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Theoretical differences in the growth of structure offer the possibility that we might distinguish between
modified gravity theories of dark energy and �CDM. A significant impediment to applying current and
prospective large scale galaxy and weak lensing surveys to this problem is that, while the mildly nonlinear
regime is important, there is a lack of numerical simulations of nonlinear growth in modified gravity
theories. A major question exists as to whether existing analytical fits, created using simulations of
standard gravity, can be confidently applied. In this paper we address this, presenting results of N-body
simulations of a variety of models where gravity is altered including the Dvali, Gabadadze, and Porrati
model. We consider modifications that alter the Poisson equation and also consider the presence of
anisotropic shear stress that alters how particles respond to the gravitational potential gradient. We
establish how well analytical fits of the matter power spectrum by Peacock and Dodds and Smith et al. are
able to predict the nonlinear growth found in the simulations from z � 50 up to today, and also consider
implications for the weak lensing convergence power spectrum. We find that the analytical fits provide
good agreement with the simulations, being within 1� of the simulation results for cases with and without
anisotropic stress and for scale-dependent and independent modifications of the Poisson equation. No
strong preference for either analytical fit is found.
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I. INTRODUCTION

A diverse range of observations are showing consistent
evidence for the acceleration of the Universe’s expansion,
and the presence of dark energy, for example, supernovae
observations [1–3], cosmic microwave background tem-
perature and polarization fluctuations [4–7], large scale
structure surveys [8,9], and baryon acoustic oscillations
[10].

Interpretation of Einstein’s cosmological constant as a
vacuum energy requires the value to be fine-tuned to far
smaller than any theoretical expectation, (e.g. [11]), and
has forced the exploration of alternative theoretical explan-
ations. Since precision measurements of gravity only exist
for scales <1013 m (e.g. [12]), there is freedom to posit
modifications of gravity acting on larger scales, such as
those in [13].

While cosmological observations of dark energy prop-
erties have so far focused on measurements of the homo-
geneous background density and astrophysical correlations
in the linear regime, both theoretical and observational
vistas are now opening up that require a good understand-
ing of the growth of structure in the mildly nonlinear
regime. Theoretically, measuring the growth of structure
might enable modified gravity theories to be distinguished
from a standard cosmological scenario (�CDM) with a
cosmological constant, �, and cold dark matter (CDM)
[14–16]. Observationally, the next generation of precision
experiments will include weak lensing surveys, with sev-
eral proposed large scale weak lensing experiments being
developed in the coming decade, e.g. DUNE [17], JDEM/
SNAP [18], and LSST [19].

Weak lensing is a potentially powerful probe of the late-
time evolution of the Universe, sensitive not only to the

background expansion, but also able to give two-point and
higher statistical correlations of the density field [20],
potentially in tomographic redshift slices [21,22].

Modified gravity models can introduce extrinsic aniso-
tropic shear stresses (see e.g. [23]) that modify the rela-
tionship between the weak lensing potential and the matter
over-density that might be detectable by contrasting weak
lensing with other large scale structure observations
[15,24].

Many large scale structure statistics can be related to the
underlying matter power spectrum, with nonlinear evolu-
tion at small scales. For standard general relativity, a
typical approach is to use analytical fits based on N-body
simulations of �CDM [25,26] and CDM with dark energy
with an equation of state, w, wCDM [27–29] scenarios to
apply the nonlinear correction to a linear power spectrum.
Simulations of modified gravity models are for the most
part lacking, however. With the exception of [30,31],
analyses often proceed by applying the �CDM based
analytical nonlinear fits to modified linear power spectra,
e.g. [15,32]. Recently, an analytical approach to estimating
nonlinear growth in modified gravity, including those with
anisotropic stress, [33] was proposed and it was noted that
there were currently no simulations against which to test
the ansatz.

In this work we directly address to what degree the
nonlinear fits developed for standard gravity can be utilized
for modified gravity theories, and establish whether the
paucity of simulations in modified gravity theories can be
excused. We first consider the applicability of standard
gravity nonlinear fits to modified gravity theories in which
just the Poisson equation is modified, considering the 5D
gravity form considered by [34], complementing the work
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of [30,31] who considered nonlinear growth when a
Yukawa-like gravitational coupling is introduced [35].
We then address the impact of anisotropic stress on non-
linear growth to assess if existing analytical nonlinear fits
are adequate to model evolution in these scenarios. We
consider the nonlinear growth in the Dvali, Gabadadze, and
Porrati (DGP) 5D model [13] and in toy models that
contrast the effects of anisotropic stress with those of a
modified Poisson equation.

We first establish the framework for investigating modi-
fied gravity theories in Sec. II, and outline the specific
models we consider with scale-independent and dependent
modifications and the presence and absence of anisotropic
shear. The details of our simulations and implementation,
including the two standard analyitic fits, are presented in
Sec. III. The approach to weak lensing is discussed in
Sec. IV. The results showing dimensionless power spectra
and the success of analytic fits are discussed in Sec. V. An
overview of the conclusions and implications of our results
is then presented in Sec. VI.

II. MODIFIED GRAVITY THEORIES

We first outline the effect that the general modifications
to gravity we study have on the perturbed Einstein’s equa-
tions. Following the notation of [36], in the conformal
Newtonian (or longitudinal) gauge, the metric is written as

 ds2 � a���2���1� 2 �d�2 � �1� 2��dxjdxj�; (1)

where a is the expansion factor, � is the conformal time, x
is the comoving coordinate (j � 1, 2, 3 spatial directions),
and� and  are the two gravitational metric perturbations.

Einstein’s equations relate the metric perturbations to
fractional perturbations in density, �s � ��s=�s, peculiar
velocity, v�s�, and intrinsic shear�s for a matter component
‘‘s,’’

 k2�� 3H � _��H � � �
3H 2

2
Q
X
s

�s�s; (2)

 k2� _��H � �
3H 2

2

X
s

�1� ws��s�ikjv�s�j�; (3)

 ��  �
9H 2

2

X
s

�1� ws��s�s � �0; (4)

where H � _a=a, ��a� is the fractional energy density,
and w�a� is the equation of state for the fluid. We have
introduced the function Q�k; a� as a modification in the
relationship between the gravitational potentials and mat-
ter density in the �T0

0 equation, (2), and �0�k; a� as an
extrinsic anisotropic stress in addition to the intrinsic an-
isotropic stresses from the matter components (predomi-
nantly radiation) in the equation for �Ti

j, i � j, (4). For
standard gravity Q � 1 and �0 � 0.

Equations (2) and (3) combine to give

 k2� � �
3H 2

2
Q
X
s

�s

�
�s � 3H �1� ws�ikj

v�s�j
k2

�
(5)

 � �
3H 2

2
Q
X
s

�s�s; (6)

where �s is a gauge invariant density variable defined in
the rest frame of the matter components [37].

Density and velocity perturbations evolve according to
the perturbed fluid equations which are unchanged by the
gravitational modifications,

 

_� � ��1� w��ikjvj � 3 _�� � 3H �c2
s � w��; (7)

 

ikj _vj � �
�
H �1� 3w� �

_w
1� w

�
ikjvj �

c2
s

1� w
k2�

� k2�� k2 ; (8)

where c2
s is the sound speed for the fluid.

We will consider a universe dominated by pressureless
matter, ws � c2

s � �s � 0, and scenarios in which  	�,
so that on subhorizon scales jk2 j 
 j3H _�j; j3 ��j, and

 

���H _�� k2 � 0: (9)

Using (8), we define the peculiar acceleration, g,

 gj �
1

a
d
d�
�avj� � �ikj : (10)

Following the notation of [15], we relate the anisotropic
stress to � through a function �,

 � �
�0

�
: (11)

Q and � here are equivalent to q and � in [38].
Making a subhorizon approximation, and Hv=k� �,

assuming v & �, the modified Poisson equation and pecu-
liar acceleration equations are

 k2� � �
3H 2

2
Q�m�; (12)

 gj � �ikj�1� ���; (13)

while the matter perturbation equation is

 

���H _��
3H 2

2
Q�1� ���m� � 0: (14)

Note that we can describe the evolution of � in terms of the
linear growth factor, D, with respect to some reference
scale, ai, ��k; a� � D�a���k; ai� where D is scale indepen-
dent for standard gravity, but could be scale dependent if
gravity is so modified.

We can relate the Fourier space modification to a real
space interaction in the form of a Green’s function,

ISTVAN LASZLO AND RACHEL BEAN PHYSICAL REVIEW D 77, 024048 (2008)

024048-2



 ��r� � �G�m�a�a2
Z
d3r0��r0�f�r� r0�; (15)

 g�r� � �r��1� ��r����r��; (16)

with f�r� � 1=jrj recovering standard gravity. Using the
convolution theorem we find

 Q�k; a� �
k2

4�
f�k; a�: (17)

The effect of modified gravity in weak lensing statistics
is described in [39] where they show that the weak lensing
distortion is dependent upon the sum of the two gravita-
tional potentials, � � ��  . As in [15], we introduce the
parameter ��Q;�� to describe the deviation of the weak
lensing potential from standard gravity

 k2� � �3H 2��m�; (18)

 � �
�
1�

�
2

�
Q; (19)

with � � 1 for standard gravity.

A. 5D gravity

We consider a model, motivated by 5-dimensional grav-
ity theories, in which gravity is Newtonian on small scales
but modified on scales larger than a characteristic scale rs
[34,40,41]. This model is characterized by the form

 f�r� �
1

jrj � r2

rs

; (20)

and
 

Q�k; a� �
krs
2

�
�2

�Z 1
krs

cos�t�
t

dt
�

sin�krs�

� cos�krs�
�
�� 2

Z krs

0

sin�t�
t

dt
��
; (21)

with ��k; a� � 0.
We are principally interested in the effect that modifi-

cations to gravity could have on the transition from linear
to nonlinear regime, typically occurring over comoving
scales 1–10 Mpc. For our analysis, therefore, we consider
evolution for values of the parameter rs of 20h�1 Mpc,
10h�1 Mpc, and 5h�1 Mpc, which alters the behavior in
the relevant scales. We do not consider here smaller values
of the modification which would alter behavior in the
wholly nonlinear regime. We leave it for future study to
assess whether such changes are well modeled by analyti-
cal fits describing the properties of collapsed halos.

B. DGP

A physical model that serves as an excellent example of
the effects of anisotropic shear is the Dvali, Gabadadze,
and Porrati model [13] that is based on 5D gravity, wherein

at some large scale, rc (comparable to the horizon scale),
gravity is sensitive to the presence of an additional
dimension.

The extra dimension alters the 4D background evolution
to that described by the modified Friedmann equation,

 H�a� �
1

2rc
�

���������������������������������������������
1

2rc

�
2
�

8�G
3

�m�a�

s
; (22)

where H �H =a, with late-time acceleration being trig-
gered when the Universe’s horizon 	rc.

The modification also alters the growth of fluctuations in
density and motion of matter. As well as a modification to
the Poisson equation as discussed in Sec. II A, this model
also results in an anisotropic shear such that the two
potentials are given by [15,42– 44]

 k2� � �
3H 2

2

�
1�

1

3�

�
�m�; (23)

 k2 � �
3H 2

2

�
1�

1

3�

�
�m�; (24)

where

 � � 1�
2H2�a�r2

c

2H�a�rc � 1
: (25)

In contrast to Sec. II A, this gives a scale-independent
modification to the Poisson equation,

 Q�a� � 1�
1

3�
; (26)

and nonnegligible anisotropic stress,

 ��a� �
2

3�� 1
; (27)

and � � 1.
For our analysis, with a background cosmology with

Hubble constant, H0;� 70 kms�1 Mpc�1, fractional mat-
ter density, �m;� 0:3, and consistent with the observatio-
nal constraints found in [44] (22), rc � 6:1 Gpc.

C. Twin toy models

Finally, we consider a set of twin models that provide a
simple way to further explore the effects of anisotropic
stress on nonlinear growth. We consider two different
modifications that both yield the same form for the weak
lensing potential, with � � 1� �0a, such that they reduce
to standard gravity at early times and become modified at
late times. This form of � is equivalent to model GDE1 of
[15]. The twin models (‘‘TM’’) we study have two con-
trasting, simple forms in terms of Q and �:

 TM 1: Q � 1; � � 2�0a; (28)

and
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 TM 2: Q � 1� �0a; � � 0: (29)

In TM1, the Poisson equation is the same as for standard
gravity; however, the peculiar acceleration of the matter
particles responding to the gradient of the potential is
affected by the anisotropic stress. In TM2, in contrast,
the peculiar acceleration is the same as for standard gravity
but the gravitational potential at late times has a different
relation to matter over/under densities. We consider values
of �0 � 0:008;0:016 consistent with 1 and 2� Fisher-
matrix constraints for a prospective DUNE-like weak lens-
ing survey [15].

III. N-BODY SIMULATIONS

To obtain fully nonlinear results in each of the models,
we obtain N-body simulations via a particle mesh (PM)
code, taking as an initial form the code of [45]. For scale-
independent modifications we make simple modifications
to the code, described in Sec. III A. For scale-dependent
modifications we have to alter the potential and motion
calculations as described in Sec. III B.

A. Standard gravity and scale-independent
modifications

The PM code is reviewed in detail in [45] but we provide
some highlights in order to set the framework for discus-
sing the modifications we make to the code.

PM codes operate by defining a simulation area as a box
of size L on a side, assuming it is closed so that we have
periodic boundary conditions, subdividing it into a mesh or
grid of N3 cells (of size L=N on a side), and defining all
quantities on that mesh. The simulation is then initialized
at some early redshift (zi) and N3

P particles are placed
according to model-dependent power spectra fits provided
with the code (based on the cosmological parameters: the
scalar spectral index ns; the amplitude of fluctuations in
8h�1 Mpc, �8; the fractional density from curvature �K,
baryons, �b, and cold dark matter �cdm; and the Hubble
constant H0 � 100h kms�1Mpc�1). The evolution is then
carried out by advancing time in equal steps of the expan-
sion factor, astep. At each step in the expansion factor the
code determines a density in each cell, uses that density to
compute the potential � in each cell, and finally moves
particles according to the gradient of the potential.

1. Defining the density

Defining the density can be done in a variety of ways; the
code uses the cloud-in-cell scheme depicted in Fig. 1
wherein a particle is taken to be a cube with dimensions
equal to that of the cells and with a corner positioned at the
location of the particle. The particle contributes to each cell
it extends into a mass equal to the particle’s total mass
weighted by the fraction of the particle’s volume in the cell

under consideration. Once the mass in each cell is deter-
mined, it is effectively smeared over the entire cell.

2. Obtaining the potential

For standard gravity, the code uses (12) with Q � 1,
with the dimensionless variables of [45], ~r � r=x0 and
~� � �=�x0H0�

2 and writing � � ��x; a�= ���a� � 1,

 

~r 2 ~� �
3

2

�m;0

a
�: (30)

To evaluate (30), we use the discretized Poisson equation
over cells, n � 0, N � 1. In one dimension, the discrete
Laplacian is given by

 r2�n � �n�1 ��n�1 � 2�n: (31)

Defining the discrete Fourier transform,

 

~� k � �N�1
n�0�ne

i2�nk=N; (32)

the discretized Poisson equation is

 r2 ~�k � ~�k � 2
�

cos
�
2�k
N

�
� 1

�
: (33)

Generalizing to three dimensions one obtains the ‘‘7-point
crest template,’’

 r2�i;j;k � �i�1;j;k ��i�1;j;k ��i;j�1;k ��i;j�1;k

��i;j;k�1 ��i;j;k�1 � 6�i;j;k; (34)

with

 r2 ~�k � ~�k �Gk; (35)

where Gk is given by

Cell (I,J)  Cell (I+1,J)

Cell (I,J+1)    T1 

T1

T2

D2
D1

D2D2

D1

D1  Cell (I+1,J+1) 

T2

M(I,J+1)= 2

M pT D

L

 a)                                                                                     b)  

M(I+1,J+1)= 2

M pD D

L

M(I,J)= 2

1 2M pT T

L
 M(I+1,J)= 2

1 2M pD T
L

1 2 1 2

FIG. 1. A two-dimensional description of cloud-in-cell density
assignment. (a) The definition of the variables in relation to the
particle’s actual position. The particle is the black dot, but it is
extended to be a square particle denoted by the dotted lines, thus
it lies in four cells. The sides of the cells and the size of the
particle square are L � D1� T1 � D2� T2. (b) The resultant
mass distribution in each cell. Note that the mass is not retained
in the original particle’s area, but rather smeared over the cell it
occupies.
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 Gk � 2
�

cos
�
2�kx
N

�
� cos

�
2�ky
N

�
� cos

�
2�kz
N

�
� 3

�
:

(36)

Combining (30) and (34) the Poisson equation used in the
code is

 

~� k �
3

2

�m;0

aGk
�: (37)

The code calculates ��r�, Fourier transforms to ��k�,
divides by Gk and then transforms back to real space to
obtain ��i; j; k�.

In the case of scale-indepedent modifications, (36) is
purely modified by

 Gk;alt�k; a� �
Gk

Q�a�
: (38)

3. Advancing the particles

Once we have the potential � we advance the particles
according to (16). In standard gravity, component wise on
the grid we have only to compute

 gx � ���i�1;j;k ��i�1;j;k�=2;

gy � ���i;j�1;k ��i;j�1;k�=2;

gz � ���i;j;k�1 ��i;j;k�1�=2:

In the presence of anisotropic stress modifications,

 gj;alt � �1� ��a��gj: (39)

B. Scale-dependent modifications

In order to incorporate the scale-dependent modifica-
tions to gravity, we follow the convolution approach in
[15]. To do this we multiply by f�k; a� at each step in a
rather than 1=Gk.

Defining the radius r for g�r�

In scale-dependent theories, by definition, we now con-
volve with functions involving the actual scale r, and we
must therefore define explicitly a radius on the grid. The
mass is smeared over the entire cell it lies in, so that the
distances simply become those between cells. The Fourier
transforms involve periodic boundary conditions, so we
define the radius for one origin at (0, 0, 0), and wrap the
radius around the grid. Since the code uses the dimension-
less radii to compute the function we have called f�~r�, the
cell indices can be used to construct the radius and we
define ~ri to be the index of the relevant cell in the ith
direction (i � 1, 3).

The periodic boundary conditions require a change to
the basic prescription presented above, namely, to include
the periodic boundary condition we must set up a 1D radius
of the form �0; 1; 2; . . . ; N=2� 1; N=2; N=2� 1; . . . ; 2; 1�

where N is the number of cells making up the grid in a
dimension. Thus, the radii in the ith dimension can be
defined as

 ~r i�n� �
�
n n � Ni=2
Ni � n n > Ni=2: (40)

The final 3-dimensional radius, ~r, is computed trivially as

 ~r 2 �
X3

i�1

~r2
i : (41)

There remains one final subtlety in computing the ra-
dius. Since ~r�1; 1; 1� � 0, division by ~r requires us to make
a change to avoid infinities. To avoid these singularities we
take the standard approach of ‘‘softening’’ r (e.g. [46]),
that is adding a small nonzero term to all the values of ~r
used in operations that would give a singularity. For in-
stance if we consider g�~r� � 1=~r we instead compute
g�~r� � �~r2 � 	2��1=2. Note that, for consistency, all values
of r in the division are softened, not only the actual one that
gives a singularity (~r�1; 1; 1�). Further, note in the case of
well-defined modifications, e.g. g�~r� � e�~r=~r, the expo-
nent need not be softened, so that we compute e�~r�~r2 �

	2��1=2.

C. Obtaining analytic spectra

We compare the nonlinear spectra from simulations to
predicted spectra from analytical mappings of linear power
spectra using the Peacock and Dodds (PD) fit [25] and the
Smith et al. fit (SP) [26].

1. Analytical linear spectra

We evolve a linear �CDM power spectrum obtained
with CAMB [47] (that includes effects from baryon photon
coupling at early times) forward in time using the modified
equation for the growth of the over-density (14). We start at
an epoch, we choose zi � 50, at which the modification
scale is large compared to the physical horizon, so that
standard gravity is effectively recovered on the relevant
scales, and evolve the density perturbations through the
modified gravity era to today. In Fig. 2 we show the linear
power spectra for the models discussed in the paper.

2. Analytical nonlinear fits

We briefly review the physical ingredients of the PD [25]
and SP [26] analytical fits against which we compare the
simulations.

The PD fit is based on the assumption of stable cluster-
ing [48], the hypothesis that the correlation function on
scales smaller than those of virialized structures decouple
from the expansion. The fit utilizes a linear to nonlinear
mapping proposed by Hamilton et al. (HKML) [49]

 kL � �1� �2
NL�kNL��

�1=3kNL (42)
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derived from the spherical collapse model. Peacock and
Dodds generalized the HKML method to estimate the
resulting nonlinear power spectrum through a universal
scaling relation, fNL,

 �2
NL�kNL� � fNL��

2
L�kL��; (43)

 fNL�x� � x
�

1� B�x� �Ax�
�

1� ��Ax�
g3�a�=�Vx1=2���

�
1=�
; (44)

where g � D�a�=a. The fitting function fNL tends to
fNL�x� � x in the linear limit, x� 1, and fNL�x� �
Vg�3��m�x

3=2 in the small scale, stable clustering limit,
x
 1. There are five free parameters fit from N-body
simulations in standard gravity as functions of the linear
spectral index neff � d lnP�=d lnk�k � kL=2�: A and 

parameterize the power law in the quasilinear, large scale
regime, V parameterizes the amplitude of the fNL�x� in the
stable clustering limit, B describes the second order devia-
tion from linear growth, and � softens the transition be-
tween the linear and fully virialized regimes. The
cosmological model only enters into the fit through g,
consistent with the Zel’dovich approximation in which
the final positions of particles are obtained by extrapolating
their initial comoving displacements, q, using the linear
growth factor, x�a; t� � a�t��q�D�a�r �q��.

The quality of the PD fit is founded on the broad
applicability of the Zel’dovich approximation. However,
with a scale-dependent modification of gravity, or the
introduction of a difference between � and  it is not clear
a priori how well the Zel’dovich approximation will apply,
and if applicable, whether the numerical values of the

coefficients will remain the same as those for standard
gravity. That is, with scale-dependent modifications the
possibility for shell crossings arises which causes a break
down of the Zel’dovich approximation.

Looking at the functional form of the fit, in particular,
we can consider three regimes to make predictions,
namely, the large and small scale limits and a transition
regime. Large scales which remain linear or quasilinear
should be well described by the existing fit. On these scales
the Zel’dovich approximation should hold and using a
linear growth factor for g is acceptable. Similarly 
 and
� might be expected to adapt to the changed input power
via their spectral index dependence, since in linear scales
essentially all the information is contained in the amplitude
and spectral index of the power spectrum.

The mildly nonlinear or transition regime, where we
directly compare results, is particularly of interest in ap-
plying the fits. Scale-dependent modifications introduce an
extra degree of freedom to growth in the model, a scale
dependency that could also affect the shape and scale of the
smoothing function interpolating between the linear and
nonlinear asymptotic behaviors, essentially requiring cor-
rections to �. For example, a scale- or time-dependent
modification to Poisson’s equation could alter the critical
over-density required for nonlinear collapse, thus altering
the details of the transition from linear to nonlinear
regimes.

Small scale modifications to gravity, which we do not
consider here, could well lead to alterations in correlation
function of the collapsed structures, in particular, changes
to the value of the virialized normalization V. One might
expect the application of the linear growth factor in the fit
to be less effective even if including the linear scale
dependency g�a� ! g�k; a�. Relevant to our analysis is
the fact that the stable clustering approximation does not
account for merging and accretion of halos and hence does
not address how modifications to gravity may alter these
physical processes. We discuss this in the context of the SP
fit below.

The SP fit arises from a different approach based on the
‘‘halo model’’ [50,51] in which the continuous accretion of
matter and merging of halos is accounted for, deviating
away from the stable clustering approximation. In this
scenario, the power spectrum of matter �2

NL � �2
Q � �2

H

is described on large scales by the correlations between
different halos represented by a quasilinear term, �2

Q�k�,
and on small scales by a halo term, �2

H�k�, that accounts for
power from the self-correlation of halos. In the fit, the two
terms are phenomenologically selected functions of y �
k=k�, where the scale k��a� becomes nonlinear at scale
factor a�t�,

 �2
Q�k� � �2

L�k�
�
�1��2

L�k��
�n

1� 
n�2
L�k�

�
exp

�
�
y
4
�
y2

8

�
; (45)

FIG. 2 (color online). The ratio of the linear power spectrum in
the modified theories to that for standard gravity for the models
discussed in Sec. II: the 5D gravity model of Uzan and
Bernadeau (solid line), TM1 (dotted line), TM2 (dashed line),
and DGP (dotted-dashed line).
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 �2
H�k� �

any3f1��m�

1� bny
f2��m� � �cnf3��m�y�

3��n

 �
1

1��ny�1 � ny�2 : (46)

k� is determined by the standard error of the linear density
field,

 ��k�1
� ; a� � 1; (47)

 ��R; a� �
Z

�2
L�k; a� exp��k2R2�d lnk: (48)

The eight coefficients f
n; �n; �n;�n; n; an; bn; cng, fit
with spectral index-dependent functions, and three
�m-dependent functions, f1, f2, and f3, are empirically
matched to standard gravity simulations.

In the large scale limit, the quasilinear term dominates
and the use of the spectral index dependent 
n and �n
suggest the fit will adapt well to a modification on linear
scales, such as those considered here.

On small scales, just as in the PD case, there are issues
with the numerical fitting functions in the halo self-
correlation term; the correlation coefficient in a virialized
halo could be modified for the various modified gravity
scenarios. The functions f1, f2, and f3, which in standard
gravity are purely functions of �m, would be expected to
alter to account for the modification; this in turn could well
be expected to change an, bn, cn.

Also as in the PD case, the interpolation from linear to
nonlinear regimes, from large to small scales, could be
altered as the modifications could alter the critical over-
density required for nonlinear collapse. In particular the
form of an and to some extent �n may be expected to
require changes as these serve to determine the relative
importance of the halo-halo and self-correlation terms.

It is in light of these considerations that we study
whether these analytic fits can readily describe modified
gravity scenarios, with scale-dependent or independent
modifications to the Poisson equation, and/or scale-
independent anisotropic shear.

IV. OBTAINING WEAK LENSING SPECTRA

Modified gravity theories can impact weak lensing con-
vergence power spectrum in addition to the matter power
spectrum, thus we study the impact of our models on both.
In standard gravity, the power spectrum of the convergence
is given by

 P��l� �
9�2

m;oH4
0

4c4

1

4

Z �s

0

g2���

a2�2 P�

�
l
�

�
d�; (49)

where P� is the matter power spectrum and g��� is a
weighting function that can be related to the comoving
distance � and the distribution of background or source
galaxies, Ws���

 g��� � 2�
Z �s

�

�0 � �
�0

Ws��
0�d�0: (50)

We assume a simple delta function distribution of sources
at zs � 1, so,

 g��� � 2�
�s � �
�s

: (51)

The convergence power spectrum is then

 P��l� �
9�2

m;oH4
0

4c3

Z 1

as

W2��; �s�

a4H�a���a�2
P�

�
l

��a�

�
da (52)

with

 W��; �s� � �
�
�s � �
�s

�
: (53)

Where we have used the fact that the comoving distance, �,
is equal to the (comoving) angular diameter distance for a
flat universe so that

 ��a� �
Z 1

a

cda0

a02H�a0�
: (54)

Gravitational modificationsQ � 1 and/or� � 0 will act to
modify P��k; a�. In addition, Q � 1 and/or � � 0 will
modify how the convergence spectrum is related to P�
(see for example [15]), resulting in

 P��l� �
9�2

m;oH
4
0

4c3

�
Z 1

as

W2��; �s��1� �=2�2Q2

a4H�a���a�2
P�

�
l

��a�

�
da;

(55)

where the evolution of P� is also affected by Q and �.
P� can be obtained from either the PM simulations or

the analytic fits described in Sec. III C. To actually evaluate
the integral, we discretize it, binning by expansion factor.

When considering the N-body code derived P�, we have
to account for the fact that the simulation only probes a
range of k, yet for any given l, k � l=��a� can lie outside
this range at some redshift, zs > z > 0. For the l range we
consider, the range of k needed is virtually all given by the
N-body simulation. Outside this range, on large scales the
power spectrum is well approximated by the linear spec-
trum; at smaller scales we find that the analytic SP and PD
predictions for the modified gravity spectra are within the
1� errors at the edges of the range of k provided by the
simulations, so we pad the simulated spectra with the
nonlinear analytic fits to modified gravity linear power
spectrum.
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V. RESULTS

A. Parameters for simulations

For the PM code parameters we take N � 256, NP �
128, L � 100h�1 Mpc, 	 � 0:1, zi � 50, astep � 0:002,
and for our cosmological model we take ns � 1, �8 � 1,
�K � 0, �m � 0:3, �b � 0:026, �cdm � 0:274, and h �
0:7. The resulting simulations measure scales 0:1 & k &

1 Mpc�1. The specific choice of initial redshift is not
important other than to ensure that it is early enough that
nonlinear corrections are negligible.

The box size and number of cells play into spatial
resolution of the simulation, and are chosen to allow us
to effectively probe the decade of k in which the mildly
nonlinear effects manifest themselves and from which we
can extract a reasonable weak lensing spectrum for l	
200–1000, a range relevant to upcoming experiments. The
number of particles are chosen to ensure a sufficient par-
ticle resolution for the box size and number of cells used.

The initial positions of the particles at zi are assigned by
means of a random number generator consistent with the
initial power spectrum. Depending on the seed used to
initialize the random number generator, the resultant spec-
tra may agree well with standard �CDM analytic fits with
the same parameters or might over- or under-produce
power, even in the original unaltered code of [45]. We
therefore run the simulations with 24 random seeds to get
a good sample size and a more robust average. In order to
weigh the behavior of each simulation equally, we consider
the modifications in terms of the ‘‘average of the ratios’’ of
the modified power spectrum to the standard gravity spec-
trum for the same seed, rather than the ‘‘ratio of the
averages’’ that would preferentially weight those simula-
tions that over-produce power.

For scale-dependent modified gravity, we find the nu-
merical recipes routine [52] for the Fourier transform,
though slightly more time consuming, is more stable than
the one provided in the original code. In the case of scale-
independent modifications and standard gravity, both algo-
rithms produce identical results. The softening parameter
value used for the scale-dependent modification is much
smaller than the smallest separation in the code and pro-
vides agreement with standard gravity from analytic pre-
dictions and standard gravity simulations with the code at
least at the level of or better than the unmodified Klypin
code.

In Fig. 3 we show the results of the 24 simulations of
standard gravity against the SP and PD fits, in order to
demonstrate the fiducial model against which the modified
gravity simulations are compared. The simulations are
consistent with the analytical fits in the range
0:1 Mpc�1 & k & 1 Mpc�1. A conservative estimate for
the largest k at which we can believe the simulation results
are reasonable is kNyquist=2 [30], which for our simulations
is 1:4 Mpc�1. We consider the simulations to be valid only

up to kNyquist=2, rather than up to kNyquist as this more
conservative limit represents a regime in which standard
gravity simulations and fits agree to within 1.5 times the
standard error in the simulation, in comparison to 10 (for
the PD fit) and 13 (for the SP fit) times the standard error at
kNyquist.

For the model parameterizations we consider, we find
that the linear scales used to generate the nonlinear k in the
range 0:1� 1:4 Mpc�1 lie in the range k	
0:07–0:5 Mpc�1.

B. Simulation and analytic fit results

1. 5D gravity model

The ratio of the dimensionless power spectrum today for
the 5D gravity model discussed in Sec. II A to standard
gravity is shown in Fig. 4. We find that the simulations are
consistent with the PD [25] fit at the 1� level. This is
consistent with the results of [30] for a Yukawa type
modification (that, like the modification we consider
here, is a scale-dependent modification). The SP fits are
slightly less consistent with the numerical predictions,
however, still lie within 1� of the simulation mean. We,
therefore, find no statistical basis for preferring PD over the
SP [26] fit of P��z � 0�.

To consider the suitability of the analytic fitting func-
tions when applied to weak lensing, it is insufficient to
purely consider their agreement with predictions today; the
entire evolution must be tracked between the redshift of the
lensed source and today, as weak lensing integrates P�k; a�

FIG. 3. Dimensionless matter power spectrum, �2�k� �
k3P��k�=2�2, for standard gravity. The full line and error bars
show the average power spectrum and standard deviation for 24
simulations. The vertical dotted line represents kNyquist=2, which
is a conservative estimate for the largest k at which we can
believe the simulation results as in [30]. The PD (dotted-dashed
line) and SP (dashed line) analytical fits are also shown.
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over the expansion factor a, c.f. (55). We, therefore, track
the redshift history of the nonlinear evolution, and the
comparison with the analytical fits, as shown in Fig. 5.
We find both fits lie within 1� though after a	 0:75 the SP
results are just encompassed by the 1� errors.

The ratios of the modified gravity weak lensing spectra
to those of standard gravity are well recovered by the PD
and SP fits, as shown in Fig. 6. The ratios of the weak
lensing convergence spectra are slightly less sensitive to
the exact form of the modification than the matter power
spectra, for two reasons. First, the integral in (55) is mostly
weighted towards integrand values at early times when the
analytical fits are in very strong agreement with the simu-
lations. Thus, for instance, the late-time transition of the SP
fit to the outer regions of the 1-sigma level is not so
significant to the convergence power as it is to the final
matter power spectrum. Second, we ‘‘pad’’ the spectrum at
k values outside the simulated range with the analytical fit,
in order to evaluate l � k��a� in (55). This is mitigated (as
discussed in Sec. IV) by the similarity of the fits and the
code spectra at the edges of our range of k and the fact that
the contribution from padded k values is small in compari-
son to those drawn from the simulated range: for l � 200,
P� is padded with the nonlinear analytical spectrum at a >
0:955, which corresponds to 1.3% of P� for standard

gravity; for l � 1000 the padding is required for 0:8< a<
1:0 which contributes to 14% of the value of P�.

2. DGP

The effects of nonlinear growth in DGP models are of
great interest in establishing observational distinctions be-
tween this model and standard �CDM at cosmological
scales, in [15] the nonlinear power spectrum was estimated
using the Smith et al. analytical fit, while in [33] an
analytical ansatz is applied. Both the DGP model and the
model in II A are motivated by 5D modifications to gravity.
The difference between DGP and that model is that DGP
not only modifies the Poisson equation but also the peculiar
acceleration through the presence of an anisotropic stress.

For the arguably more complex DGP model, the SP and
PD fits are both still in good agreement with the N-body
simulations at a � 1, at the 1� level over the simulated
scales, as shown in Fig. 7. This is also true over the course
of the evolution as the modification from �CDM switches
on, as shown in Fig. 8.

Note that we do not provide a weak lensing analysis in
this model; as due to the change in H [and hence in ��a�]
evaluating k � l=��a� consistently results in a need for
much smaller scales, i.e. k * 4:6 Mpc�1 for the range of
l’s we have considered. We thus restrict our discussion of
DGP to matter power spectra and their evolution.

Even though rc is chosen to be in close agreement with
the background evolution of our fiducial cosmological
model, and has essentially degenerate evolution at early
times, the DGP model shows marked deviation from stan-

FIG. 5 (color online). The ratios of the dimensionless matter
power spectrum in modified to standard gravity, �2

alt�k�=�2
std�k�

as a function of redshift 50 � z � 0 for k � 0:53 Mpc�1. The
color coding and lines styles are as in Fig. 4. The dotted lines
show the ratios of the associated linear spectra. Note that the
evolution is well tracked by the analytical fits, with both lying
within 1� for the simulations. At late times the SP fit drifts to
around, or just over, the 1� error.

FIG. 4 (color online). Ratios of the z � 0 dimensionless matter
power spectrum in the modified gravity model to that for
standard gravity, for the 5D gravity model described in
Sec. II A for rs � 20h�1 Mpc (top, blue), 10h�1 Mpc (middle,
green), and 5h�1 Mpc (bottom, red). The full line and error bars
show the average of the ratios and standard deviation for 24
simulations. The vertical dotted line represents kNyquist=2, which
is a conservative estimate for the largest k at which we can
believe the simulation results as in [30]. The PD (dotted-dashed
line) and SP (dashed line) analytical fits agree with simulations
at within 1� for each rs, in the region of interest, k � 0:1 to
1 Mpc�1.
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dard gravity at late times. We note that the suppression of
the nonlinear power spectrum shown with respect to stan-
dard gravity for the PD and SP fits and N-body simulations
is qualitatively similar to that shown with the ansatz of
[33], although we leave a quantitative assessment of the
ansatz to future work.

3. Twin toy models

In order to investigate the abilities of the two analytical
fits to predict nonlinear behavior in the two types of
modifications, we consider a set of twin toy models, de-
scribed in Sec. II C. TM1 has a modified Poisson equation
fQ � 1� �0a; � � 1g while TM2 has anisotropic stress
fQ � 1; � � 2�0ag. Both models have the same form of

FIG. 7. Ratios of the matter power spectrum in the DGP model
with rc � 6:1 Gpc�1 to that in standard gravity; both models
have H0 � 70 kms�1 Mpc�1 and �m � 0:3. The full line is the
average of the 24 realizations and errors represent the standard
deviation of the simulations. The SP (dashed line) and PD
(dotted-dashed line) analytic fits are in good agreement over
the scales measured by the simulation, k � 0:1 to 1 Mpc�1. The
linear power spectrum ratio is shown by the dotted line.

FIG. 8. The evolution of the ratio of the DGP matter power
spectrum to standard gravity for k � 0:53 Mpc�1 as a function
of scale factor, a. The full line is the average of the 24 realiza-
tions and errors represent the standard deviation of the simula-
tions. The SP (dotted line) and PD (dotted-dashed line) analytic
fits are good at predicting the transition and development of
nonlinear growth at all epochs.

FIG. 6 (color online). The ratio of the weak lensing dimensionless convergence power spectrum, �2�l� � l2P��l�=2�, for a �
function lensing source at zs � 1, as a function of multipole, l, for the 5D gravity model in Sec. II A to that in standard gravity in
comparison to the SP fit (left- hand panel) and PD fit (right-hand panel). The points and errors are the average and standard deviation of
the ratios of the 24 simulations. The predicted spectra from the analytical fits (full lines) are wholly consistent with the simulations for
all 3 modified gravity models with rs � 20h�1 Mpc (top, blue), 10h�1 Mpc (middle, green), and 5h�1 Mpc (bottom, red).
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relationship of the weak lensing potential to the over-
density, characterized by the function ��k; a� �
Q�1� �=2�. As shown in Fig. 11, despite the degenerate
background evolutions, the different modifications in each
model lead to different linear scale-independent growth
factors. For both models, the SP and PD analytical fits
track both the scale-dependent behavior and time evolution
of nonlinearities in both types of scenario, as shown in
Figs. 9 and 10. The weak lensing correlations for PD and
SP fits are virtually identical for each model so we only

show the results for SP fits in Fig. 11; the difference
between the simulations and analytical fits is negligible
for both models.

C. Discussion

The nonlinear fits of Peacock and Dodds and Smith et al.
have been shown to work across broad cosmological mod-
els with standard gravity, with different fractional mass
densities, curvature, and initial power spectrum spectral

FIG. 10 (color online). The evolution of the power spectrum over time for TM1 (left panel), and TM2 (right panel). Throughout the
entire simulation the fits track the simulation results extremely well. The color coding and line styles are the same as in Fig. 9.

FIG. 9 (color online). The ratios of matter power spectra at a � 1 for modified gravity to standard gravity in the TM1 (left panel) and
TM2 (right panel) models for �0 � �0:016 (dark blue, bottom), �0:008 (red), 0.008 (green), and 0.016 (light blue, top) as a function
of scale, k. As in earlier figures, the full line represents the average of the 24 simulations, error bars represent 1 standard deviation, and
kNyquist=2 is indicated by the vertical dotted line. The predictions of the SP (dashed line) and PD (dotted-dashed line) fits are nearly
identical, and are in excellent agreement with the simulations for both the weaker modifications with �0 � 0:008 and the strong ones
with �0 � 0:016. The linear power spectra, showing the differences in linear growth factor arising from the modifications are shown
by the dotted lines.
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indices. The utility of these fits derives from the wide
applicability of the Zel’dovich approximation. In both fits
there is the conjecture that the statistics of the gravitational
clustering obey a similarity transform PNL�k=a� �
~P�k=kNL� for which no proof is given, but instead is ex-
perimentally shown to be robust for a variety of cosmo-
logical models by simulation. In this paper we assess
whether such a similarity transform similarly exists in
modified gravity theories, and moreover that the existing
quantitative values for the fit coefficients can be used. This
is not necessarily the case a priori.

To test the fits we have performed nonlinear simulations
of models in which modifications to Poisson and the pecu-
liar acceleration equations occur exactly in this mildly
nonlinear, transition regime. We have found that both the
SP and PD analytical fits give reasonably good agreement
with the simulations, in spite of the scale- and time-
dependent modifications. This implies that applicability
of the Zel’dovich approximation extends to scenarios in
which anisotropic stress and even those with scale-
dependent modifications to gravity are present in the
mildly nonlinear regime. The modifications, therefore,
are well described by the fits through their impact on the
linear growth factor, g, and the spectral index dependency
of the fitting functions. It appears that scale-dependent
modifications in the mildly nonlinear regime do not require
significant modification of the numerical coefficients in the
fitting functions. Since our simulations focus on the ability

of the fits to accurately match the transition from linear to
nonlinear regimes, they do not investigate if modifications
on small scales, in which the subhalo correlations are key,
are well described by the fits, for example, if rs in (20) were
significantly smaller, e.g. less than 1 Mpc. This is an area of
interest for further analysis, especially in recently dis-
cussed theories in which galactic scale modifications could
be present (e.g. [53]).

VI. CONCLUSIONS

The use of complementary cosmological observations to
probe the properties of dark energy has proved extremely
powerful. Observations sensitive to the background evolu-
tion, e.g. supernovae, or the wholly linear regime, e.g. the
cosmic microwave background, have been the major ob-
servational tools to constrain dark energy to date. There is
now significant interest, however, in applying a broader
range of observations including those sensitive to a large
scale structure including large scale galaxy surveys, such
as the Sloan Digital Sky Survey, and current and prospec-
tive weak lensing surveys. For each of these, in order to
make precise inferences about dark energy, theoretical
systematic errors about the modeling of nonlinear correc-
tions must be addressed.

This work considers the ability of the commonly used
nonlinear analytical fits of Peacock and Dodds [25] and
Smith et al. [26] to predict nonlinear growth in a variety of
theories beyond standard gravity. We consider models in
which the Poisson equation is modified, based on 5D
gravity, [34,40,41] and also those in which peculiar accel-
eration response to the gravitational potential is altered,
including the DGP model [13].

We find that the two fitting functions provide robust
predictions for theories with both types of modification,
in terms of accurately predicting the matter power spec-
trum today, and also, vitally for calculating the weak lens-
ing convergence spectrum, they predict the development of
nonlinearities over time. Both consistently give predictions
within 1� of 24 simulated N-body realizations of the
theory. Our results imply that the similarity conjecture
for mapping linear to nonlinear power empirically found
to be satisfied in standard gravity simulations is also ap-
plicable to scenarios in which gravity has scale- and time-
dependent modifications. This suggests that the spectral
index dependence of the fitting function and the linear
growth factor effectively describe alterations in the non-
linear collapse due to scale-dependent modifications to
gravity and anisotropic stress at the scales studied in the
models here.

We conclude that current analytic fits using the linear
power spectrum in modified gravity theories can be used to
accurately predict the nonlinear growth in theories with
scale-independent or dependent modifications, and in those
with or without anisotropic stress in the mildly nonlinear
regime. We find no statistical evidence for a preference, on

FIG. 11 (color online). The ratios of modified convergence
power to standard convergence power in the twin models TM1
(full triangles) and TM2 (empty triangles) for �0 � 0:016 (�,
blue), �0:008 (4 , red), 0.008 (5 , green), and 0.016 (�, light
blue) shown against the predicted spectrum using the SP fit (full
line), as the predictions of SP and PD are virtually identical. As
is to be expected, given the strong agreement between the fits
and simulations of the matter power spectrum, the weak lensing
spectra from the simulations are predicted well by the analytical
fits.
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the basis of overall performance, for one analytical fit over
the other.

Many modified gravity models, for example, DGP and
f�R� models, exhibit gravitational modifications on sub-
halo scales. Whether such modifications are well described
by the halo term in the SP fit or the stable clustering
approximation in the PD fit necessitates smaller scale
simulations in the substantially nonlinear regime, which
lies outside the scope of this paper.

We have limited our investigation of anisotropic stress to
scale-independent modifications, and indeed further work
is warranted in investigating whether the conclusions
found for those are applicable to scale-dependent aniso-

tropic stress, as found in f�R� theories. It will also be
interesting to investigate the agreement between simula-
tions and the recently proposed nonlinear ansatz [33] for
modified gravity models.
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