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We give a rigorous and mathematically clear presentation of the covariant and gauge-invariant theory of
gravitational waves in a perturbed Friedmann-Lemaı̂tre-Robertson-Walker universe for fourth order
gravity, where the matter is described by a perfect fluid with a barotropic equation of state. As an
example of a consistent analysis of tensor perturbations in fourth order gravity, we apply the formalism to
a simple background solution of Rn gravity. We obtain the exact solutions of the perturbation equations for
scales much bigger than and smaller than the Hubble radius. It is shown that the evolution of tensor modes
is highly sensitive to the choice of n and an interesting new feature arises. During the radiation dominated
era, their exists a growing tensor perturbation for nearly all choices of n. This occurs even when the
background model is undergoing accelerated expansion as opposed to the case of general relativity.
Consequently, cosmological gravitational wave modes can in principle provide a strong constraint on the
theory of gravity independent of other cosmological data sets.
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I. INTRODUCTION

In the near future, gravitational waves (GW) will be-
come a very important source of data in cosmology.
Cosmological GW are produced at very early times in the
evolution of the universe and almost immediately decouple
from the cosmic fluid. Consequently, they carry informa-
tion about the conditions that existed at this time, thus
providing a way of constraining models of inflation [1].

Even if GW are decoupled from the cosmic fluid, their
presence still influences some features of the observable
universe. In particular, a GW background will produce a
signature that can be found in the anisotropies [2] and
polarization [3] of the cosmic microwaves background
(CMB). This, together with the remarkable improvements
in the sensitivity of CMB measurements, opens the possi-
bility of obtaining important information about GW in an
indirect way.

In the past few years, the idea of a geometrical origin for
dark energy (DE) i.e. the connection between DE and a
nonstandard behavior of gravitation on cosmological
scales, has attracted a considerable amount of interest.

Higher order gravity, and, in particular, fourth order
gravity, has been widely studied in the case of the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
using a number of different techniques (see for example
[4–10]). Recently a general approach was developed to
analyze the phase space of the fourth order cosmologies
[11–13], providing for the first time a way of obtaining

exact solutions together with their stability and a general
idea of the qualitative behavior of these cosmological
models.

The phase space analysis shows that for FLRW models
there exist classes of fourth order theories in which the
cosmology evolves naturally towards an accelerated ex-
pansion phase which can be associated with a DE-like era.
Although this feature is particularly attractive, a problem
connected with the use of these theories is that there is too
much freedom in the form of the theory itself. Con-
sequently, it is crucial to investigate these models in
some detail in order to devise observational constraints
which are able to eliminate this degeneracy.

A key step in this process is the development of a full
theory of cosmological perturbations. A detailed analysis
of the evolution of the scalar perturbations on large scales
has recently been given in [14]. Here we will focus on the
evolution of the tensor perturbations, which are related to
GWs. This is motivated by the well-known fact [15] that
the features of GWs in general relativity (GR) are rather
special and therefore the detection of any deviation from
this behavior would be a genuine proof of the breakdown
of standard GR.

The aim of this paper is to present a general framework
within which to consistently analyze tensor perturbations
of FLRW models in fourth order gravity (see [16–19] for
other recent contributions to this area). As an explicit
example we apply our approach to the case of Rn gravity.
We investigate the possible constraints one can place on
such a model through future observations of gravitational
waves independently of existing cosmological data.

In order to achieve this goal, a perturbation formalism
needs to be chosen that is best suited for this task. One
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possible choice is the Bardeen metric based approach [20–
22] which guarantees the gauge invariance of the results.
However, this approach has the drawback of introducing
variables which only have a clear physical meaning in
certain gauges [23]. Although this is not a big problem in
the context of GR, this is not necessarily true in the case of
higher order gravity and consequently can lead to a mis-
interpretation of the results.

In what follows we will use, instead, the covariant and
gauge-invariant approach developed for GR in [23–28]
which has the advantage of using perturbation variables
with a clear geometrical and physical interpretation. We
take advantage of the fact that in this approach the non-
Einstein part of the gravitational interaction can be con-
sidered as an effective fluid (the curvature fluid) coupled
with standard matter. This specific recasting of the field
equations makes the development of cosmological pertur-
bation theory even more transparent.

The main results of the paper are as follows. (1) We find
that the evolution of tensor modes is extremely sensitive to
the choice of f�R� theory. (2) In the specific case of Rn

gravity, the tensor modes are in general weaker due to a
higher expansion rate in the background. (3) During the
radiation dominated era, their exists a growing tensor mode
for nearly all interesting values of n.

The paper is organized as follows. In Sec. II we give a
brief review of the 1� 3 gauge invariant covariant ap-
proach in a general setting. In Sec. III we present the
equations necessary for the study of linear tensor perturba-
tions for a general imperfect fluid. In Sec. IV we inves-
tigate how these equations are modified when considering
fourth order gravity. In Sec. V we adapt these equations for
the specific case of Rn gravity and study tensor perturba-
tions both in vacuum and in the presences of dust/radiation
fluid. Finally, we present our discussions and conclusions
in Sec. VI.

II. THE 1� 3 COVARIANT APPROACH TO
COSMOLOGY

The starting point (and the corner stone) of our analysis
is the 1� 3 covariant approach to cosmology [29]. This
approach consists of deriving a set of first order differential
equations and constraints for some suitable, geometrically
well-defined quantities (the 1� 3 equations) that are com-
pletely equivalent to the Einstein field equations. This has
the advantage of simplifying the analysis of general space-
times which can be foliated as a set of three-dimensional
(spacelike) surfaces. In the following we give a very brief
introduction to the parts of this formalism used in this
paper.

A. Preliminaries

We will adopt natural units (@ � c � kB � 8�G � 1)
throughout this paper, Latin indices run from 0 to 3. The
symbol r represents the usual covariant derivative and @

corresponds to partial differentiation. We use the�,�,�,
� signature and the Riemann tensor is defined by

 Rabcd � Wa
bd;c �W

a
bc;d �W

e
bdW

a
ce �Wf

bcW
a
df;

(1)

where the Wa
bd is the usual Christoffel symbol (i.e. sym-

metric in the lower indices), defined by

 Wa
bd �

1
2g
ae�gbe;d � ged;b � gbd;e�: (2)

The Ricci tensor is obtained by contracting the first and the
third indices

 Rab � gcdRcadb: (3)

Finally the Einstein-Hilbert action in the presence of mat-
ter is defined as

 A �
Z
dx4 �������

�g
p

�
1

2
R�Lm

�
: (4)

B. Kinematics

In order to derive the 1� 3 equations, we have to choose
a set of observers, i.e. a 4-velocity field ua. This choice
depends strictly on the theory of gravity that we are treat-
ing. In this section we give the set of equations for a general
velocity field. In later sections we will discuss how this
situation is modified in the case of f�R� gravity.

Given the velocity ua, we can define the projection
tensor into the tangent 3-spaces orthogonal to the flow
vector:

 hab � gab � uaub ) habh
b
c � hac; habub � 0;

(5)

and the kinematical quantities can be obtained by splitting
the covariant derivative of ua into its irreducible parts:

 rbua � ~rbua � Aaub;

~rbua �
1
3�hab � �ab �!ab;

(6)

where ~ra is the spatially totally projected covariant de-
rivative operator orthogonal to ua, Aa � _ua is the accel-
eration (Abub � 0), � is the expansion parameter, �ab the
shear (�ab � ��ab�, �aa � �abub � 0), and !ab is the
vorticity (!ab � !�ab�, !abu

b � 0). Following the stan-
dard convention we will indicate the symmetrization over
two indices of a tensor with round brackets and the anti-
symmetrization with square ones.

In the ua frame, the Weyl or conformal curvature tensor
Cabcd can be split into its electric (Eab) and magnetic (Hab)
components, respectively:

 Eab � Cacbducud ) Eaa � 0; Eab � E�ab�;

Eabu
b � 0;

(7)
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 Hab �
1
2�adeC

de
bcu

c ) Ha
a � 0; Hab � H�ab�;

Habub � 0:
(8)

In what follows we will use orthogonal projections of
vectors and the orthogonally projected symmetric trace-
free part of tensors. They are defined as follows:

 vhai � habv
b; Xhabi � �h�achb�d � h

abhcd�Xcd: (9)

Angle brackets may also be used to denote orthogonal
projections of covariant time derivatives along ua:

 _v hai � hab _vb; _Xhabi � �h�achb�d �
1
3h
abhcd� _Xcd:

(10)

C. Energy-momentum tensors

The choice of frame, i.e., choice of velocity field ua and
therefore the projection tensor hab, allows one to obtain an
irreducible decomposition of a generic energy-momentum
tensor (EMT), Ttot

ab. The following unbarred quantities have
been derived from the total EMT, quantities relating to the
effective fluids will be denoted with sub/superscripts in
order to help to avoid confusion in later sections and to
generalize to a multifluid system:

 Ttot
ab � �uaub � phab � qaub � qbua � �ab; (11)

where � is the total energy density and p is the total
isotropic pressure of the fluid, qa represents the total
energy flux, �ab is the total anisotropic pressure.
Additionally, we have the following constraints:
 

qaua � 0; �aa � 0;

�ab � ��ab�; �abub � 0:

The various components of the total energy-momentum
tensor can be isolated in the following way:

 � � Ttot
abu

aub; (12)

 p � 1
3T

tot
abh

ab; (13)

 qa � �T
tot
cdu

chda; (14)

 �ab � Ttot
habi: (15)

In a general fluid the pressure, energy density, and
entropy are related to each other by an equation of state
p � p��; s�. A fluid is considered perfect if qa and �ab
vanish, and barotropic if the entropy is a constant, i.e. the
equation of state reduces to p � p���.

D. Propagation and constraint equations

Writing the Ricci and the Bianchi identities in terms
of the 1� 3 variables defined above, we obtain a set of
evolution equations (here the ‘‘curl’’ is defined as

�curlX�ab � �cdha ~rcXbid):
 

_�� ~ra _ua � �1
3�

2 � � _ua _ua� � 2�2 � 2!2 � 1
2��� 3p�;

(16)

 _! hai � 1
2�

abc ~rb _uc � �
2
3�!

a � �ab!
b; (17)

 _� habi � ~rha _ubi � �2
3��

ab � _uha _ubi � �hac�bic

�!ha!bi � �Eab � 1
2�

ab�; (18)

 

� _Ehabi � 1
2 _�habi� � �curlH�ab � 1

2
~rhaqbi

� �1
2��� p��

ab ���Eab � 1
6�

ab�

� 3�hac�E
bic � 1

6�
bic� � _uhaqbi

� �cdha�2 _ucH
bi
d �!c�E

bi
d �

1
2�

bi
d��; (19)

 

_Hhabi � �curlE�ab � 1
2�curl��ab

� ��Hab � 3�hacHbic � 3
2!
haqbi

� �cdha�2 _ucE
bi
d �

1
2�

bi
cqd �!cH

bi
d�; (20)

 _�� ~raq
a � ����� p� � 2� _uaq

a� � ��ab�
b
a�; (21)

 

_qhai � ~rap� ~rb�
ab � �4

3�q
a � �abq

b � ��� p� _ua

� _ub�
ab � �abc!bqc; (22)

and a set of constraints
 

~rb�Eab �
1
2�

ab� � 1
3
~ra�� 1

3�q
a � 1

2�
a
bq

b � 3!bHab

� �abc��bdHd
c �

3
2!bqc� � 0; (23)

 

~rbHab � ��� p�!a � 3!b�Eab �
1
6�

ab�

� �abc�12
~rbqc � �bd�Edc �

1
2�

d
c�� � 0; (24)

 

~r b�
ab � 2

3
~ra�� �abc�~rb!c � 2 _ub!c� � q

a � 0;

(25)

 

~r a!a � � _ua!a� � 0; (26)

 Hab � 2 _uha!bi � ~rha!bi � �curl��ab � 0; (27)

that are completely equivalent to the Einstein equations. It
is from these equations that we derive the general evolution
equations for linear tensor perturbations.

III. TENSOR PERTURBATION EQUATIONS

A. The background

The equations presented in the previous section hold in
any spacetime we may wish to analyze. However, in what
follows we will focus on the class of spacetimes that can be
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thought of as describing an ‘‘almost’’ FLRW model, mo-
tivated by the fact that current observations suggest that the
universe appears to deviate only slightly from homogeneity
and isotropy. We can define a FLRW spacetime in terms of
the variables above. Homogeneity and isotropy imply

 � � ! � 0; ~raf � 0; (28)

where f is any scalar quantity; in particular

 

~r a� � ~rap � 0) _ua � 0: (29)

It follows that the governing equations for this background
are

 

_�� 1
3�

2 � 1
2��� 3p� � 0; (30)

 

~R � 2��1
3�

2 ���; (31)

 _������ p� � 0: (32)

Now in order to describe small deviations from a FLRW
spacetime, we simply take all the quantities that are zero in
the background as being first order, and retain in the
equations (Eq. (16)–(27)) only the terms that are linear
in these quantities, i.e. we drop all second order terms. This
procedure corresponds to the linearization in the 1� 3
covariant approach and it greatly simplifies the system of
equations. In particular, the scalar, vector, and tensor parts
of the perturbations are decoupled, so that we are able to
treat them separately. In what follows we will focus only on
the tensor perturbations.

B. The general linear tensor perturbation equations

The 1� 3 covariant description of gravitational waves
in the context of cosmology has been considered by [28].
The linearized gravitational waves are described by the
transverse and trace-free degrees of freedom once scalars
have been switched off. Therefore, focusing only on tensor
perturbations, the necessary evolution equations are

 _�ab �
2
3��ab � Eab �

1
2�ab � 0; (33)

 

_H ab �Hab�� �curlE�ab �
1
2�curl��ab � 0; (34)

 

_Eab � Eab�� �curlH�ab �
1
2��� p��ab

� 1
6��ab �

1
2 _�ab � 0; (35)

together with the conditions

 

~r bH
ab � 0; ~rbE

ab � 0; Hab � �curl��ab:

(36)

Note that, since the linear tensor perturbations are frame
invariant, the structure of the equations does not depend on
the choice of 4-velocity, ua. In the following, however, we
shall choose the frame associated with standard matter

(ua � uma ). The motivation for such a choice is the fact
that real observers are attached to galaxies and these
galaxies follow the standard matter geodesics. Taking the
time derivative of the above equations we obtain

 ��ab �
~r2�� 5

3� _�ab � �
1
9�

2 � 1
6��

3
2p��ab

� _�ab �
2
3��ab; (37)

 

�H ab �
~r2Hab �

7
3�

_Hab �
2
3��

2 � 3p�Hab

� �curl _��ab �
2
3��curl��ab; (38)

 

�Eab � ~r2Eab �
7
3�

_Eab �
2
3��

2 � 3p�Eab

� 1
6���� p��1� 3c2

s��ab

� ��12 ��ab �
1
2
~r2�ab �

5
6� _�ab �

1
3��

2 ����ab�; (39)

where c2
s � _p= _� and we have used the Raychaudhuri

equation [Eq. (16)], the energy conservation equation
[Eq. (32)], and the commutator identity

 �curl _X�ab � �curlX�	ab �
1
3�curlX��: (40)

These equations generalize the tensor perturbation equa-
tions for an imperfect fluid that were derived in [30]. Once
the form of the anisotropic pressure has been determined in
Eqs. (37)–(39), the equations can be solved to give the
evolution of tensor perturbations. As already noted in [28],
the presence of a term that contains the shear in Eq. (39)
makes this equation effectively third order, so that it is not
possible to write down a closed wave equation for Eab. If
�ab � 0, it is easy to show that for consistency, the solu-
tion for this field must also satisfy a wave equation because
the shear is a solution of a wave equation and Eq. (33)
holds. This will also be the case here because in our case
�ab / �ab and so the anisotropic pressure will also satisfy
a wave equation.

Following standard harmonic analysis, Eqs. (37) and
(38) may be reduced to ordinary differential equations. It
is standard [23] to use trace-free symmetric tensor eigen-
functions of the spatial the Laplace-Beltrami operator de-
fined by

 

~r 2Qab � �
k2

a2 Qab; (41)

where k � 2�a=� is the wave number and _Qab � 0.
Developing �ab and Hab in terms of the Qab, Eqs. (37)
and (38) reduce to

 �� �k� �
5

3
� _��k� �

�
1

9
�2 �

1

6
��

3

2
p�

k2

a2

�
��k�ab

� _��k� �
2

3
���k�; (42)
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�H �k� �
7

3
� _H�k� �

2

3

�
�2 � 3��

k2

a2

�
H�k�

� �curl _���k� �
2

3
��curl���k�; (43)

and Eq. (33) reads

 E�k� � � _��k� � 2
3��

�k� � 1
2�
�k�: (44)

IV. GENERAL EQUATIONS FOR FOURTH ORDER
GRAVITY

The classical action for a fourth order theory of gravity
is given by

 A �
Z
d4x

�������
�g
p

��� c0R� c1R
2 � c2R��R

�� �Lm�;

(45)

where we have used the Gauss Bonnet theorem [31] and
Lm represents the matter contribution. In situations where
the metric has a high degree of symmetry, this action can
be further simplified. In particular, in the homogeneous and
isotropic case the action for a general fourth order theory of
gravity takes the form

 A �
Z
dx4 �������

�g
p

�f�R� �Lm�; (46)

where Lm represents the matter contribution. Such mod-
ifications to the linear Einstein-Hilbert action can typically
arise in effective actions derived from higher-dimensional
theories of gravity [19]. Varying the action with respect to
the metric gives the gravitational field equations:

 f0Rab �
1
2gabf � �g

c
ag

d
b � gabg

cd�Scd � T
m
ab; (47)

where f � f�R�, f0 � f0�R� � @f�R�=@R, Tm�� �
2�����
�g
p 


��
�����
�g
p

Lm�

�g��
represents the stress energy tensor of standard

matter, and Sab � rarbf0�R�. The trace of Eq. (47) gives

 f0R� 2f � �3S� Tm; (48)

where S � gabSab. The various components of Sab can be
decomposed as
 

Sab � f00�~ra ~rbR� ~ra _Rub � uau
crc�

~rbR� � �Ruaub

� _R�~raub � ua _ub�� � f
000�~raR~rbR

� _R�~rbRua � ~raRub� � _R2uaub�;

S � f00�~rc ~rcR� _uc ~rcR� �R�� _R�

� f000�~rcR~rcR� _R2�:

(49)

These equations reduce to the standard Einstein field equa-
tions when f�R� � R. It is crucial for our purposes to be
able to write Eq. (47) in the form

 Gab � Ttot
ab �

~Tmab � T
R
ab; (50)

where ~Tmab �
Tmab
f0 and TRab is defined as

 TRab �
1

f0

�
1

2
�f� f0R�gab � �g

c
ag

d
b � gabg

cd�Scd

�
:

(51)

The right-hand side of Eq. (50) represents two effective
‘‘fluids’’: the curvature fluid (associated with TRab) and the
effective matter fluid (associated with ~Tmab). This step is
important because it allows us to treat fourth order gravity
as standard Einstein gravity in the presence of two ‘‘effec-
tive’’ fluids. This means that once the effective thermody-
namics of these fluids has been studied, we can apply the
covariant gauge-invariant approach in the standard way.

The conservation properties of these effective fluids are
given by the Bianchi identities T tot;b

ab . When applied to the
total stress energy tensor, these identities reveal that if
standard matter is conserved, the total fluid is also con-
served even though the curvature fluid may in general
possess off-diagonal terms [11,32,33]. In other words, no
matter how complicated the effective stress energy tensor
Ttot
ab is, it will always be divergence free if Tm;b

ab � 0. When
applied to the single effective tensors, the Bianchi identi-
ties read

 

~T m;b
ab �

Tm;b
ab

f0
�
f00

f02
TmabR

;b; (52)

 TR;b
ab �

f00

f02
~TmabR

;b; (53)

with the last expression being a consequence of total
energy-momentum conservation. It follows that the indi-
vidual effective fluids are not conserved but exchange
energy and momentum.

It is worth noting here that, even if the energy-
momentum tensor associated with the effective matter
source is not conserved, standard matter still follows the
usual conservation equations Tm;b

ab � 0. It is also important
to stress that the fluids with TRab and ~Tmab defined above are
effective and consequently can admit features that one
would normally consider unphysical for a standard matter
field. This means that all the thermodynamical quantities
associated with the curvature defined below should be
considered effective and not bounded by the usual con-
straints associated with matter fields. It is important to
understand that this does not compromise any of the ther-
modynamical properties of standard matter represented by
the Lagrangian Lm.

In the matter frame uma , the various components of the
total energy-momentum tensor, Eq. (12), can be rewritten
in terms of the two effective fluids:
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 � �
�m

f0
��R; (54)

 p �
pm

f0
� pR; (55)

 qa �
qma
f0
� qRa ; (56)

 �ab �
�mab
f0
� �Rab; (57)

where we assume that standard matter is a perfect fluid, i.e.
qma � 0 and �mab � 0. The effective thermodynamical
quantities for the curvature fluid are

 �R �
1

f0

�
1

2
�Rf0 � f� ��f00 _R� f00 ~r2R� f00 _ub ~rR

�
;

(58)

 pR �
1

f0

�
1

2
�f� Rf0� � f00 �R� f000 _R2 �

2

3
�f00 _R

�
2

3
f00 ~r2R�

2

3
f000 ~raR~raR�

1

3
f00 _ub ~rR

�
; (59)

 qRa � �
1

f0

�
f000 _R~raR� f

00 ~ra _R�
1

3
f00 ~raR

�
; (60)

 �Rab �
1

f0
�f00 ~rha ~rbiR� f000 ~rhaR~rbiR� f00�ab _R�: (61)

The twice contracted Bianchi identities lead to evolution

equations for �m, �R, qRa :

 _�m � ����m � pm�; (62)

 

_�R � ~raqRa ����R � pR� � 2� _uaqRa � � ��
ab�Rba�

� �m f
00 _R

f02
; (63)

 

_qRhai �
~rapR � ~rb�Rab �

4

3
�qRa � �baqRb � ��

R � pR� _ua

� _ub�Rab � �
bc
a !bq

R
c � �m f

00 ~raR

f02
; (64)

and a relation connecting the acceleration _ua to�m and pm

follows from momentum conservation of standard matter:

 

~r apm � ���m � pm� _ua: (65)

Note that, as we have seen in the previous section the
curvature fluid and the effective matter exchange energy
and momentum. The decomposed interaction terms in

Eqs. (63) and (64) are given by �m f00 ~raR
f02 and �m f00 _R

f02 .

It is easy to see that the curvature fluid is in general an
imperfect fluid, i.e. has energy flux (qa) and anisotropic
pressure (�ab). Since we are only interested in linear tensor
perturbations, we need only be concerned with the tensor
anisotropic pressure, which is proportional to the shear,
�ab. We now present the second order evolution equations
resulting from the standard harmonic analysis of
Eqs. (42)–(44) in the case of f�R� theories of gravity:

 

���k� �
�
5

3
�� _R

f00

f0

�
_��k� �

�
1

9
�2 �

1

f0

�
1

6
�m �

3

2
pm
�
�
k2

a2 �
1

2
� _R

f00

f0
�

5

6

1

f0
�f� f0R�

� _R2

�
1

2

f000

f0
�

�
f00

f0

�
2
�
�

1

2
�R
f00

f0

�
��k� � 0; (66)

 

�H �k� �
�

7

3
�� _R

f00

f0

�
_H�k� �

�
2

3
�2 �

2

f0
pm �

k2

a2 �
1

3
� _R

f00

f0
�

1

f0
�f� f0R� � _R2

�
f000

f0
�

�
f00

f0

�
2
�
� �R

f00

f0

�
H�k� � 0;

(67)

 E�k� � � _��k� �
�
2

3
��

1

2
_R
f00

f0

�
��k�: (68)

For our purposes it will be particularly useful to consider
these equations in the so-called long wavelength limit. In
this limit the wave number k is considered to be so small
that the wavelength � � 2�a=k associated with it is much
larger than the Hubble radius. Equation (41) then implies
that all the Laplacians can be neglected and the spatial
dependence of the perturbation variables can be factored
out.

V. TENSOR PERTURBATIONS IN Rn GRAVITY

To proceed, we must now fix our theory of gravity, i.e.
we must choose the form of f�R�. We will consider a toy
model (Rn-gravity) which is the simplest example of fourth
order theory of gravity but exhibits many of the properties
of such theories. In this theory f�R� � �Rn and the action
reads
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 A �
Z
d4x

�������
�g
p

��Rn �LM�; (69)

where � a the coupling constant with suitable dimensions
and � � 1 for n � 1. If R � 0, the field equations for this
theory read

 Gab � ��1
~Tmab

nRn�1 � T
R
ab; (70)

where

 

~T m
ab � ��1 Tmab

nRn�1 ; (71)

 

TRab � �n� 1�
�
�
R
2n
gab �

�
R;cd

R
� �n� 2�

R;cR;d

R2

�


 �gcagdb � gcdgab�
�
: (72)

The FLRW dynamics of this model have been investigated
in detail via a dynamical systems approach in [11], where a
complete phase space analysis was performed. This work
demonstrated that for specific intervals of the parameter n
there exist a set of initial conditions with nonzero measure
for which the cosmic histories include a transient decel-
erated phase (during which large-scale structure can form)
which evolves towards one with accelerated expansion.
These transient almost Friedmann models existed for
0:28 & n & 1:35 in the case of a dust filled (w � 0) uni-
verse and for 0:31 & n & 1:29 in the case of a radiation
filled (w � 1=3) universe. As we will discuss in later
sections, these allowed intervals of n could be reduced
significantly with future observations of gravitational
waves. This model was also investigated as a possible
explanation for the observed flatness of the rotation curves
of spiral galaxies and the observed late times acceleration
of the universe [34]. The authors found a very good agree-
ment between this model and observational data when n �
3:5. This is however at odds with the results of [11]. Thus,
if one requires a transient decelerated phase (during which
large-scale structure can form) and a solution to the dark
matter and dark energy problem, the Rn model appears not
to be viable. However, the aim of this paper is to show that
the study of tensor perturbations can in principle provide a
strong constraint on the theory of gravity independent of
existing cosmological data sets and consequently this work
will provide a template for a more extensive study of tensor
perturbations of f�R� cosmologies.

In what follows we begin by analyzing the evolution of
tensor perturbations in the absence of standard matter. We
then consider the case of dust/radiation dominated evolu-
tion. Although we will give the full solutions, the discus-
sion of the physics will be restricted to the long wavelength
limit.

A. The vacuum case

We start by considering tensor perturbations in the ab-
sence of matter. This class of theories then admits the
following exact solution:

 a�t� � a0tq; q �
�1� n��2n� 1�

n� 2
; K � 0:

(73)

The expansion parameter is given by

 ��t� �
3q
t
: (74)

For the purposes of this paper we restrict our attention to
expanding models. This requires q > 0, which in turn
restricts the parameter n. In order to have an expanding
background we require 0< n< 1=2 and 1< n< 2 (we
recover a static vacuum solution for n � 1=2, 1). We will
only investigate models with values of n which satisfy the
second inequality (since we wish to investigate models
close to GR). The equation of state (EOS) of the total
effective fluid in the background is then [4]

 w �
p
�
� �

1

3

�6n2 � 7n� 1�

�2n� 1��n� 1�
: (75)

The EOS is singular and the poles occur at n � 1=2 and
n � 1. Additionally, we have accelerated expansion, (w<
�1=3) for n > �1�

���
3
p
�=2 � 1:366 and in the limit n!

1 we have w! �1. Substituting into Eqs. (66)–(68) we
obtain

 

���k� �
3�1� n��4n� 3�

�n� 2�t
_��k�

�

�
n�4n� 5��n� 1��8n� 7�

�n� 2�2t2
� k2t�2q

�
��k� � 0; (76)

 

�H�k� �
�1� n��16n� 11�

�n� 2�t
_H�k�

�

�
2�6n2 � 8n� 1��n� 1��5n� 4�

�n� 2�2t2
� k2t�2q

�
H�k� � 0;

(77)

 E�k� � � _��k� �
�n� 1��5n� 4�

�n� 2�t
��k�: (78)

In the long wavelength/superhorizon limit (k � 0), the
above equations admit the following solutions:

 ��k� � A1t�n�4n�5��=�n�2� � A2t��8n�7��n�1��=�n�2�; (79)

 H�k� � A3t�6n
2�8n�1�=�n�2� � A4t�2�5n�4��n�1��=�n�2�; (80)
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 E�k� � A1�n� 2�t�2�n�1��2n�1��=�n�2�

� A2
�n� 1��5n� 4�

�n� 2�
t�8n

2�16n�9�=�n�2�: (81)

However, the physical quantity of interest is the dimen-
sionless expansion normalized shear � � �=H:

 ��k� � ~�1t�4n
2�4n�2�=�n�2� � ~�2t��2n�1��4n�5��=�n�2�: (82)

In Fig. 1 we have plotted the exponents of each mode of the
solutions given above as a function of n in order to better
see how the large-scale behavior varies. The black (gray)
line represents the growing (decaying) mode and the points
represent the value of the exponents in the case of GR (n �
1). In the GR limit we recover a static vacuum model in the
background and ~�i always grows indicating that this model
is unstable with respect to tensor perturbations. In the case
of larger values of n, the ~�1 mode grows (decays) for n &

1:366 (n * 1:366) and the ~�2 mode grows (decays) for
n < 1:25 (n > 1:25). This is consistent with the back-
ground dynamics in that all perturbation modes are decay-
ing when we have accelerated expansion (w<�1=3) in
the background.

For the sake of completeness we present the results of
the general case (k � 0). The solutions are given in terms
of Bessel functions of the first and second kind (J and Y,
respectively):

 ��k� � t��2n�1��6n�7��=2�n�2�

�
A1J

�
s;
ktr

r

�
� A2Y

�
s;
ktr

r

��
;

(83)

 H�k� � t��2n�1��8n�9��=2�n�2�

�
A3J

�
s;
ktr

r

�
� A4Y

�
s;
ktr

r

��
;

(84)

 

E�k� � A1t�12n2�22n�11�=�2�n�2��

�
n2 � 2n� 5

�2� n�
J
�
s;
ktr

r

�

� ktrJ
�
s� 1;

ktr

r

��
(85)

 

� A2t�12n2�22n�11�=�2�n�2��

�
n2 � 2n� 5

�2� n�
Y
�
s;
ktr

r

�

� ktrY
�
s� 1;

ktr

r

��
; (86)

where we have introduced the following parameters:

 r �
2n2 � 2n� 1

n� 2
; s � �1�

3�2n� 3�

2�n� 2�r
: (87)

The normalized shear � is now of the form

 ��k� � t�3�4n
2�6n�1��=�2�n�2��

�
~�1J

�
s;
ktr

r

�
� ~�2Y

�
s;
ktr

r

��
;

(88)

where both the ~�i modes grow (decay) for n & 1:290 (n *

1:290).

B. The fluid case

We will now consider the case of tensor perturbations in
the presence of matter which is described by a perfect fluid
with barotropic EOS index, wm. This class of theories then
admits the following exact solution:

 a�t� � a0t
2n=�3�1�wm��; K � 0: (89)

The expansion parameter is given by

 ��t� �
2n

�1� wm�t
: (90)

As in the previous case we restrict our attention to
expanding models. Additionally, we are mainly interested
in the case where the perfect fluid describes dust (wm � 0)
or radiation (wm � 1=3). This is due to the fact that these
cases are the most relevant when considering GW detec-
tion via the CMB or direct detectors, e.g. LISA and BBO.
To ensure an expanding model we now require n > 0,
provided wm >�1.

1. The dust case

We now investigate the evolution of tensor perturbations
in the dust dominated era. The scale factor is given by

–2

–1

0

1

2

0.2 0.4 0.6 0.8 1 1.2 1.4

n

FIG. 1. The exponents of each mode of the solution [Eq. (83)]
against n in the vacuum case. The black (gray) line represents the
growing (decaying) mode. The points represent the value of the
exponents in the case of GR (n � 1). As n is increased the
background expansion rate increases, resulting in a weaker
growth rate for tensor perturbations. When the critical value of
n � 1:366 is reached, no growing modes can be supported in this
model.
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 a�t� � a0tr; r �
2n
3
: (91)

The EOS of the total effective fluid (dust and the effective
curvature fluid) is then

 w � �
�n� 1�

n
: (92)

The EOS is divergent for n � 0 and we
have accelerated expansion (w<�1=3) when n > 3=2.
In the limit n! 1 we have w! �1. Substituting into
Eqs. (66)–(68) we obtain

 �� �k� �
2�2n� 3�

3t
_��k� �

�
�8n� 6�

3t2
� k2t�2r

�
��k� � 0;

(93)

 

�H�k� �
2�4n� 3�

3t
_H�k�

�

�
2�2n2 � 5n� 3�

3t2
� k2t�2r

�
H�k� � 0; (94)

 E�k� � � _��k� �
�n� 3�

3t
��k�: (95)

In the long wavelength limit (k � 0), the above equations
admit the following solutions:

 ��k� � B1t�2 � B2t�1�2r�; (96)

 H�k� � B3t��r�2� � B4t�1�2n�; (97)

 E�k� � �B1
�9� n�

3
t�3 � B2

5n
3
t�2r; (98)

The normalized shear is given by

 ��k� � ~�1t�1 � ~�2t2�1�r�: (99)

The ~�1 mode is the decaying mode solution and is inde-
pendent of the parameter n. This mode corresponds to the
standard decaying mode found in GR. The ~�2 mode grows
(decays) for n < 3=2 (n > 3=2) and reduces to the GR
growing mode in the limit n! 1. This is consistent with
the background dynamics in that all perturbation modes are
decaying when we have accelerated expansion (w<
�1=3) in the background.

In Fig. 2(a) we have plotted the exponents of each mode
of the solutions given above as a function of n. The black
(grey) lines represent the growing (decaying) mode and the
points represent the value of the exponents in the case of
GR (n � 1). For most of the values of n the perturbations
grow slower in Rn gravity than in GR. In fact only for n <
1 does the ~�1 mode grow with a rate faster than the usual
t2=3. In the case of GR, there is always a growing tensor
perturbation mode provided the background is not under-
going accelerated expansion. In the case of Rn gravity,
tensor perturbations grow at a slower rate, thus requiring
a sufficiently decelerated expansion in order to support a
growing mode.

Again, for the sake of completeness, in the general case
(k � 0) the solutions are given in terms of Bessel functions
of the first and second kind (J and Y respectively):

 ��k� � t��2r�1�=2

�
B1J

�
�

2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

�

� B2Y
�
�

2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

��
; (100)
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n
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1.5
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n

(a) (b)

FIG. 2. The exponents of each mode of the solution for the normalized shear against n in the dust and radiation dominated eras. (a)
The left panel represents the exponents of the mode in the dust dominated era. (b) The right panel represents the exponents of the mode
in the radiation dominated era. The black (grey) line represents the growing (decaying) mode. The points represent the value of the
exponents in the case of GR (n � 1).
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 H�k� � t��4r�1�=2

�
B3J

�
2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

�

� B4Y
�

2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

��
; (101)

 

E�k� � B1t��2r�3�=2

�
2�2r� 3�

3
J
�

2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

�

� kt�rJ
�

1

2�r� 1�
;
kt�1�r�

�r� 1�

��

� B2t
��2r�3�=2

�
2�2r� 3�

3
Y
�

2r� 3

2�r� 1�
;
kt�1�r�

�r� 1�

�

� kt�rY
�

1

2�r� 1�
;
kt�1�r�

�r� 1�

��
; (102)

2. The radiation case

Next, we study the evolution of tensor perturbations in
the radiation dominated era. The results of this section are
especially relevant if one wishes to constrain f�R� models
through their impact on the B-mode correlation on the
CMB. The scale factor goes as

 a�t� � a0tr r �
n
2
: (103)

The EOS of the total effective fluid (dust and the effective
curvature fluid) is then

 w � �
�3n� 4�

3n
: (104)

The EOS is divergent for n � 0 and we have accelerated
expansion (w>�1=3) when n > 2. In the limit n! 1we
have w! �1. Substituting into Eqs. (66)–(68) we obtain

 �� �k� �
n� 4

2t
_��k� �

�
�4� n��n� 1�

2t2
� k2t�2r

�
��k� � 0;

(105)

 

�H �k� �
3n� 4

2t
_H�k� �

�
n�3n� 2�

t2
� k2t�2r

�
H�k� � 0;

(106)

 E�k� � � _��k� �
1

t
��k�: (107)

In the long wavelength limit (k � 0), the above equations
admit the following solutions:

 ��k� � C1t�1�2r� � C2t�r�2�; (108)

 H�k� � C3t�1�3r� � C4t�2; (109)

 E�k� � C1�2r� 2�t�2r � C2�1� r�t�r�3�; (110)

The normalized shear is given by

 ��k� � ~�1t
�2�2r� � ~�2t

�r�1�: (111)

The ~�1 mode grows for 0< n< 2 and decays for n > 2. In
Fig. 2(b) we have plotted the exponents of each mode of
the solutions given above as a function of n. The black
(grey) lines represents the growing (decaying) mode and
the points represent the value of the exponents in the case
of GR (n � 1). For 0< n< 2 the ~�1 mode grows and the
~�2 mode decays. In the range n > 2 the modes change
behavior in that the ~�1 mode decays and the ~�2 mode
grows. Again, for most of the values of n the perturbations
grow slower in Rn gravity than in GR, and only for 0<
n< 1 and n > 4 does the ~�1 mode grow with a rate faster
than the usual linear growth. The most interesting feature
of the solutions in the radiation dominated era is the
possibility of growing modes even if the universe is in a
state of accelerated expansion (n > 4). The impact of these
modes on the CMB could allow one to constrain deviations
from GR. However, one should also analyze the evolution
of perturbations on small scales. This analysis is beyond
the scope of this paper and it is left to a future, more
detailed investigation.

In the general case (k � 0), the solutions are given in
terms of Bessel functions of the first and second kind (J
and Y respectively):

 ��k� � t��r�1�=2

�
C1J

�
3

2
;
kt��1�r�

�r� 1�

�
� C2Y

�
3

2
;
kt�1�r�

�r� 1�

��
;

(112)

 H�k� � t��3r�1�=2

�
C3J

�
3

2
;
kt�1�r�

�r� 1�

�
� C4Y

�
3

2
;
kt�1�r�

�r� 1�

��
;

(113)

 

E�k� � C1t��r�3�=2

�
2�r� 1�J

�
3

2
;
kt��1�r�

�r� 1�

�

� kt�rJ
�

5

2
;
kt�1�r�

�r� 1�

��

� C2t��r�3�=2

�
2�r� 1�Y

�
3

2
;
kt�1�r�

�r� 1�

�

� kt�rY
�

5

2
;
kt�1�r�

�r� 1�

��
; (114)

3. The generic large-scale case

Finally, we study the evolution of large-scale (k � 0)
tensor perturbations in the presence of a general barotropic
fluid (that is we will not fix wm except to state that wm >
�1). To ensure an expanding model we now require n > 0,
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provided wm >�1. The scale factor goes as

 a�t� � a0t
r r �

2n
3�1� wm�

: (115)

The EOS of the total effective fluid (radiation and the
effective curvature fluid) is then

 w �
�wm � 1� n�

n
: (116)

The EOS is divergent for n � 0 and we have accelerated

expansion (w<�1=3) when n > 3�wm � 1�=2. In the
limit n! 1 we have w!�1. Substituting into
Eqs. (66)–(68) we obtain
 

���k� �
10n� 6�1� wm��1� n�

3�1� wm�t
_��k�

�
2�3� 3wm � 4n��nwm � wm � 1�

3�1� wm�
2t2

��k� � 0; (117)

 

�H �k� �
14n� 6�1� wm��1� n�

3�1� wm�t
_H�k� �

16n2 � 8n�wm � 1� � 6�n� 1��wm � 1��wm � 1� 2n�

3�1� wm�2t2
H�k� � 0; (118)

 E�k� � � _��k� �
4n� 3�1� wm��1� n�

3�1� wm�t
��k�: (119)

The solutions are then

 ��k� � D1t
�1�2r� � C2t

�2n�2�3r�; (120)

 H�k� � D3t�1�3r� �D4t2n�2�4r; (121)

 E�k� � D1�n� 2�t�2r � C2�n� 1� r�t�2n�3�3r�; (122)

The normalized shear is given by

 ��k� � ~�1t�2�2r� � ~�2t�2n�1�3r�: (123)

The ~�1 mode grows for n < 3�wm � 1� � 2 and decays
for n > 3�wm � 1� � 2. The ~�2 mode decays for the range

n < �wm � 1� � 2wm and grows for n > �wm � 1� �
2wm. In Fig. 3 we have plotted the range of parameters
for which the modes grow or decay as a function of n and
wm. This divides the parameter space into four regions. In
region I, ~�1 decays and ~�2 grows. In region II, both modes
grow. In region III, ~�1 grows and ~�2 decays. Finally in
region IV, both modes decay. The most interesting features
of these solutions are those of region IV. As mentioned
earlier this particular model was also investigated as a
possible explanation for the observed flatness of the rota-
tion curves of spiral galaxies and the observed late times
acceleration of the universe [12]. The authors found a good
agreement between this model and observational data
when n � 3:5 in the presence of dust (wm � 0).
However, from our analysis we have found that such a
choice of parameters ensures the absence of growing
modes in the tensor perturbations. Therefore, if we wish
to use this model as an explanation for dark matter, we can
use gravitational wave detectors to severely constrain such
theories.

VI. CONCLUSIONS

We have presented a mathematically well-defined
method of analyzing the evolution tensor perturbations of
FLRW backgrounds in fourth order gravity, providing a
general template for the study of linear gravitational waves
in this context. The analysis is based on two important
steps. First, the recasting of the field equations for a generic
fourth order theory of gravity into a form which is equiva-
lent to GR, plus two effective fluids (the curvature fluid and
the effective matter fluid). Second, using the 1� 3 cova-
riant approach, it is possible to derive the general equations
describing the evolution of the cosmological perturbations
of these models for a FLRW background. In this paper we
have only dealt with the evolution of tensor perturbations;
the evolution of scalar perturbations was presented in [14]
and the vector perturbations will be presented elsewhere
[35]. Providing that one has a clear picture in mind of the
effective nature of the fluids involved, the approach above

0

GR (n=1)

n=

–0.5 0 0.5 1

w

8

Region I
Σ1 ~ decaying
Σ2 ~ growing

Region III
Σ1 ~ growing
Σ2 ~ decaying

Region IV 
Σ1, Σ2 ~ decaying

Region II
Σ1, Σ2 ~ growing

FIG. 3. The range of parameters for which the modes grow or
decay as a function of n and wm The black thick line represents
the change from growth to decay for the ~�1 mode. The grey thick
line represents the change from growth to decay for the ~�2

mode. The thin black line represents the GR case (n � 1). In
region I, ~�1 decays and ~�2 grows. In region II, both modes grow.
In region III, ~�1 grows and ~�2 decays. Finally in region IV, both
modes decay.

EVOLUTION OF COSMOLOGICAL GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D 77, 024033 (2008)

024033-11



has the advantage of making the treatment of the perturba-
tions physically clear and mathematically rigorous.

Once the general perturbation equations were derived,
we specialized them to the case of the Rn-gravity model.
Using background solutions derived from an earlier dy-
namical systems analysis [11], we found exact solutions to
the perturbation equations both in a vacuum and in the
presence of matter (dust and radiation). We presented both
the large-scale limit and full solutions; however, we re-
stricted our discussions to the large-scale results. In
Sec. VA we studied the evolution of tensor perturbations
in vacuum. The background solution proved to be unstable
under tensor perturbations in the case of GR, where the
background represents a static vacuum solution. In addi-
tion, for general values of n, the rate of growth of tensor
perturbations is weaker than the GR case.

In Sec. V B we studied the evolution of tensor perturba-
tions in the presence of matter. We first considered the case
of the dust dominated era. For most choices of n (n > 1),
the perturbations were found to grow at a slower rate in
Rn-gravity than in GR and no growing mode could be
supported for n > 3=2.

Next, we studied the evolution of tensor perturbation in
the radiation dominated era. Again, for most choices of n
(n > 1) the perturbations were found to grow at a slower
rate in Rn-gravity than in GR. However, it was found that
their is always a growing mode present except for the
special case of n � 2. This could have important conse-
quences on the tensor perturbation spectrum, e.g. result in a
tilt or running of the spectral index of the power spectrum.
In this way the connection between the spectrum of tensor
perturbations and the CMB polarization power spectrum
offers an interesting independent way of testing for alter-
native gravity on cosmological scales.

Finally, we studied the evolution of tensor perturbation
in the presence of a generic fluid (wm >�1) in the large
scale limit (k � 0). We found that there is a range of the
parameters wm and n for which no growing modes are
present [n > 3�wm � 1�=2 and n < �wm � 1�=2wm]. This
corresponds to the choice of parameters as required to
solve the dark matter problem in the work of [12]. Thus,
the aforementioned theories of gravity may be constrained
via an alternate method.

As in the case of the results found for the evolution of the
scalar perturbations [15], the key question is how general
these results are in terms of the form of the fourth order
Lagrangian. Unfortunately this question is not easy to
answer based only on the analysis presented above. The
key point to consider would be the differences in the
dynamics of the perturbations which, as we have seen,
are very pronounced but more difficult to use because
they depend largely on the features of the background.
The important point, however, is that these differences do
not necessarily imply a complete incompatibility with the
data coming from the CMB and other observational con-

straints. Much more work will be needed before we can
determine whether alternative gravity provides a viable
alternative to standard general relativity.
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APPENDIX: COVARIANT FORMALISM VERSUS
BARDEEN’S FORMALISM

As we have seen, the covariant approach is a very useful
framework for studying perturbations in alternative theo-
ries of gravity. However, since most work on cosmological
perturbations is usually done using the Bardeen approach
[20], we will give here a brief summary of how one can
relate our quantities to the standard Bardeen quantities. A
detailed analysis of the connection between these formal-
isms is given in [23]. Here we limit ourselves to give the
main results for tensor perturbations.

In Bardeen’s approach to perturbations of FLRW space-
times, the metric gab is the fundamental object, if �gab is the
background metric and gab � �gab � �gab defines the met-
ric perturbations �gab in these coordinates.

The perturbed metric can be written in the form
 

ds2 � a2���f��1� 2A�d�2 � 2B	dx
	d�

� ��1� 2HL�
	� � 2HT
	��dx

	dx�g; (A1)

where � is the conformal time, and the spatial coordinates
are left arbitrary. This spacetime can be foliated in 3-
hypersurfaces � characterized by constant conformal
time � and metric 
ab.

The quantities A and B	 are, respectively, the perturba-
tion in the lapse function (i.e. the ratio of the proper time
distance and the coordinate time one between two constant
time hypersurfaces) and in the shift vector (i.e. the rate of
deviation of a constant space coordinate line from the
normal line to a constant time hypersurface),HL represents
the amplitude of perturbation of a unit spatial volume, and
HT
	� is the amplitude of anisotropic distortion of each

constant time hypersurface [21].
The minimal set of perturbation variables is completed

by defining the fluctuations in the energy density:

 � � ��� ��; � � ��= ��; (A2)

and the fluid velocity:

 ua � �ua � �ua; �u	 � �u0v	; �u0 � � �u0A;

(A3)

together with the energy flux qa and the anisotropic pres-
sure �ab which are GI by themselves.
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These quantities are treated as 3-fields propagating on
the background 3-geometry. With a suitable choice of
boundary conditions [36], these quantities can be uniquely
(but nonlocally) decomposed into scalars, 3-vectors, and
3-tensors:

 B	 � Bj	 � B
S
	; (A4)

 HT	� � r	�HT �H
S
T�	j�� �H

TT
T	�; (A5)

where the slash indicates covariant differentiation with
respect to the metric 
ab of �. In this way rabf � fj�	 �
1
3r

2f and r2f � fj

j
 is the Laplacian. The superscript S

on a vector means it is solenoidal (BSj		 � 0), and TT
tensors are transverse (HTT�

T	 � 0) and trace-free.
On the base of (A4) and (A5), it is standard to define

scalar perturbations as those quantities which are 3-
scalars, or are derived from a scalar through linear opera-
tions involving only the metric 
ab and its j derivative.
Quantities derived from similar operations on solenoidal
vectors and on TT tensors are dubbed vector and tensor
perturbations. Scalar perturbations are relevant to matter
clumping, i.e. correspond to density perturbations, while
vector and tensor perturbations correspond to rotational
perturbations and gravitational waves.

Given the homogeneity and isotropy of the background,
we can separate each variable into its time and spatial
dependence using the method of harmonic decomposition.
In the Bardeen approach the standard harmonic decompo-
sition is performed using the eigenfunctions of the
Laplace-Beltrami operator on 3-hypersurfaces of constant
curvature � (i.e. on the homogeneous spatial sections of
FLRW universes). In particular, these harmonics are de-
fined by

 r2Y�k� � �k2Y�k�; (A6)

 r2Y�k�	 � �k2Y�k�	 ; (A7)

 r2Y�k�	� � �k
2Y�k�	�; (A8)

where Y�k�, Y�k�	 , Y�k�	� are the scalar, vector, and tensor
harmonics of order k. In this way one can decompose
scalars, vectors, and tensors as

 A � A���Y (A9)

 B	 � B�0����Y�0�	 � B�1����Y
�1�
	 ; (A10)

 HT	� � H�0�T ���Y
�0�
	� �H

�1�
T ���Y

�1�
	� �H

�2�
T ���Y

�2�
	�:

(A11)

The key property of linear perturbation theory of FLRW
spacetimes, arising from the unicity of the splitting of (A4)
and (A5), is that in any vector and tensor equation the

scalar, vector, and tensor parts on each side are separately
equal, i.e. the scalar, vector, and tensor components of the
equations decouple.

All the quantities defined above can be decomposed in
this way. However, before proceeding, one should note that
the quantities A, B	, HL, HT

	�, �, v	 change their values
under a change of correspondence between the perturbed
‘‘world’’ and the unperturbed background, i.e., under a
gauge transformation. In order to have a gauge-invariant
theory, one has to look for combinations of these quantities
which are gauge invariant. Bardeen constructed such GI
variables to treat scalar and vector perturbations [20]. The
quantities which are relevant to our analysis, �	� and

HTT
T	� (or the harmonically decomposed object H�2�T ), are

already GI.
The variables covariantly defined in the main text are, by

themselves, exact quantities (defined in any spacetime) and
are GI by themselves, therefore, to first order, we can
express them as linear combinations of Bardeen’s GI var-
iables. In [23] these expansions are given in full generality.
Here we will limit ourselves to a few examples, giving only
the tensor contributions and refer the reader to [23] for
details.

The tensor part of the shear, trace-free part of the 3-Ricci
tensor, the electric and magnetic parts of the Weyl tensor
are given by

 �	� � aH�2�0T Y�2�	�; (A12)

 

�3�R	� � �k
2 � 2K�H�2�T Y

�2�
	�; (A13)

 E	� � �
1
2�H

�2�00
T � �k2 � 2K�H�2�T �Y

�2�
	�; (A14)

 H	� � a�2H�2�0T Y�2�
j�
�	 ���0
�; (A15)

where the prime denotes derivative with respect to the
conformal time �. The relations above can be used to
give an intrinsic physical and geometrical meaning to
Bardeen’s variables, and also to recover his equations.
For example, combining our linearized expression for the
trace-free part of the 3-Ricci tensor

 

�3�R	� � �
�

3
��	� �!	�� � E	� �

1

2
�	�; (A16)

with the above expressions [Eqs. (A12)–(A14)] gives
Bardeen’s expression for the transverse and trace-free met-
ric perturbation evolution equation,

 H�2�00T � 2
a0

a
H�2�0T � �k2 � 2K�H�2�T � �; (A17)

where � is the harmonically decomposed anisotropic pres-
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sure. Substituting for � using Eqs. (61) and (A12), we find
the general evolution equation for tensor perturbations in
fourth order gravity theories to be
 

H�2�00T �

�
2
a0

a
�
@2f

@R2

�
@f
@R

�
�1
R0
�
H�2�0T ��k

2� 2K�H�2�T � 0;

(A18)

where primes denote differentiation with respect to con-
formal time throughout this Appendix.

[1] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974) [Sov.
Phys. JETP 40, 409 (1975)]; Usp. Fiz. Nauk 156, 297
(1988) [Sov. Phys. Usp. 31, 940 (1988)].

[2] V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phys.
Lett. 115B, 189 (1982); A. A. Starobinsky, Pisma Astron.
Zh. 9, 579 (1983) [Sov. Astron. Lett. 9, 302 (1983)]; L. F.
Abbott and M. B. Wise, Astrophys. J. 282, L47 (1984);
M. J. White, Phys. Rev. D 46, 4198 (1992); M. S. Turner,
M. J. White, and J. E. Lidsey, Phys. Rev. D 48, 4613
(1993).

[3] W. Hu and M. J. White, New Astron. Rev. 2, 323
(1997).

[4] S. Capozziello, S. Carloni, and A. Troisi, arXiv:astro-ph/
0303041.

[5] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512
(2003).

[6] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Phys. Rev. D 70, 043528 (2004).

[7] S. Capozziello, V. F. Cardone, and A. Troisi, Phys. Rev. D
71, 043503 (2005).

[8] S. Capozziello, V. F. Cardone, and A. Troisi, Mon. Not. R.
Astron. Soc. 375, 1423 (2007).

[9] S. Capozziello, A. Stabile, and A. Troisi, Mod. Phys. Lett.
A 21, 2291 (2006).

[10] S. Capozziello, S. Nojiri, S. D. Odintsov, and A. Troisi,
Phys. Lett. B 639, 135 (2006).

[11] S. Carloni, P. Dunsby, S. Capozziello, and A. Troisi,
Classical Quantum Gravity 22, 4839 (2005).

[12] S. Carloni, A. Troisi, and P. K. S. Dunsby,
arXiv:0706.0452.

[13] M. Abdelwahab, S. Carloni, and P. K. S. Dunsby,
arXiv:0706.1375.

[14] S. Carloni, P. K. S. Dunsby, and A. Troisi,
arXiv:0707.0106.

[15] C. M. Will, Living Rev. Relativity 9, 3 (2006), http://
www.livingreviews.org/lrr-2006-3; in Report No. SLAC-
R-538.

[16] R. Bean, D. Bernat, L. Pogosian, A. Silvestri, and M.

Trodden, Phys. Rev. D 75, 064020 (2007).
[17] Y. S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75,

044004 (2007).
[18] B. Li and J. D. Barrow, Phys. Rev. D 75, 084010 (2007).
[19] K. Uddin, J. E. Lidsey, and R. Tavakol, Classical Quantum

Gravity 24, 3951 (2007).
[20] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[21] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1

(1984).
[22] R. Bean, D. Bernat, L. Pogosian, A. Silvestri, and M.

Trodden, Phys. Rev. D 75, 064020 (2007).
[23] M. Bruni, P. K. S. Dunsby, and G. F. R. Ellis, Astrophys. J.

395, 34 (1992).
[24] G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).
[25] G. F. R. Ellis, M. Bruni, and J. Hwang, Phys. Rev. D 42,

1035 (1990).
[26] P. K. S. Dunsby, M. Bruni, and G. F. R. Ellis, Astrophys. J.

395, 54 (1992).
[27] M. Bruni, G. F. R. Ellis, and P. K. S. Dunsby, Classical

Quantum Gravity 9, 921 (1992).
[28] P. K. S. Dunsby, B. A. C. Bassett, and G. F. R. Ellis,

Classical Quantum Gravity 14, 1215 (1997).
[29] G. F. R. Ellis and H. van Elst, in Theoretical and

Observational Cosmology, Cargèse Lectures 1998, edited
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