 25
x⊥ [(2m)–1]

–0.1

–0.08

–0.06

–0.04

–0.02

0

–e
A

0[
2α

Z
m

]

FIG. 4. Electron energy �eA0�x3; x?� in the modified
Coulomb potential (41) with q � Ze plotted against the trans-
verse coordinate x? with the longitudinal coordinate fixed at the
large value x3 � 10�2m��1. The thin solid line corresponds to
the magnetic field value B � 104B0. The bold solid line is the
standard Coulomb law (5)�eAC

0 �x3; x?� � �2�Zm
�2mx?�2 	
100��1=2. The thin line is indistinguishable from the anisotropic
Coulomb law (38) in the scale of the drawing. The coordinate
axes are the same as in Fig. 2.
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its large-x3 asymptote q=4�jx3j decreases in Fig. 1 at least
as fast as exp��2mjx3j� (see [36] for the derivation of the
latter statement).

Equation (41) was used for a computer calculation with
the large value x3 � 10m�1. It has led to the curve shown
in Fig. 4. In the region (34) it agrees with the result (38),
valid in that region [LB � 0:02�2m��1 for b � 104]. In
practice (38) and (41) are the same. A small deviation of
the potential curve A0�10=2m; x?� from (38) may be seen
in Fig. 5 of Ref. [36], drawn in a more detailed scale for
small x?.

B. The long-range part on the axis x? � 0 and its
limiting form for b � 1

Curves drawn for Al:r:�x3; 0� by a computer following
Eq. (21) are presented in Fig. 5.

Here we study the form the long-range part (21) of the
potential takes in the limit b � 1.

First consider the case x? � 0, x3 � 0. As we saw in
Sec. III B the short-range part of the potential tends in this
case to zero as b!1. Therefore, the limits of the whole
potential and of its long-range part are the same. For this
reason to achieve the claimed goal it is sufficient to con-
sider the limit of (18). After the change of the integration
variable k? � ~k?m

���
b
p

Eq. (18) becomes

 A0�x� �
q

2�2��2
Z 1

0
J0�~k?m

���
b
p
x?�

�
Z 1
�1

e�ik3x3 dk3d~k2
?

~k2
? 	

k2
3

m2b
	 2�

� exp��
~k2
?

2 �T�
k2

3

4m2�
: (43)

When b� ��=2�� one can disregard the ratio
k2

3

m2b in the
denominator.

For any finite x? the argument of the Bessel function in
(43) is large, therefore we may use the same procedure as
the one that led us from (18) to (35) and (38). Then we
obtain

 A0�x3; x?�jb!1;x?�0 �
2q

�2��2
Z 1

0
K0

�
x?k3

�������
�b
3�

s �
� cos�k3x3�dk3

�
1

4�
q�����������������������������������

x2
?��b=3�� 	 x2

3

q
’

qm

4
�������������
��=3

p LB

x?
! 0: (44)

This means that outside the x3-axis the potential (18) turns
to zero as the ratio LB=x?. Since its short-range part (20) or
(25) decreases with b exponentially, the result (44) holds
for the long-range part (21) as well.

The situation is different on the axis x? � 0. By making
in Eq. (21) the same change of the variable k? as above
and, again, neglecting k2

3=4m2b in the denominators we
come to the limiting (b � 1) form of the long-range part
of the potential x? � 0, independent of the magnetic field,

 Al:r:�x3; 0�jb�1 �
q

�2��2
Z 1

0

Z 1
0

cos�k3x3�dk3

�

�
1

~k2
? 	

2�
� exp��

~k2
?

2 �T�
k2

3

4m2�

�
1

~k2
? 	

2�
� exp��

~k2
?

2 �

�
d~k2
?: (45)

This is the analytic representation of the envelope curve
in Fig. 1. To understand this, note that the overall potential
is the sum of the short- and long-range parts, according to
(19). Therefore by combining the curves in Figs. 3 and 5
we come to the pattern presented in Fig. 6, which is the

FIG. 5. Electron energy �eAl:r:�x3; 0� in the long-range part
(21) of the potential for b � 1 (dashed thick line) and b �
106; 105; 3� 104; 104 (dashed lines from bottom to top).
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FIG. 6. Four electron energy �eA0�x3; 0� curves in the modi-
fied potential (18) for b � 106; 105; 3� 104, and 104 (thin solid
lines from left to right) approaching their corresponding long-
range parts �eAl:r:�x3; 0�, Eq. (21), shown in Fig. 5 (four dashed
lines from bottom to top). The thick dashed broken line corre-
sponds to the string potential A0�x3; 0�jb�1. Its vertical fragment
symbolizes the � function (31).
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detailing of Fig. 1. Each potential curve drawn for a certain
value of the magnetic field approaches, as the distance
from the charge along the x3-axis grows, the corresponding
(dashed) curve transferred from Fig. 5. But even prior to
this, the latter approaches the thick dashed curve, which is
the common envelope of the curves in Fig. 5 and the whole
potential curves in Figs. 1 and 6.

We continue by studying the long-range part of the
potential along the string, Eq. (45). To separate the part
independent of the fine-structure constant � the internal
integral here is integrated by parts to yield
 Z 1

0

�
d

d~k2
?

ln
~k2
? 	

2�
� exp�

�~k2
?

2 �T�y�

~k2
? 	

2�
� exp�

�~k2
?

2 �

�
d~k2
?

1	
~k2
?

2

� � lnT�y� 	
1

2

Z 1
0

d~k2
?

�1	
~k2
?

2 �
2

ln
~k2
? 	

2�
� exp�

�~k2
?

2 �T�y�

~k2
? 	

2�
� exp�

�~k2
?

2 �
:

(46)

Then (45) becomes
 

Al:r:�x3; 0�jb�1 � Al:r:�x3; 0�jb�1;��0

	
q

2�2��2
Z 1

0

Z 1
0

cos�k3x3�dk3d~k2
?

�1	
~k2
?

2 �
2

� ln
�
1	

2�
� exp�

�~k2
?

2 �
T�
k2

3

4m2� � 1�

~k2
? 	

2�
� exp�

�~k2
?

2 �

�
;

(47)

where the first term (it is worth recalling here that within
the integration limits T�y� is a positive function, lesser than
unity)

 Al:r:�x3; 0�jb�1;��0 � �
q

�2��2
Z 1

0
cos�k3x3�

� ln
�
T
�
k2

3

4m2

��
dk3 (48)

is independent of �, whereas the second term behaves as

 

q

4�3 ��� ln��
Z 1

0
cos�k3x3�

�
T
�
k2

3

4m2

�
� 1

�
dk3 (49)

when � tends to zero, i.e., is nonanalytic in � � 0. The
reason for the nonanalyticity and for the nonvanishing of
Al:r:�x3; 0�jb�1;��0 is that a chain of diagrams has been as a
matter of fact summed when solving the Dyson-Schwinger
equation that led to the expression for the photon Green
function (9) with the one-loop polarization operator (15)
substituted into it. In the result (11) thus obtained the two
limits b � 1 and � � 0 are not permutable.

Equation (48) may be referred to as a fitting approxima-
tion for the envelope (45), simpler than (47). It is presum-
ably useful for making rough estimates with the accuracy
to ���=�� ln� � 0:011. It might have been obtained if the

exponential exp��~k2
?=2� in (45) had been merely replaced

by unity. The integral (48) is converging at both integration
limits due to the asymptotic properties of the function T�y�
indicated below its definition (16) and represents a function
that decreases at large longitudinal distances following the
Coulomb law �q=4�x3�.

The limiting curve (45), or (47) and (48) for the long-
range part of the potential (21), crosses the axis x3 � 0
in the point Al:r:�0; 0�jb�1 � �1:4240� 0:0088��
�qm=2�� � 1:4152�qm=2��. Here two numerical contri-
butions from the first and the second terms in (47) are
presented separately. It is intriguing how close the numeri-
cal coefficient in the expression for the intercept of the
envelope and the x3 � 0 axis is to

���
2
p
� 1:4142. The more

precise value of
���
2
p

would be achieved by the infinite-
magnetic-field limit of the long-range part of the potential
in the point where its charge is located, if the fine-structure
constant were 1=121. Higher-loop calculations may im-
prove this figure.

Identifying the above-calculated �-dependent coeffi-
cient 1.4152 supposedly with

���
2
p

, an interesting observa-
tion would follow: if the charge q is taken equal to the
electron charge e, �Z � 1�, the string potential undergoes
the increment between the point x3 where the charge is
located and the infinitely remote point x3 � 1, equal to

 �Al:r:�x3� � Al:r:�0; 0�jb�1 � Al:r:�1; 0�jb�1 �
e

�
���
2
p
�C

;

(50)

where �C � m�1 is the Compton length. This ‘‘work func-
tion over a unit charge’’ differs from the photon mass (27)
in that the Larmour dimensioning has been replaced by the
Compton one.

In the interval jx3j � �2m��1 the envelope curve (45)
looks roughly in Fig. 1 as a linearly growing potential, the
same as this is believed to be the case for the confining
potential along a quark-antiquark string in QCD in the
limit of zero lattice spacing. We may say that in QED the
confinement occurs within distances smaller than the
Compton length, whereas for larger distances—thanks to
the fact that the infrared behavior in QED is weaker than in
QCD—the growth of the potential ceases and it ap-
proaches the zero value along the Coulomb asymptote.
As a matter of fact the growth of the potential is only
nearly linear.

To establish its true character consider the difference
Al:r:�x3; 0�jb�1 � Al:r:�0; 0�jb�1 and change to the new in-
tegration variable u � k3x3 in the integrals (47) and (48).
Then the argument of the function T�y� becomes
�u2=4m2x2

3� and should be considered as large, once
4m2x2

3 � 1. According to Eq. (16) for large y one has

T�y� � 1� ’ �� ln2y=2y�. As long as this tends to zero
with y! 1, we may substitute ln�1	 x� � x; x� 1 for
the logarithms in (47) and (48). In this way we obtain
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Al:r:�x3;0�jb�1 �Al:r:�0;0�jb�1

�
qm
4�

�
1�

�
�
f���

�
2mjx3j

�
ln�2mjx3j��

1

2
ln2	� 1

�
;

(51)

where

 f��� �
Z 1

0

exp�
�~k2
?

2 �d
~k2
?

�1	
~k2
?

2 �
2
~k2
? 	

2�
� exp�

�~k2
?

2 ��
;

f
�

1

137:036

�
� 4:533; f���j�!0 ’ � ln�;

(52)

and  � 0:577 is the Euler constant. We have made use of
the two standard integrals [41]
 Z 1

0

�cosu� 1�

u2 du � �
�
2
;

Z 1
0

�cosu� 1�

u2 lnudu �
�
2
�� 1�:

(53)

Finally, for small distances along the string, 2jx3jm� 1,
the long-range potential has the form

 Al:r:�x3; 0�jb�1 �
qm
2�

1:4152	 0:495

� 2mjx3j�ln�2mjx3j� � 0:77��: (54)

This should be additively combined with the � function
(30), to which the short-range part As:r:�x3; 0� is reduced in
the limit b � 1, to form the string potential. It is this
potential that is responsible for forming the spectrum of
an atom in the strong magnetic field, to consideration of
which we are proceeding.

V. RADIATIVE SHIFT OF ELECTRON GROUND-
STATE ENERGY IN A HYDROGEN-LIKE ATOM IN

A STRONG MAGNETIC FIELD

In this section we shall study how the ground-state
energy of a hydrogenlike atom at rest in a strong magnetic
field is modified by the radiative corrections to the
Coulomb potential considered above.

The nonrelativistic electron in an atom, whose nucleus
has the charge q � Ze, is described by the one-
dimensional Schrödinger equation [32]
 

�
1

2m
d2��x3�

dx2
3

� eA0�x3; x? � 0���x3� � E��x3�;

jx3j>LB � �eB�
�1=2; (55)

if the atom does not move transverse to the magnetic
field—which is the case as long as we are interested in
its ground state. The one-dimensional Schrödinger Eq. (55)
is valid in the region jx3j>LB and is efficient provided
that LB � aB=Z, where aB � 1=m� is the Bohr radius.

If the unmodified Coulomb potential (4) taken at x? � 0
is used for A0�x3; 0� in Eq. (55) (q � Ze henceforward),
the ground-state energy value

 E0 � �2Z2�2mln2

���
b
p

2�Z
(56)

that follows [32,34] from Eq. (55) is unbounded from
below, in other words tends to negative infinity as the
magnetic field grows. The reason is that the one-
dimensional Coulomb potential is too singular, the singu-
larity being regularized by the Larmour radius. In Eq. (55)
this regularization acts as the cutoff of the definition region
jx3j>LB of Eq. (55). The regularization is lifted by letting
b tend to infinity, LB ! 0, and hence E0 ! �1. On the
contrary, the radiation corrections studied here yielded the
conclusion that the Coulomb q=�4�x3� singularity of the
one-dimensional potential in x3 � 0 had been changed to
the � function (30). This sort of singularity is not expected
to cause an unboundedness of the energy spectrum. To
confirm this, we solve in Appendix B the Schrödinger
Eq. (55) with a potential that models the short-range part
As:r:�x3; 0� (20) alone and also tends to � function as b!
1. The resulting ground-state energy approaches in this
limit the finite, magnetic-field-independent value given by
Eq. (B24) of Appendix B. The genuine level must be
significantly lower due to impact of the long-range part
of the potential Al:r:�x3; 0� (21) shown in Fig. 5.

A. Extremely large magnetic fields

To estimate the ground-state energy E in the limiting
case b! 1we apply here the shallow-well approximation
of Ref. [42], appropriate since the electron potential V �
�eA0�x3; x? � 0� has a small depth (jVj � �ma2��1,
where a is the range of the forces in the well). In this
case, the value of E may be estimated as

 E ’ �2m
�Z 1

0
eA0�x3; 0�dx3

�
2
: (57)

Here it is taken into account that the electron potential is
symmetrical, A0��x3; 0� � A0�x3; 0�.

To find first the contribution of the long-range part into
(57) rewrite (21) as (q � eZ, ~k?m

���
b
p
� k?, 2mk � k3)

 eAl:r:�x3; 0� � 2�Zm
1

�

Z 1
0

Z 1
0

cos�2mkx3�dk

�

�
1

~k2
? 	

4
b k

2 	 2�
� exp��

~k2
?

2 �T�k
2�

�
1

~k2
? 	

4
b k

2 	 2�
� exp��

~k2
?

2 �

�
d~k2
?: (58)

The b � 1 limit of this expression is Eq. (45) or (47). In
the problem under consideration the potential falls follow-
ing the Coulomb law, and hence, according to [42], the
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upper integration limit in (57) should be replaced by the Bohr radius aB � �m��
�1. Then the contribution of the long-rang

part (58) into the ground-state energy is determined by the integral

 

Z 1=m�

0
eAl:r:�x3; 0�dx3 � �Z

1

�

Z 1
0

Z 1
0

sin
�

2k
�

�
1

k

�
1

~k2
? 	

4
b k

2 	 2�
� exp��

~k2
?

2 �T�k
2�
�

1

~k2
? 	

4
b k

2 	 2�
� exp��

~k2
?

2 �

�
dkd~k2

?:

(59)

Analogously, the contribution of the short-range part (20)
into the ground-state energy according to (28) is the
magnetic-field-independent constant

 

Z 1
LB

eAs:r:�x3; 0�dx3 � �Z2:18: (60)

As a matter of fact, only the contribution of the first,
�-independent term (48)

 

Z 1=m�

0
eAl:r:�x3; 0�jb�1;��0dx3

� ��Z
1

�

Z 1
0

sin
�
2k
�

�
lnT�k2�

dk
k
� �Z6:392 (61)

is important, whereas the second term in (47) only corrects
the value 6.392 in the third decimal number (	 6 � 10�3).
Combining (61) with (28) we get from (57) the finite value
of the energy level of a hydrogenlike atom in the limit
b � 1

 Elim � �2mZ2�273:6 � �Z2 � 4:0 keV: (62)

This result reproduces with good accuracy the value ob-
tained by us earlier [35] with the use of a graphically fitted
formula in place of Eq. (47).

The Loudon-Elliott energy (56) would overrun the limit-
ing energy (62) already for the magnetic field as large as
b � 6600, when yet the proton size R 10�13 cm remains
much smaller than the Larmour length, R� LB. The
ground level reaches 92% of its limiting value for b �
5� 104. After the magnetic field reaches the value b �
1:5� 105, when R and LB equalize, the Coulomb potential
is cut off at the proton size, x3 � R. Setting LB � R in (56)
we would get the minimum value for the Loudon-Elliott
energy (Z � 1) to be�5:6 keV, which is essentially lower
than (62).

B. Moderate magnetic fields

For moderate magnetic fields lying in the range 1�
b� 103 the additive radiative correction to the Coulomb
law, as calculated in Appendix A 2 keeping the first power
of �b=2� in the power series expansion of A0�x3; 0�,

 �A0�x3; 0� ’
q�bm

8�2

Z �=2

0
exp

�
�

2mjx3j

cos�

�
cos2�d� (63)

may be considered as a perturbation. Therefore, the radia-
tive shift to the ground-state energy level can in this case be
calculated using the purely Coulomb (normalized) wave
function [34]

 ��x3� �
1�����������
�0aB

p exp
�
�
jx3j

�0aB

�
(64)

as unperturbed. Here �0 is the ‘‘quantum defect’’ for the
Coulomb problem

 �0 �
1

Z
ln
�

b

4�2Z2

�
: (65)

Calculating the average of (63) multiplied by e with the
wave function (64) we find the perturbation to the Loudon-
Elliott ground-state energy (q � Ze)

 E� E0 �
Z�2bm
2�aB�0

Z �=2

0

cos3�d�

m	 cos�
aB�0

�
Z�2bm

2�

Z �=2

0

cos3�d�
cos�	 �0=�

: (66)

One sees that for magnetic fields within the scope of
applicability of the expansion in powers of �b, 1� b�
103, where (63) is valid, the quantum defect �0 � �, or
�1=Z�� � 8:454� ln�b=Z2�, provided that Z � 11. Then,
for the light hydrogenlike atoms Eq. (66) can be further
simplified to

 E� E0 �
Z2�3bm

3�
ln

b

4�2Z2

� Z2b0:18
�

1

8:454
ln
b

Z2 	 1
�

eV: (67)

C. Relativistic corrections to electron motion

The value (62) makes about 1% and more of the electron
rest mass, hence the question about relativistic corrections
may arise.

When the Dirac equation with stationary Coulomb po-
tential is considered in an infinitely growing magnetic
field, the effect of unlimited lowering of the energy level
down to �1 is enhanced as compared to the Schrödinger
equation due to the known fact [5] that the potential is
squared after the Dirac equation is reduced to a one-
component second-order differential equation. Therefore,
we should face a one-dimensional second-order equation
with the stronger singularity ��Z=x3�

2, apart from the
singularity �Z=x3 already present in (55). For this reason
one may expect that the ground-state energy would tend to
negative infinity faster than the logarithm squared in (56).
Anyway, according to the (numerical part of the) analysis
in Ref. [33], it rather sharply approaches the border of the
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lower continuum E � �m, where the instability with re-
spect to free positron production opens, analogous to what
happens (without any magnetic field) for nuclei with the
supercritical charge Z > 137 (to be more precise, Z > 170,
once the finite size of the nucleus is taken into account)
[43]. Whereas for infinite magnetic field the unlimited
sinking of the level occurs already for infinitesimal
Coulomb attraction Z�! 0, for large, but finite magnetic
field the Coulomb-induced quadratic singularity is cut off
at the Larmour length, hence the ground level reaches the
lower continuum at finite Z�. The dependence of the
corresponding critical value of Z on the magnetic field
was found long ago by Oraevskii, Rez, and Semikoz
[33], who claimed, for instance, that already for the values
of magnetic fields b � 102 to 103 (that may exist near
neutron stars according to the estimates available at present
time, see below), the critical value of the nuclear charge
lies within the reasonable range in the periodic table Z �
55 to Z � 90. This result is to be reconsidered now that we
have established the important alteration in the singular
behavior of the modified Coulomb potential proved to be
crucial for the Schrödinger equation with huge magnetic
field.

The next level of relativistic description of the atomic
(or positronium) spectrum based on the static potential
would be that via the Bethe-Salpeter equation with the
so-called equal-time ansatz wherein the recoil of the point
source of the electrostatic field (a nucleus or a positron) is
taken into account, but the retardation effects in the relative
motion of the electron and the nucleus (positron) are dis-
regarded. The corresponding results established in
[17,44,45] should be also subjected to revision. (This state-
ment does not concern the conclusions about the effect of
photon capture through positronium formation in the pul-
sar magnetospheres made in [17]).

The matters stand differently when very deep relativistic
effects are dealt with. The latter come into play for mag-
netic fields tens of orders of magnitude higher than those
for which the asymptotic limit in the present context is
saturated (i.e., than, say, b � 1010). Retardation effects
make the static potential an insufficient quantity to take
on the responsibility for forming bound states, since the
full electromagnetic interaction is mediated by all the three
photon modes in (9). Unlike (15), the polarization operator
eigenvalues �1;3 of two other modes do not include
[13,19,20,25] the fast-growing factor b, and hence the
interaction singular on the light cone x2

0 � x2 � 0 charac-
teristic of the free photon propagator is not suppressed in
these modes. Correspondingly, the infinite deepening of
the energy level, considered in our papers [28] for a posi-
tronium atom in a magnetic field using the Bethe-Salpeter
equation without the equal-time ansatz, survives the radia-
tive corrections, as well as the effect of vacuum instability
that occurs at the magnetic field value about b � 1:6�
1028. This indicates the existence of a maximum magnetic

field in quantum electrodynamics. Note that contrary to the
Dirac case [33], where the critical magnetic field is deter-
mined by the large factor exp�1=�Z�, for the Bethe-
Salpeter case (Z � 1 for positronium) we got the factor
exp�1=�1=2�.

From Eq. (67) the relative correction to the ground-state
energy for moderate magnetic fields is

 

E� E0

jE0j
�
�b
3�

�
ln

���
b
p

2�Z

�
�1
: (68)

For Z � 1 this correction, when extrapolated (though un-
righteously) down to the value b � 0:27, is of the same
order of magnitude �5:8� 10�5� as the relativistic relative
correction �2:8� 10�5� calculated by Goldman and Chen
[46] based on the Dirac equation for this—largest in their
analysis—value of b. The same situation retains, if the
results of these authors are linearly extrapolated (using
their two largest values of b for Z � 1) into the region of
larger b, 1� b� 103, wherein (68) is valid. Therefore,
already for magnetic fields far from critical fields causing
the free positron production instability the impact of vac-
uum polarization is at least no less important than relativ-
ism introduced by the use of the Dirac, instead of the
Schrödinger, equation.

VI. DISCUSSION

In this paper we have shown that the electric field of a
pointlike charge placed in a strong magnetic field (b �
B=B0 � 1) may be significantly modified by the vacuum
polarization, especially if b * 3���1 ’ 103. At present, it
is commonly accepted that many compact astronomical
objects identified with neutron stars are strongly magne-
tized. For soft gamma-ray repeaters and anomalous x-ray
pulsars, for instance, the strength of the surface magnetic
field is estimated as 1014 � 1015 G [47]. Several radio
pulsars with similar surface magnetic fields have been
recently discovered [48]. More strong magnetic fields
(B 1016 � 1017 G or even higher) are predicted to exist
at the surface of cosmological gamma-ray bursters if they
are rotation-powered neutron stars similar to radio pulsars
[49]. The modification of the Coulomb law should affect
the electric fields of atomic nuclei and electrons placed in
such a strong magnetic field. The electric field of a particle
is one of its fundamental features. Therefore, at the surface
of neutron stars with extremely strong magnetic fields
many properties of matter (including individual atoms
and molecules) and various physical processes (such as
radiation of particles) where the electric field of particles is
important (for a review on the physics of strongly magne-
tized neutron stars, see [50]) may be changed substantially
by the present modification of the Coulomb law. One of
such changes is discussed in Sec. V where we have come to
negation of the standard result [32], referred to in many
speculations on the behavior of matter on the surface of
strongly magnetized neutron stars (e.g., [50] and references
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therein), that the ground-state energy tends to negative
infinity as the magnetic field unlimitedly grows.

We hope that the modification of the Coulomb potential
described in the present paper may lead to observational
appearances in neutron stars with extremely strong mag-
netic fields. As for the results relating to much larger
magnetic fields, infinite in the limit, such as the QED string
formation, these may be of fundamental importance as
introducing a nonempty magnetic-field-independent two-
dimensional theory in virtue of dynamical dimensional
reduction from 4-dimensional quantum electrodynamics.
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Note added in proof.—Most recently a work [52] ap-
peared where the modified Coulomb potential in a strong
magnetic field calculated in [35,36] and in the present
paper is also considered. In particular, in that work the
long-range asymptotic behavior jxj�1 given as Eq. (38) is
supplemented by two next-to-leading terms of the order of
jxj�3 and jxj�5. Besides, the authors of [52] found a small
( �=�) anisotropic amendment to the simplified,
Yukawa-like, form [25] of the exact scaling equation [24].

APPENDIX I

A. Asymptotic expansion around the singular
point x � 0

To consider the behavior of the potential near its point-
like source let us add to and subtract from (18) the standard
Coulomb potential (5) in the form
 

AC
0 �x� �

q

�2��3
Z e�ikxd3k

k2

�
q

2�2��2
Z 1

0
J0�k?x?�

�Z 1
�1

e�ik3x3 dk3

k2
? 	 k

2
3

�
dk2
?

�
1

4�
q�����������������

x2
? 	 x

2
3

q (A1)

so that

 A0�x� � AC
0 �x� ��A0�x�; (A2)

where

 �A0�x� �
q

2�2��2
Z 1

0
J0�k?x?�

Z 1
�1

�
e�ik3x3

k2
? 	 k

2
3

�
e�ik3x3

k2
? 	 k

2
3 � �2�0; k2

3; k
2
?�

�
dk3dk2

?: (A3)

Note that the function �A0�x3; x?� is an entire function of

x?, since the exponential in (15) provides convergence of
the integral (A3) for any complex value of this variable.
Keeping quadratic terms in the power series expansion of
J0�k?x?� and exp��ik3x3� in (A3) we obtain the first three
terms of the asymptotic expansion of the potential (18)
near the origin x3 � x? � 0,

 A0�x� 
q

4�

�
1

jxj
� 2m�C� �2mx?�2C? � �2mx3�

2Ck�
�
;

(A4)

where C, C?, and Ck are dimensionless positive constants
depending on the external field:
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(A5)
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(A6)

 Ck �
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(A7)

Thanks to the exponential factor the integrals over k2
? here

are fast converging. The resulting functions decrease for
large k3 as 1=k4

3, so the remaining integrals over k3 in
(A5)–(A7) converge, bearing in mind that T is a bounded
function. The inequality C? � Ck implies the anisotropy.

The values of the coefficients (A5)–(A7) calculated for
four values of the magnetic field b � 104, b � 105, b �
106, and b � 1010 are listed in the table:

b 104 105 106 1010

C 2.21 9.08 31.37 32:70� 102

C? 75.9 2:58� 103 8:38� 104 8:49� 1010

Ck 174.3 5:55� 103 1:76� 105 1:67� 1011

To find the asymptotic behavior of the constant C (A5)
as b! 1, we may use first the representation (24) for the
short-range part of the potential. The corresponding con-
tribution Cs:r: into C is
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 Cs:r: �

�������
�b
2�

s Z 1
0

�
1�

u������������������������������������
u2 	 exp�� �

� u
2�

q �
du: (A8)

By restricting the upper integration limit to the value����������
�=�

p
and substituting unity for the exponential the inte-

gral in (A8) can be estimated as approximately equal to
�1�

�������������
�=2�

p
� � 0:996. A computer calculation results in

the value 0.9595. Correspondingly

 Cs:r: ’ 0:9595

�������
�b
2�

s
: (A9)

The resulting values of Cs:r: for b � 104; 105; 106; 1010 are
3.27, 10.34, 32.70, 32:70� 102, correspondingly, to be
compared with the exact values given in the table above.
The coincidence is better the larger the field. It improves if
the (negative) contribution to C of the long-range part of
the potential is added to this row of numbers. (The absolute
value of) the latter is a decreasing function of b that takes
the limiting value Cl:r: � ��2�=qm�Al:r:�0; 0�jb�1 �
�1:4152 according to Sec. IV B. Note that if just the
Yukawa law (25) is accepted for the potential we would

deduce that for strong fields C ’ M
2m �

�����
�b
2�

q
asymptotically.

For the four values of the external field b �
104; 105; 106; 1010 the values of C calculated following
the Yukawa law are: 3.41, 10.78, 34.01 and 34:08� 102.

B. Modified Coulomb potential for less huge magnetic
fields

Consider the ‘‘moderate’’ values of the magnetic field in
the interval 103 � b� 1, so that although b is large, but
��b=2�� � 1:16� 10�3b is still much less than unity. We
shall present here the vacuum polarization correction to the
Coulomb potential, which in this case is small.

One may neglect �2 in the denominator of (A3) after the
difference in it is completed and we obtain a magnetized
vacuum analog of the Uehling-Serber potential [5].
Contrary to the Uehling-Serber potential that is of the order
of �, its analog under consideration here is of the order of
�b, i.e., much larger, given that b� 1. We shall be
interested in x? � 0. Then, the k?-integral in �A0�x3; 0�
becomes

 

Z 1
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exp��
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2m2b�dk
2
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�k2
? 	 k

2
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exp�

k2
3
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3
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1

k2
3
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(A10)

Here Ei is the exponential integral, and we have used
Eq. 3.353.3 from [41]. When integrating this over k3 we
may pass to the limit �2m2b=k2

3� � �2eB=k
2
3� ! 1 in the

integrand, since the remaining integral

 �A0�x3; 0� ’
q�bm2

4�3

Z 1
�1

e�ik3x3T
�
k2

3

4m2

�
dk3

k2
3

(A11)

converges both at small and large integration variable [note
the asymptotic behavior of (16)]. Next we use the integral
representation (16) and the residue method to calculate the
last integral. This leads to the additive vacuum polarization
correction to the Coulomb potential in the form

 �A0�x3; 0� ’
q�bm

8�2

Z �=2

0
e��2mjx3j= cos��cos2�d�:

(A12)

Setting x3 � 0 in it we obtain for (A5)

 C ’
�b
16
: (A13)

So, in the interval of magnetic fields indicated the constant
C in the Laurent expansion (A4) grows linearly with the
field, in contrast to the square root growth (A9) character-
istic of larger fields, as we saw in the previous subsection.
The correction (A12) was used in [35] to find the energy
correction to (56) for 1� b� 1000.

APPENDIX II

In this appendix we solve, for asymptotically large
magnetic fields b� �2�=��  103, the eigenvalue prob-
lem inferred by the Schrödinger Eq. (55) with only the
short-range part (20) of the modified Coulomb potential
taken for A0�x3; x? � 0�. The latter is approximated, in
accord with (A4) with the quadratic terms omitted, C? �
Ck � 0, as eAs:r:�x3; 0� � �V�x3�,

 V�x3� �

�
�Z�� 1

jx3j
� 2mC� for LB < jx3j< �x3 �

1
2mC ;

0 for jx3j> �x3 �
1

2mC ;

(B1)

where the external-field-dependent constant C (A5) is
given by Eq. (A9). In the same way as in Sec. III B we
may derive that the potential (B1) becomes the � function
in the b � 1 limit, with the coefficient, however, different
from the one in (30):
 

V�x3�jb�1 � �
qe
2�

�
ln

���
b
p

2C
� 1	

2C���
b
p

�
��x3�

� �
qe
2�

�
ln
�
�
2�

�
1=2
� 1	

�
2�
�

�
1=2
�
��x3�

� �1:79
qe
2�

��x3�: (B2)

The difference in coefficients is owing to the fact that we
kept only two terms in the expansion (A4). In equality (B2)
Eq. (A9) was used. The square root asymptotic dependence
(A9) of C on the magnetic field is crucial for the formation
of the � function limit of the potential.

The approximation (B1) replaces the curves in Fig. 3 by
continuous broken lines. The lowest energy state of the
Schrödinger Eq. (55) is determined by imposing the
boundary condition [34]
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d��x3�

dx3

��������x3�LB

� 0: (B3)

For the approximation (B1) to be meaningful it is neces-
sary that

 �x 3 � LB: (B4)

With Eq. (A9) for C, this condition reduces to the evident
inequality 137�=2� �0:9595�2 and is thus guaranteed.

Introducing the so-called quantum defect � instead of
the eigenenergy E according to the relation [remember that
aB � �m��

�1 is the Bohr radius]

 E� Z�2mC � �
1

2m�2a2
B

(B5)

and the new variable z � 2x3=�aB we obtain for (55) two
equations:

 

d2��z�

dz2 	
Z�
z

��z� �
1

4
��z� � 0;

for
2LB

�aB
� z � �z �

1

mC�aB
�

�
C�

(B6)

and

 

d2��z�

dz2
	
Z�2C
�

��z� �
1

4
��z� � 0;

for z � �z �
1

mC�aB
�

�
C�

:

(B7)

One should consider the couple of Eqs. (B6) and (B7) with
the boundary condition

 

d��z�
dz

��������z��2LB=�aB�

� 0 (B8)

that follows from (B3), as an eigenvalue problem for
determining the quantum defect � and hence the energy
(B5). The general solution to the confluent hypergeometric
differential Eq. (B6) is [51]

 � � AWZ�;�1=2��z� 	 BMZ�;�1=2��z�;
2LB

�aB
� z � �z;

(B9)

where WZ�;�1=2��z� is the Whittaker function, decreasing at
z! 1, while the other, linear independent solution, grow-
ing at z! 1, MZ�;�1=2� is expressed in terms of the con-
fluent hypergeometric function � as

 MZ�;�1=2��z� � e��z=2�z��1� Z�; 2; z�; (B10)

and A and B are constants.
We shall seek for the solution of the eigenvalue problem

(B6)–(B8) in the region (serving the asymptotically large
magnetic fields considered here)

 ��
�
C
; (B11)

so that �z� 1. Therefore, only the small-distance behavior
of the fundamental solutions to Eq. (B6) will be important.
Referring to the asymptotic behavior of the solutions at
small z [34,51],
 

WZ�;�1=2��z� �
exp�� z

2�

���Z��

�
�

1

Z�
	 z
lnz	  �1� Z��

�  �1� �  �2�� 	O�z2� lnz
�
;

MZ�;�1=2� � z	O�z2�;

(B12)

that retain the terms z0, z, and z lnz (here the logarithmic
derivative  of the Euler � function � appears), Eq. (B9) is
matched continuously in the point z � �z with the decreas-
ing solution of the Schrödinger Eq. (B7)

 ��z� � e�f�z; z � �z; (B13)

where f� �
�����������������
1
4�

�2CZ
�

q
, and its first derivative over z

 �� �z� � 1;
d��z�

dz

��������z��z
� �f�; (B14)

if the coefficients A and B in (B9) are taken as

 A �
1

WZ�;�1=2���z�
;

B � �f� �
1

WZ�;�1=2���z�

dWZ�;�1=2��z�

dz

��������z��z
:

(B15)

Keeping the leading terms as z! 0 (Z� �z ln�z is neglected
as compared to 1) we get from (B12)
 

WZ�;�1=2���z� �
1

��1� Z��
;

dWZ�;�1=2��z�

dz

��������z!0
� �

1

2��1� Z��

	
lnz	 	  �1� Z�� �  �1�

���Z��
;

(B16)

where  � � �1� is the Euler constant. With these values,
the boundary condition (B8) results in the following alge-
braic equation for the quantum defect �:

 

f�
Z�
� ln�z� ln

2LB

�aB
� � ln�2mLBC�: (B17)

The solution to Eq. (B17) is

 �2 �

�
4Z2ln2�2mCLB� 	

4ZC
�

�
�1
; (B18)

and the ground-state energy (B5) is

 E � �
2Z2

ma2
B

ln2�2mCLB� � �2Z2�2mln2

� ���
b
p

2C

�
: (B19)

It remains to make sure that the assumption (B11) �z �
�=C�� 1 necessary for the use of the asymptotic form of
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the solutions (B12) made while deriving Eq. (B17) is in-
deed obeyed, once the quantum defect � is given by (B18).
In other words, we must check the strong inequality

 2
�

ln2

�
2C���
b
p

�
	

C
Z�

�
1=2
�

C
Z�

: (B20)

By solving the quadratic equation with respect to C=Z� it
becomes

 1	
�

ln2

�
2C���
b
p

�
	 1

�
1=2
�

C
2Z�

: (B21)

For the fields so large that Eq. (A9) holds for C, the
ln2-term becomes independent of the magnetic field

 ln 2

�
2C���
b
p

�
� ln2

������
�
2�

r
� 7:213; (B22)

and the inequality (B21) gives

 b�
8��Z2

0:9

�
1	

�������������������������
1	 ln2

������
�
2�

rs �
2
� 8��Z216:6 � 3Z2:

(B23)

This condition on the values of the magnetic field is less
restrictive than the condition of validity of Eq. (A9). Thus
the inequality (B11) is a posteriori verified. Note, that also
the inequality Z�� 1 is satisfied for the same fields,
justifying the disregard of Z� �z ln�z made when writing
(B16). We conclude that for asymptotically strong mag-
netic fields the derivation that has led to Eq. (B19) is
justified, and the ground-state energy acquires the
magnetic-field-independent limiting value

 E � �2Z2�2mln2

������
�
2�

r
� �7:686� 10�4mZ2

� �389:3 eV� Z2: (B24)
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