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The Ashtekar-Barbero constraints for general relativity with fermions are derived from the Einstein-
Cartan canonical theory rescaling the state functional of the gravity-spinor coupled system by the
exponential of the Nieh-Yan functional. A one parameter quantization ambiguity naturally appears and
can be associated with the Immirzi parameter.
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I. INTRODUCTION

The growing interest that the Ashtekar formulation of
general relativity (GR) [1] has gained over the years is a
consequence of the remarkable simplification it introduces
in the structure of the canonical constraints. Specifically,
by using the self-dual SL�2;C� Ashtekar connections as
fundamental variables, the constraints of GR reduce to a
polynomial form. On the other hand, the complex character
of the self-dual connections forces the introduction of
suitable reality conditions, which, until now, have pre-
vented the construction of a complete quantum theory.
This led to the adoption of the real Ashtekar-Barbero
SU�2� or SO�3� valued connections as fundamental varia-
bles in a partially gauge fixed version of tetrads GR [2,3].
By using the new variables Ashtekar, Rovelli, and Smolin
constructed a nonperturbative (background independent)
quantum theory of gravity known as loop quantum gravity
(LQG) [4–7], which, at least in symmetric physical sys-
tems, allows one to cure the inevitable singular behavior of
general relativity [8–11]. The results recently obtained
about the graviton propagator have further strengthened
the theory, by providing other evidences on its nonsingular
behavior [12–14].

The Ashtekar-Barbero connections contain a free pa-
rameter in their definition, called the Immirzi parameter
and here denoted as �. The presence of the Immirzi
parameter does not affect the classical theory, but it appears
in the spectra of geometrical nonperturbative quantum
operators as, for instance, the area and volume operators.
Even though many attempts have been made to understand
the physical meaning of the Immirzi parameter [15–20], its
role in canonical quantum gravity has not been completely
clarified yet [21].

In this brief paper, motivated by the interesting analysis
proposed by Gambini, Obregon, and Pullin [15] and by
using the results of previous works [22,23], we will be
demonstrating that the Ashtekar-Barbero constraints can

be derived starting from the canonical Einstein-Cartan
theory, by considering a topologically suggested rescaling
of the wave function describing the quantum states of the
system. This demonstration provides us with an interesting
hint for interpreting the Immirzi parameter which, as the so
called �-angle of QCD, is a quantization ambiguity con-
nected with the nontrivial structure of the quantum con-
figuration space [21].

The paper is organized as follows. In Sec. II we briefly
recall the canonical formulation of gravity and write the
constraints of the Einstein-Cartan action. Then we recall
the expression of the nonminimal action introduced in [22]
(see also the interesting paper [24]). Analogously to the
Holst action, the nonminimal action deviates from the
Einstein-Cartan, specifically it is characterized by two
modifications, which, as soon as the solution of the second
Cartan structure equation is taken into account, reduce to
the Nieh-Yan topological term [22,25]. In Sec. III we are
going to demonstrate that this fact makes it possible to
calculate the Ashtekar-Barbero constraints for GR starting
from the canonical constraints of the Einstein-Cartan the-
ory in the time gauge by using an original and interesting
method, which sheds some light on the underlying topo-
logical structure of the theory. Namely, after having can-
onically quantized the Einstein-Cartan theory, we rescale
the state functional by the exponential of the Nieh-Yan
functional, which here plays a role analogous to the one
that the Chern-Simons functionals play in Yang-Mills
gauge theories (the Immirzi parameter being analogous
to the angular parameter usually indicated by �) and dem-
onstrate that the canonical constraints of the nonminimal
action can be easily derived once the modification to the
conjugated variables are calculated. Finally, in Sec. IV we
discuss the results obtained.

The signature throughout the paper is �, �, �, �. We
assume 8�G � 1.

II. CANONICAL GR WITH FERMION FIELDS

The interaction between gravity and fermion fields is
described by the Einstein-Cartan action,*mercuri@cpt.univ-mrs.fr
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The covariant derivatives contain the Lorentz valued spin
connections according to the following definitions:
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i
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� �ab!ab;
(2)

with a; b; c � � � � 0; . . . ; 3. Assuming that space-time is
globally hyperbolic, we can extract the 3� 1 form of the
above action and, once the temporal gauge is fixed and the
second class constraints solved [26] (further details about
this procedure in the presence of spinor fields will be given
in [21]), we can extract the following canonical con-
straints1:
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where we have introduced the following notations: Greek
indices indicate the spatial components of space-time ten-
sors �;�; � � � � 1, 2, 3, while Latin indices refer to the
internal degrees of freedom i; j; � � � � 1, 2, 3; E�i � �ee

�
i

and Kj
� � !0j

� form a canonical pair and represent, respec-

tively, the densitized triad and the extrinsic curvature; �� �
i
2 e

� �0 and � � � i
2 e�

0 are, respectively, the momenta
conjugate to  and � ; �i �

1
2 �i

jk�jk are the generators of
spatial rotations. Moreover the new derivative symbol, D,
representing the connections of the rotations group, has
been introduced. We would like to stress that the apparent
doubling of the fermionic degrees of freedom is a conse-
quence of the specific form of the action we started from.
The right number of degrees of freedom can be restored
simply imposing a suitable set of second class constraints,
which make it possible to refer the dynamics of the fermion
sector of the theory to only one of the two pairs of fermion
conjugate fields: either ( , ��) or (�, � ).

Once the phase space is equipped with the following
symplectic structure
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we can verify that the constraints (3) are first class. They
are connected with the gauge freedom of the theory,
namely, invariance under spatial rotations and space-time
diffeomorphisms.2

In [22] we demonstrated that the nonminimal action
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has the following characteristics: (i) it has the Einstein-
Cartan action without any modification as effective limit,
consequently the Immirzi parameter disappears from the
classical equations as in the original (purely gravitational)
Holst approach; (ii) it can be extended to arbitrary complex
values of the Immirzi parameter, in particular, for � � 
i
it reduces to the Ashtekar-Romano-Tate action [27]; (iii) it
is suitable for a geometrical description, since the non-
minimal term in the fermionic sector together with the
Holst modification can be reduced to the Nieh-Yan invari-
ant [25] once the second Cartan structure equation is
solved. In other words, the modifications introduced in
(5) with respect to the Einstein-Cartan action (1) can be
reduced to the Nieh-Yan invariant, i.e.
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where Jd
�A� �

� �d�5 . Passing from the first to the second
line, we used the solution of the Cartan structure equation,
namely,
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resulting from the variation of the action (5) with respect to
the spin connection, which, once the factor 1

2 �
ab
cd �

1
��
�a
c �

b�
d is dropped, is equivalent to the one characterizing

the usual Einstein-Cartan theory. Finally, the result in the
third line can be easily obtained using the following iden-
tity Ta ^ ea � �

1
2 ? eaJ

a
�A�. So, the action (5) is dynami-

1It is worth recalling that the additional strong equation
D�E

�
i � 0 follows from the solution of the second class con-

straints, representing the so-called compatibility condition.

2The theory was initially invariant under the full Lorentz
group, but, as is well known, the temporal gauge fixes the boost
sector, leaving a remnant invariance under the local spatial
rotations only.
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cally equivalent to the usual Einstein-Cartan action, since
the additional terms introduced in action (5) with respect to
(1) can be reduced to a total divergence containing torsion.
The fact that the effective action derived from (1) contains
a topological modification with respect to (5) suggests that
the two sets of canonical constraints resulting from them
have to be connected by a topologically motivated redefi-
nition of the conjugate momenta. In fact, in the next section
we are going to derive the constraints of the nonminimal
theory (5) by redefining the state functional of the formally
quantized Einstein-Cartan theory, namely, by rescaling it
by the exponential of the Nieh-Yan functional

 Y �e;  ; � � �
Z
ei ^ Ti�e;  ; � �; (8)

where we have to take into account the solution of the
second Cartan structure equation, which for spatial internal
indices gives
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2�
i
jke

j ^ ekJ0
�A�: (9)

III. FROM EINSTEIN-CARTAN TO ASHTEKAR-
BARBERO CONSTRAINTS

Weak equations (3) represent a set of first class con-
straints, so we can quantize the system by adopting the
Dirac procedure, i.e. the constraints are directly imple-
mented in the quantum theory by requiring that the wave
functional be annihilated by their operator representation.
Let us assume as coordinates on the quantum configuration
space the following fields: E�i ,  A, and � B, so that the wave
function is

 � � ��E; ; � �: (10)

The quantum gravitational equations are formally ex-
pressed as
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Ĉ��E; ; � � � 0; (11c)

where the operatorial translation of the canonical con-
straints relies on the following prescriptions:
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Suppose now to rescale the state functional ��E; � by
the exponential of the Nieh-Yan functional3
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�
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where the parameter � will result in being associated with
the Immirzi parameter. It is worth stressing that the study
of large gauge transformations in temporal gauge fixed
gravity leads precisely to the rescaling (14) of the state
functional, so a consistent geometrical interpretation of the
entire procedure can be provided, but this discussion is
beyond the scope of this paper and will be presented in a
longer, forthcoming paper [21].

The price paid for this rescaling is a modification in the
definitions of the canonical conjugate momentum opera-

tors K̂i
�, �̂�B, and �̂B. Specifically we get
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where we have formally calculated the functional deriva-
tives, taking into account expression (9) and the following
useful form of the Nieh-Yan functional
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The modifications of the conjugate momentum operators
correspond to canonical modifications of the respective
classical conjugate momenta, which can be easily eval-
uated. So that, reintroducing the new classical conjugate
momenta into the canonical constraints (3) we obtain the
following weak equations:
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where f5
��� � 1� i
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1
2 �

l
ikR��

ik. It is worth
3For a concise explanation of this procedure for SU�N� Yang-

Mills gauge theories, see [28].
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noting that the gravitational contributions in the above
expressions are exactly those obtainable starting from the
Holst action. In fact, the above modified canonical con-
straints (17) can be extracted from a 3� 1 splitting of the
nonminimal action (5), so that an interesting topological
new aspect of the Ashtekar-Barbero formulation of canoni-
cal gravity has been extracted and will be further rein-
forced by studying the role of the large gauge
transformations in this framework [21].

IV. DISCUSSION

We have demonstrated that a nonminimal action exists
which is dynamically equivalent to the Einstein-Cartan
action, since it deviates from the latter due to the presence
of two modifications which can easily be reduced to a
topological term. This fact suggests a simple analogy
with the extension of Yang-Mills gauge theories to contain
topological terms. It is well known that in Yang-Mills
gauge theories the presence of a local symmetry generates
a Gauss constraint in the canonical theory. The Dirac
quantization of such a theory requires that the state func-
tional be annihilated by the quantum operator constraint,
implying that the state functional has to be invariant under
small gauge transformations, i.e. gauge transformations in
the connected component of the identity. But the canonical
theory does not provide any suggestion on how the state
functional behaves under large gauge transformations. The
behavior of the wave function under large gauge trans-
formations can be studied by using the Chern-Simons
functionals. More specifically, by rescaling the wave func-

tion by the exponential of the Chern-Simons we can auto-
matically diagonalize the large gauge transformations
operator [15]. The result is that the modifications intro-
duced by the rescaling affect the Gauss constraint and the
Hamiltonian of the theory, providing us with exactly the
expression we would have obtained if we started from the
well-known topological modification of the standard
action.

Here we have demonstrated that the same happens in
gravity and, even though the details regarding the large
gauge transformations have been omitted to limit the
length of the paper (and will be described in [21]), their
absence does not prevent one from drawing the conclusion
that in temporal gauge fixed gravity the Nieh-Yan func-
tional plays the same role as the Chern-Simons functionals,
allowing us to shed some light on the topological aspects of
the Ashtekar-Barbero formulation of canonical gravity.

And, finally, we would like to stress that the Immirzi
parameter � is introduced in this framework in the rescal-
ing (14), where it plays the same role as the so-called �
angle plays in QCD.
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