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We consider cosmology in the Einstein-Æther theory (the generally covariant theory of gravitation
coupled to a dynamical timelike Lorentz-violating vector field) with a linear Æ-Lagrangian. The 3� 1
spacetime splitting approach is used to derive covariant and gauge invariant perturbation equations which
are valid for a general class of Lagrangians. Restricting attention to the parameter space of these theories
which is consistent with local gravity experiments, we show that there are tracking behaviors for the Æ
field, both in the background cosmology and at the linear perturbation level. The primordial power
spectrum of scalar perturbations in this model is shown to be the same as that predicted by standard
general relativity. However, the power spectrum of tensor perturbation is different from that in general
relativity, but has a smaller amplitude and so cannot be detected at present. We also study the implications
for late-time cosmology and find that the evolution of photon and neutrino anisotropic stresses can source
the Æ field perturbation during the radiation and matter dominated epochs, and as a result the CMB and
matter power spectra are modified. However, these effects are degenerate with respect to other cosmo-
logical parameters, such as neutrino masses and the bias parameter in the observed galaxy spectrum.
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I. INTRODUCTION

For more than two decades Milgrom’s modified
Newtonian dynamics (MOND) [1] has been able to explain
galaxy rotation curves which are conventionally consid-
ered as an evidence of cold dark matter (CDM) on galactic
scales. MOND modifies Newton’s second law of motion to
��j ~aj=a0� ~a � �r�N , where ~a and �N are the accelera-
tion and Newtonian gravitational potential, respectively;
��x� is an effectively free function tending to unity in the
limit j ~aj � a0, with a0 being a new fundamental constant,
which must have a numerical value of a0 �
�200 km=s�2=�10 kpc� in order to match observations on
a galactic scale. This theory looks like Newton’s when
accelerations are large but is significantly different when
accelerations are small. On galactic scales, j ~aj � a0, so
the Newtonian dynamics is modified, but in a way that can
fit spiral galaxy rotation curves. Subsequently, Bekenstein
[2] built a relativistic theory which has MOND as a non-
relativistic, weak-field limit, thus making the study of
cosmology possible. In addition to the conventional tensor
gravitational field, Bekenstein’s theory involves a vector
and a scalar field, and is therefore dubbed TeVeS.
Interestingly, it has been argued that TeVeS could also
explain the large-scale structure formation of the
Universe without recurring to CDM [3], thanks to the
presence of the vector field [4].

Recently, the authors of Ref. [5] showed that TeVeS is
equivalent to a vector-tensor theory of gravitation where
the vector field has a nonfixed norm. They also showed that

the correct MONDian limit could be realized with a single
vector field having noncanonical kinetic terms [6]. These
results indicate that a vector field in the gravity sector
might be an interesting component of the Universe [indeed
the model in [6] and its generalized version we shall
presented below in Eq. (1) could be used to explain dark
energy and dark matter in background cosmology] and
merits more detailed investigations.

The idea of a vector field coupled to gravity has a long
worldline (see for example [7] for a review and [8] for
further references), but in this work we will focus on the
model described in [9], which is the most well-studied one,
and investigate its cosmological implications. This particu-
lar theory is based on a dynamical vector field coupled to
gravitation that picks up a preferred frame and preserves
general covariance. This vector field is unit-norm, timelike,
and violates local Lorentz invariance. It is called the Æther
field (or simply Æ-field) and we will refer to the associated
Einstein-Æther theory as Æ-theory defined by the Æ-
Lagrangian. The Æ-Lagrangian considered in [9] is a
special case of our general model introduced in Eq. (1)
below for a unit-norm vector field that includes terms up to
second order in derivatives, and it has been extensively
studied in various contexts [10–14].

In Refs. [15,16], the background cosmology and primor-
dial power spectra of perturbations from inflation of a
slight different model were also considered. Here, we
investigate these for the model presented in Ref. [9], and
also study the evolution of linear perturbation to the Æ-
field during the radiation and matter-dominated epochs. As
we will show below, if we restrict the parameter space of
the underlying theory so as to satisfy the local experimental
gravity constraints [10,12], this perturbation becomes
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sourceless and decays during the epoch of inflation and
late-matter domination. However, it is sourced by the
evolutions of the photon and neutrino anisotropic stresses
during the radiation era and early matter era, which have
some imprints on the cosmological observables.

Our presentation is organized as follows. In Sec. II, we
briefly introduce the general Æ-theory and derive pertur-
bation equations for the background Friedmann-like cos-
mology in the covariant and gauge invariant (CGI)
formalism (see [17] for a derivation of the perturbation
equations in conformal Newtonian gauge). In Sec. III we
shall use these equations to discuss the perturbation dy-
namics for the cosmological models of Ref. [9]. First, we
summarize the existing constraints on the model in
Sec. III A; then, in Sec. III B, we present the evolution
equations for the perturbation variables and then use
them to show how the primordial spectra of scalar and
tensor perturbations in this theory are unmodified and
modified, respectively, on comparing them with the pre-
dictions of general relativity (GR). The late-time evolution
of the Æ-field perturbation and its effects on cosmological
observables are also studied there. Finally, our discussion
and conclusions are presented in Sec. IV.

Throughout this work our convention is 	ra;rb
uc �
Rab

c
du

d, Rab � Racb
c, where Rabcd, Rab are, respectively,

the Riemann tensor and Ricci tensor; the metric signature
is ��;�;�;�� and the universe is assumed to be spatially
flat, filled with photons, baryons, CDM, 3 species of neu-
trinos, and a cosmological constant.

II. FIELD EQUATIONS OF EINSTEIN-ÆTHER
THEORY

In this section we briefly introduce the general form of
the Æ-theory and derive the CGI perturbation equations
which we will use to analyze the cosmological effects of
the Æ-field. The equations presented here are for general
Lagrangians. Later, we shall focus on a specific class of
such theory characterized by a linear Lagrangian [with
f�K� � �K, see below].

A. The general Einstein-Æther theory

The model we consider here is a slight generalization of
that presented in [6]. It is characterized by a general
gravitational action of the form

 S �
1

16�GN

Z
d4x

�������
�g
p

	R�L� � ���a�a � 1�
 (1)

in which GN is the bare Newtonian gravitation constant, �
is a Lagrange multiplier ensuring that Æ-field has a unit
norm, and L� is the Æ-Lagrangian expressed by

 L� � f�Kab
cdra�crb�d� (2)

with

 Kab
cd � c1g

abgcd � c2�
a
c�

b
d � c3�

a
d�

b
c � c4�a�bgcd

(3)

and f�� � �� being an arbitrary analytic function of its argu-
ments. As long as the norm of �a is fixed (�a�a � 1), the
form of Kab

cd is the most general possibility we can have
for our vector-field Lagrangian. Notice that Eq. (3) here
differs from that given in [6] by the c4 term and we shall
refer to our model and that of [6] as the GEA (generalized
Einstein Æther) model to distinguish from the one consid-
ered in [9] [for which we instead called EA (Einstein
Æther)]. The matter Lagrangian is taken to be the same
as in the standard �CDM model.

We treat the Æ-field �a and inverse metric gab as the
dynamical degrees of freedom and vary the action with
respect to them to obtain the field equations. The former
gives the Æ-field equation of motion (EOM):

 rb�FJba� � c4F�brb�cra�c � ��a; (4)

where we have defined K � Kab
cdra�crb�d, F �

F�K� � @f�K�=@K, and Jac � Kab
cdrb�d. The variation

with respect to the metric leads to a modified Einstein
equation. One could retain the form of Einstein equations
in standard GR by treating the vector field as a new con-
tribution (denoted by T�

ab) to the total energy-momentum
tensor in the universe, in addition to that of the conven-
tional fluid matter which is denoted by Tfab. Then, accord-
ing to the definition

 16�GNT
�
ab �

�2�������
�g
p

��
�������
�g
p

L0��

�gab

in which L0� � L� � ���a�a � 1�, we have
 

8�GNT
�
ab � �rcfF	�

cJ�ab� ��
�aJ

c
b� ��

�aJb�
c
g

� 1
2gabf� 	�drc�FJ

cd� � c4F��
drd�c�

 ��ere�
c�
�a�b � F	c1ra�crb�c

� c1r
c�arc�b � c4��

crc�a���
drd�b�
:

(5)

We also note that by varying the action with respect to
the Lagrangian multiplier � we simply get the normaliza-
tion relation of the Æ-field, �a�a � 1, as mentioned
above.

B. The perturbation equations in general relativity

The CGI perturbation equations in general Æ-theories
are derived in this section using the method of 3� 1
decomposition [18] (see [19] for applications of this
method in modified-gravity models). First, we briefly re-
view the main ingredients of 3� 1 decomposition and
their application to standard general relativity [18] for
ease of later reference.
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The main idea of 3� 1 decomposition is to make space-
time splits of physical quantities with respect to the 4-
velocity ua of an observer. The projection tensor hab is
defined as hab � gab � uaub and can be used to obtain
covariant tensors perpendicular to u. For example, the
covariant spatial derivative r̂ of a tensor field Tb���cd���e is
defined as

 r̂ aTb���cd���e � hai h
b
j � � � h

c
kh

r
d � � � h

s
er

iTj���kr���s : (6)

The energy-momentum tensor and covariant derivative of
the 4-velocity are decomposed, respectively, as

 Tab � �ab � 2q
�aub� � �uaub � phab; (7)

 raub � �ab �$ab �
1
3�hab � uaAb: (8)

In the above, �ab is the projected symmetric trace-free
(PSTF) anisotropic stress, qa the heat-flux vector, p the
isotropic pressure, �ab the PSTF shear tensor, $ab �

r̂	aub
 the vorticity, � � rcuc � 3 _a=a (a is the mean
expansion scale factor) the expansion scalar, and Ab �
_ub the acceleration; the overdot denotes time derivative

expressed as _� � uara�, brackets mean antisymmetriza-
tion, and parentheses symmetrization. The 4-velocity nor-
malization is chosen to be uaua � 1. The quantities �ab,
qa, �, p are referred to as dynamical quantities and �ab,
$ab, �, Aa as kinematical quantities. Note that the dynami-
cal quantities can be obtained from the energy-momentum
tensor Tab through the relations

 � � Tabuaub; p � �1
3h
abTab;

qa � hdau
cTcd; �ab � hcah

d
bTcd � phab:

(9)

Decomposing the Riemann tensor and making use the
Einstein equations, we obtain, after linearization, five con-
straint equations [18]:

 0 � r̂c�"abcdu
d$ab�; (10)

 	qa � �
2r̂a�

3
� r̂b�ab � r̂

b$ab; (11)

 B ab � 	r̂
c�d�a � r̂

c$d�a
"b�ec
due; (12)

 r̂ bEab �
1
2		r̂

b�ab �
2
3�qa �

2
3r̂a�
; (13)

 r̂ bBab �
1
2		r̂cqd � ��� p�$cd
"ab

cdub; (14)

and five propagation equations,

 

_��
1

3
�2 � r̂aAa �

	
2
��� 3p� � 0; (15)

 _�ab �
2
3��ab � r̂haAbi � Eab �

1
2	�ab � 0; (16)

 _$� 2
3�$� r̂	aAb
 � 0; (17)

 

1
2		 _�ab �

1
3��ab
 �

1
2		��� p��ab � r̂haqbi


� 	 _Eab � �Eab � r̂
cBd�a"b�ec

due
 � 0; (18)

 

_B ab � �Bab � r̂
cEd�a"b�ec

due �
	
2
r̂c�d�a"b�ec

due � 0:

(19)

Here, "abcd is the covariant permutation tensor, Eab and
Bab are, respectively, the electric and magnetic parts of the
Weyl tensor W abcd, defined by Eab � ucudW acbd and
Bab � �

1
2u

cud"acefW efbd. The angle bracket means
taking the trace-free part of a quantity.

Besides the above equations, it is useful to express the
projected Ricci scalar R̂ into the hypersurfaces orthogonal
to ua as

 R̂ �
:

2	�� 2
3�

2: (20)

The spatial derivative of the projected Ricci scalar, 
a �
1
2ar̂aR̂, is then given as

 
a � 	r̂a��
2a
3
�r̂a�; (21)

and its propagation equation by

 _
 a �
2�
3

a � �

2

3
�ar̂ar̂ � A� a	r̂ar̂ � q: (22)

Finally, there are the conservation equations for the
energy-momentum tensor:

 _�� ��� p��� r̂aqa � 0; (23)

 

_q a �
4
3�qa � ��� p�Aa � r̂ap� r̂

b�ab � 0: (24)

As we are considering a spatially flat universe, the
spatial curvature must vanish on large scales and so R̂ �
0. Thus, from Eq. (20), we obtain

 

1
3�

2 � 	�: (25)

This is the Friedmann equation in standard general relativ-
ity, and the other background equations (the Raychaudhuri
equation and the energy-conservation equation) can be
obtained by taking the zero-order parts of Eqs. (15) and
(23), yielding

 

_��
1

3
�2 �

	
2
��� 3p� � 0; (26)

 _�� ��� p�� � 0: (27)

In what follows, we will only consider scalar perturba-
tion modes, for which the vorticity $ab and magnetic part
of Weyl tensor Bab are at most of second order [18], and so
will be neglected in our first-order analysis.
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C. The perturbation quantities in Æ-theory

In the Einstein-Æther theories where we consider the Æ-
field as a new species of matter, the gravitational field
equations, Eqs. (10)–(27), listed above preserve their
forms, but the dynamical quantities �, p, qa,�ab appearing
there should be replaced by the effective total quantities of
the same type. For simplicity, we shall always use variables
without superscripts to denote these effective total quanti-
ties, while for those of a specified matter species we shall
add corresponding superscripts (e.g., �� denotes the en-
ergy density of the Æ-field � � � ).

The vector Æ-field, �a, requires further discussion. As
we mentioned above, it has the normalization relation
�a�a � uaua � 1. In the background Friedmann-
Robertson-Walker (FRW) universe the requirements of
homogeneity and isotropy require that �a is just equal to
ua, which is unambiguously chosen as the 4-velocity of the
fundamental observers. But in a perturbed, almost-FRW,
universe this is no longer true and we can write �a �
ua � �a, �a � ua � �a, where �a is another (first-order)
vector field that vanishes in a FRW Universe: we call it the
perturbation of the Æ-field. Furthermore, the relation
�a�a � uaua � 1 implies that ua�a � 0, i.e., �a is a
spatial vector field which is perpendicular to ua, up to first
order in perturbation. This fact is used extensively in
deriving the perturbation equations (e.g., ra�a � r̂

a�a
etc.).

With these preliminaries at hand, and after some lengthy
manipulations, the Æ-field EOM, Eq. (6), can be written as
(up to first order)
 

c14	F ��a � � _F� F�� _�a
 � c14	F _Aa � _FAa �
2
3F�Aa


� 	13��� c14�� _F�� F _�� � 2
9c14F�2
�a

� 1
3�r̂a�F�� �

1
3�Fr̂ar̂

b�b

� c13Fr̂
b��ab � r̂ha�bi� � 0; (28)

and from the definitions, Eq. (9), the Æ-field energy den-
sity, isotropic pressure, heat-flux vector, and anisotropic
stress can be identified from Eq. (7) (again up to first order)
as
 

	�� � 1
2f�

1
3F���

2 � 2�r̂a�a�

� c14Fr̂
a�Aa � _�a �

1
3��a�; (29)

 

	p� � �
1

2
f�

�
3

_F��� r̂a�a�

�
�
3
F	 _�� �2 � �r̂a�a�

� � 2�r̂a�a
; (30)

 

	q�
a � �c14	F _Aa � _FAa �

2
3F�Aa


� c14	F ��a � � _F� F�� _�a


� 	13��� c14�� _F�� F _�� � 2
9c14F�2
�a (31)

 � 1
3�r̂a�F�� �

1
3�Fr̂ar̂

b�b � c13Fr̂
b��ab � r̂ha�bi�;

(32)

 

	��
ab � �c13� _F� F��	�ab � r̂ha�bi


� c13F	 _�ab � �r̂ha�bi�
�
; (33)

where, in Eq. (32), we have used Eq. (28). Here, we have
defined the new parameters � � c1 � 3c2 � c3, c13 �
c1 � c3, and c14 � c1 � c4; 	 is given by 	 � 8�GN .
Including these Æ-contributions to Eqs. (10)–(27), one
obtains the modified gravitational field equations for the
general Æ-theory. It is also easy to check that the above
results satisfy (separately) the conservation of the Æ-field’s
energy-momentum tensor, Eqs. (23) and (24). Note that
Eqs. (29)–(33) are the general expressions of energy den-
sity, pressure, heat flux, and anisotropic stress in the 3� 1
decomposition which include both zeroth order (back-
ground) and first-order terms; to calculate the actually
density contrast etc. [see Eqs. (51)–(54) below], one needs
to take the covariant spatial derivatives of these equations
[18].

III. A SPECIFIC MODEL: THE LINEAR
LAGRANGIAN

In the above we presented the field equations for general
Æ-theories, but in what follows we shall only analyze the
cosmology of a specific edition of the theory which is
defined by choice of a linear Lagrangian:

 f�K� � �K (34)

(note that the minus sign is because of our sign conven-
tion). This model is by far the most well known, in the
sense that it has been investigated in the contexts of static
weak-field limit [10] (see also [11] for the weak-field limit
of the Æ-model considered in [6]), background cosmology
[15], the radiation and propagation of the Æ-gravitational
waves [12,16], compact stars [13], and black holes [14].
Some of these studies have imposed stringent constraints
on the viable parameter space of cis. In view of these
restrictions we will confine our study to this constrained
subset of possible theories. Note that the perturbation
dynamics of the Æ-model has also been analyzed in [16]
in the absence of the c4 term. Here, we shall include this
term and perform a similar analysis but in slightly different
manner and in more detail; we will also discuss some
detailed features which lead to our conclusions being
different. The late-time evolution of the Æ-perturbation
is also investigated. In particular, we shall find that within
the locally constrained parameter space the Æ-model will
leave slightly different signatures on the perturbation evo-
lutions from those left by the standard �CDM paradigm in
general relativity, and so cosmological data on cosmic
microwave background (CMB) and matter power spectra
might place some constraint on the parameter space.
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A. The constrained parameter space

In this subsection we briefly summarize the constraints
on the Æ-model described in Eq. (34). It has been well
known that in the weak-field, slow-motion, limit and in the
background cosmology the Æ-model displays tracking
behavior. For the former environment, it can be shown
that in the presence of the Æ-field the observed effective
gravitational constant G0 is a rescaling of the bare one GN
[10,15] by (note that here our cis have different signs from
those in [10])

 G0 �
1

1� 1
2 c14

GN; (35)

and in the latter environment the observed gravitational
constant G1 is also a rescaling of GN , but with a different
factor [15]

 G1 �
1

1� 1
2�

GN: (36)

Correspondingly, we define 	0 � 8�G0 and 	1 � 8�G1
to be used below. Note that the rescaledG1 is generally not
equal to GN and as such the background cosmic expansion
rate will be different from that in standard GR. However,
we note that the numerical value of gravitational constant
we find in the textbooks and use in the numerical calcu-
lations is not GN but rather the locally measured G0. It is
possible to obtain limits on nonlocal values of G by con-
sidering the primordial nucleosynthesis of light elements
(see, for example, Ref. [20]). If c14 � �� then we have
G1 � G0, which indicates that the background cosmologi-
cal dynamics will be exactly the same as assuming stan-
dard GR [15,21]; otherwise we can use constraints from
primordial nucleosynthesis on the value of gravitational
constant to show that jG1=G0 � 1j & O�0:1� [10].
However, note that the particle-horizon size at the epoch
of neutron-proton freeze-out (t� 1 s), which is most sen-
sitive to variations in the value of G, is only�1010 cm and
this causally linked region expands in size by about a factor
of 1010 by the present-day to a size �1020 cm� 32 pc
which is a subgalactic scale but there has then been local
gravitational collapse by a factor of 102. Such collapse may
however also affect the local value of the gravitational
constant [22], but we will not consider this in the present
work.

There are also constraints from the observations of
parametrized post-Newtonian (PPN) parameters [23]. It
is shown in [10] that for all the PPN parameters to coincide
with those in GR (otherwise the parameters may need to be
fine-tuned) one reduces the full four-parameter space of the
model to a two-parameter subspace characterized by

 c2 �
�2c2

1 � c1c3 � c2
3

3c1
; c4 � �

c2
3

c1
: (37)

In addition, Æ-theories contain five gravitational and Æ-
wave modes, which include the two usual spin-2 gravita-

tional waves, and three additional modes: two spin-1 trans-
verse Æ-gravity waves and one spin-0 longitudinal Æ-
gravity wave. The speeds of the three additional modes
are generally not equal to 1. It has been shown in Ref. [12]
that if these speeds are less than 1 then the high-energy
particles will produce Čerenkov radiation when passing
through vacuum, which imposes stringent constraints on
the model. However, as suggested in [10], these constraints
do not apply if these modes propagate superluminally. The
requirement that the additional Æ-gravity waves do not
propagate subluminally further limits the parameter space
to

 � 1< c13 < 0;
c13

3�1� c13�
< c1 � c3 < 0: (38)

Finally, when the above constraints, Eq. (38), are satis-
fied, the positive energy requirement and the stability of
additional wave modes [16] also hold. In addition, we will
have c14 � �� so that the big bang nucleosynthesis con-
straint does not apply. Thus, we can see that, even after
using all the current constraints, there is still a large pa-
rameter space remaining for the model. In what follows we
shall ask whether linear-order cosmological observations
such as the CMB and the form of the matter power spec-
trum could reduce this parameter space further, and as we
will show, the answer is positive. However, the modifica-
tions are small and depend weakly on the model parame-
ters, which mean that the data on CMB and matter power
spectra cannot give very stringent limits on the parameter
space.

B. Linearly perturbed equations

In this subsection we consider the perturbation evolu-
tions of our Æ-model. For generality, we will derive the
equations for arbitrary choices of parameters and only later
confine ourselves to the parameter space described in
Eq. (38). Besides, since the presence of the Æ-field in
general will modify the cosmology at all times, we will
also investigate its effects during the inflationary era as in
[16]; after that we will turn to its effects on late time
cosmology.

Following [18], we shall make the following harmonic
expansions of our perturbation variables:
 

r̂a� �
X
k

k
a
XQk

a; r̂ap �
X
k

k
a
XpQk

a

qa �
X
k

qQk
a; �ab �

X
k

�Qk
ab;

r̂a� �
X
k

k2

a2 ZQ
k
a; �ab �

X
k

k
a
�Qk

ab

r̂aa �
X
k

khQk
a; Aa �

X
k

k
a
AQk

a �a �
X
k

�Qk
a;


a �
X
k

k3

a2 
Q
k
a Eab � �

X
k

k2

a2 �Q
k
ab (39)
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in which Qk is the eigenfunction of the comoving spatial
Laplacian a2r̂2 satisfying

 r̂ 2Qk �
k2

a2 Q
k

and Qk
a, Qk

ab are given by Qk
a �

a
k r̂aQ

k, Qk
ab �

a
k r̂haQ

k
bi.

Note that � is dimensionless.
In terms of the above harmonic expansion coefficients,

Eqs. (11), (13), (16), (18), (21), and (22) can be rewritten as
[18]

 

2
3 k

2���Z� � 	qa2; (40)

 k3� � �1
2	a

2	k���X� � 3Hq
; (41)

 k��0 �H�� � k2��� A� � 1
2	a

2�; (42)

 k2��0 �H�� � 1
2	a

2	k��� p��� kq��0 �H�
;

(43)

 k2
 � 	Xa2 � 2kHZ; (44)

 k
0 � �	qa2 � 2kHA; (45)

where H � a0=a � 1
3a� and a prime denotes the deriva-

tive with respect to the conformal time ��ad� � dt�. Also,
Eq. (24) and the spatial derivative of Eq. (23) become

 q0 � 4Hq� ��� p�kA� kXp � 2
3k� � 0; (46)

 X 0 � 3h0��� p� � 3H �X �Xp� � kq � 0: (47)

Recall that we shall always neglect the superscript tot for
the total dynamical quantities and add appropriate super-
scripts for individual matter species. Note that

 h0 � 1
3kZ�HA (48)

and that the 	 appearing above is the bare (not necessarily
the measured) one. Furthermore, for convenience we de-
fine the frame-independent (FI) variables [18]

 ~q � q� ��� p��; (49)

 

~� � �� �; (50)

~� is FI according to Eq. (33) because we know that the
anisotropic pressure tensor �ab is frame invariant. Hence,
it follows from Eq. (13) that ~q is also FI up to first order in
perturbation. In the zero-shear frame (the Newtonian
gauge), we have simply ~q � q and ~� � �.

Before presenting the evolution equations, we first write
the dynamical quantities of the Æ-field in terms of the
harmonic coefficients introduced above:

 	X�a2 � �kH �Z� �� � c14	k2A� k��0 �H��
;

(51)

 

	Xp;�a2 � �
�
3
k	�Z� ��0 � 2H �Z� ��


� ��H 0 �H 2�A; (52)

 	q�a2 � �1
3�k

2�Z� �� � 2
3c13k2 ~�; (53)

 	��a2 � c13k�~�0 � 2H ~��: (54)

In these expressions we have used both � and ~� because
not all these quantities are FI. However, it can be shown
that the two quantities
 

	a2

�
Xp;� �

p0

�0
X�

�
� �

�
1

2
	a2

�
Xp �

p0

�0
X

�

� k2 p
0

�0
��

�0

3H�
	a2�

�

�

�
1

3
�

�0

3H�

�
c14�k~�0 � kH ~�

� k2�� �
1

3
�k~�0 �

1

3
�kH ~�

�
�0

3H�
�kH ~� (55)

and

 	a2 ~q� � 	a2	��� � p���� q�


� 1
2�	a

2 ~q� 1
3�k

2 ~�� 2
3c13k

2 ~�; (56)

which will be used in the derivations, are FI, as they are
expressed in terms of FI variables only. Note that in the
above we have defined � � �� 	a2

2k2 � for convenience,
where � is the Newtonian gravitational potential, and

 � �
1

2
	a2��� p� �H 2 �H 0;

p0=�0 � �
1

3
�

�0

3H�
:

We now investigate in detail Eqs. (55) and (56). On large
scales, where k�� 1, the terms involving k [these include
the � term in Eq. (55)] can be safely disregarded, and as a
result we have

 	
�
Xp;� �

p0�

�0�
X�

�
’

1
2�

1� 1
2�

	
�
Xp;f �

p0f

�0f
Xf

�
; (57)

 	~q� ’
1
2�

1� 1
2�

	~qf; (58)

where the superscript f means the fluid matter. We see that
on large scales these attributes of the Æ-field track those
for other matter species in the universe. As the combination
Xp;f � p0

�0X
f determines the type of perturbations (for

example, the perturbation is adiabatic if the combination
is equal to zero), this indicates that the Æ-field will not
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alter the type of the scalar perturbation produced in the
inflationary era. Note that the above tracking behaviors are
the same as that in the background cosmology, i.e., rescal-
ing the gravitational constant by a same factor.

Now we can proceed to derive the evolution equations
for our Æ-model. The propagation equation for the Æ-
field, Eq. (28), in terms of the FI variables, becomes
 

�c14 � c13��00 � ��1� c13��H
0 �H 2�

�
�� 2c13

3
k2� ��� c14�k�a��0 �

�
k
a�	�fa2�0 � 0

(59)

in which we have changed the variable to  � a~� for
simplicity. Taking the time derivative of Eq. (43), adding

to it
�
4� 3 p0

�0

�
H times the same equation, and using

Eq. (46) to eliminate the q0 term, we obtain the following
equation second-order differential equation for �:
 

�00 �
�
2H �

�0

�

�
�0 �

�
2H 0 �

�0

�
H

�
��k2p

0

�0
�

�
1

2
	a2

�
Xp�

p0

�0
X

�
�

1

k2	a
2

�
�00 �

�
5�

�0

H�

�

H�0 �2H 0��
�
6�2

�0

H�

�
H 2��

�0

3H�
k2�

�
:

(60)

Equations (59) and (60) are the evolution equations for the
coupled �� system that we are looking for [note that
� � �� ��f where �f is the fluid matter anisotropic
stress and �� can also be expressed in terms of  and its
time derivatives by virtue of Eq. (54)]. They are not closed
if Xp;f � p0f

�0f
Xf and �f are unknown and to know these

quantities we would need to know the matter content of the
universe.

C. The primordial power spectra

In the analysis above, we have mentioned that the pres-
ence of the Æ-field does not affect the form of the scalar
perturbation produced during inflation. But we also need to
know whether other features of the inflationary power
spectrum, such as the spectral index and the amplitude,
are modified by the Æ-field, as compared with the predic-
tions in standard GR. Here, we will investigate this issue
(see [16] for a study in the absence of the c4 term in the Æ-
Lagrangian) by considering a single-field model of infla-
tion [24] in the presence of the Æ-field.

During the inflationary epoch a scalar inflaton field ’
slowly rolls along its potential and has an almost constant
energy density which drives an almost exponential expan-
sion of the universal scale factor. The comoving Hubble
length (the horizon) decreases with time so that in this
process the quantum vacuum fluctuations of the inflaton

field ’ on the scales of interest to us leave the horizon
(their scales become larger than the horizon). The curva-
ture perturbations they generate remain constant during
their subsequent superhorizon evolution, until these scales
eventually reenter the horizon long after the inflationary
period has ended. During the radiation-dominated era
when these modes stay outside the horizon, the metric
perturbation � becomes a constant, which drives the den-
sity perturbations of different matter species, and leads to
the observed CMB and matter power spectra after horizon
reentry.

There are no couplings between the scalar field and
gravitational or Æ-fields, so we can write down its dynami-
cal quantities for the scalar field ’ as

 �’ � 1
2 _’2 � V�’�; p’ � 1

2 _’2 � V�’�;

q’a � _’r̂a’; �’
ab � 0:

(61)

Making the following harmonic expansion for ~ra’,

 r̂ a’ �
X
k

k
a
�Qk

a; (62)

it is easy to get

 X ’ �
1

a2 �’
0�0 � ’02A� a2V’��; (63)

 X p;’ �
1

a2 �’
0�0 � ’02A� a2V’��; (64)

 q’ �
1

a2 k’
0�; (65)

where V’ � @V�’�=@’. Then parallel to Eqs. (55) and
(56) we have, following the standard procedure,
 

a2

�
Xp;’ �

p0

�0
X’

�
�

4

3

�
1�

�0

4H�

�
	’0 ~�0 � ’02�

� a2V’ ~�� 3H’0 ~�
 (66)

and

 	a2 ~q’ � 		q’ � ��’ � p’��
 � 	k’0 ~�; (67)

where we have defined the FI variable

 ~� � ��
’0

k
�: (68)

Substituting Eqs. (55) and (67), into Eq. (60), and using
Eq. (41) to eliminate the term proportional to ’0 ~�0 �
’0�� a2V’ ~�� 3H’0 ~�, we arrive at the following
equation:
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�00 �
�
2H �

�0

�

�
�0 �

�
2H 0 �

�0

�
H

�
�

�
1

1� 1
2�

�
1�

1

2
c14

�
k2�

�
1

1� 1
2�

�
1

2
c14 �

1

2
�c1 � c2 � c3� � c13

�
k
a
0

�
1

1� 1
2�
�c1 � c2 � c3�

�0

2�

k
a


�
1

k
c13

�
000

a
�

�0

�

00

a
��

0

a

�
: (69)

Equations (59) and (69) form a closed set of evolution
equations for the coupled Æ-inflaton system; they are a
generalization of the results presented in [16], and from
them we can perform our analysis of the observational
effects.

Let us look first at the large-scale evolution of �. In this
limit k�� 1 so the last term on the left-hand side, and the
first two terms on the right-hand side, of Eq. (69) can be
dropped. Notice that during the inflationary era H 2 �

H 0 � 1
2	a

2��� p� ’ 0 and Eq. (59) become

 �c14 � c13��00 � ��� c14�k�a��0: (70)

Substituting this into Eq. (69) one could see that

 

1

k
c13

�
000

a
�

�0

�

00

a
��

0

a

�
/ �00 �

�
2H �

�0

�

�
�0

�

�
2H 0 �

�0

�
H

�
�

so that we finally have

 �00 �
�
2H �

�0

�

�
�0 �

�
2H 0 �

�0

�
H

�
� � 0 (71)

on superhorizon scales. Note that one should not simply set
00 � 0 in this limit as was done in Ref. [16], although that
leads to the same result [25]. This equation is still valid
outside the inflationary epoch within the parameter space
given by Eq. (38).

The solution to Eq. (71) is given by

 � � D
�
1�

H

a2

Z
a2d�

�
; (72)

where D is a constant. Long after leaving the horizon, the
potential � and the scalar perturbation ~� have time to
evolve, and after inflation ~� ceases to exist. However, as
mentioned above, during the radiation era on superhorizon
scales � finally becomes a constant which is related to D
by

 � � 2
3D: (73)

OnceD is known we could set the initial conditions of � in
the radiation era for the subsequent evolutions. The quan-

tity D could be fixed by matching to the inflaton perturba-
tion ~� at the time of horizon exit (k � aH �H ) as
follows: substituting Eqs. (56) and (67) into Eq. (43), we
get
 

k�a��0 �
1

1� 1
2�

�
1

2
ka	’0 ~��

1

2
�c1 � c2 � c3�k2

�

� c13	00 � �H
0 �H 2�
: (74)

Now we begin to confine ourselves within the parameter
space, Eq. (37). In that case c14 � �� � �c1 � c3��c1 �
c3�=c1 and the Æ-field EOM, Eq. (59), becomes

 ��1� c13�	00 � �H
0 �H 2�
 � �c1 � c2 � c3�k2:

(75)

So, from these two equations we find that

 �a��0 �
1

1� 1
2�

1

2
a	’0 ~�: (76)

On the other hand, from Eq. (72) one can write

 �a��0 �
1

2

1

1� 1
2�

	a’02
1

H
D: (77)

Obviously, matching these two expressions gives the value
of D

 D �
H

’0
~�; (78)

where the three variables H , ’0, and ~� are all evaluated at
the horizon exit. As a result, the initial power spectrum for
�, P� � k3h�2i=2�2 , where h� � �i means the ensemble
average, is given by

 P � �
4

9

H 2

’02
h~�2i �

4

9

H 2

’02

�
H
2�

�
2

(79)

in which we have used the relation P ~� � k3h~�2i=2�2 �

�H=2��2 [24] (as discussed in Ref. [16], this relation is not
affected by the Æ-field up to first order because the Æ-field
is not coupled to the inflaton) and the Hubble expansion
rate H � _a=a is also evaluated at the time of horizon exit.

Note that the � power spectrum, Eq. (79), has exactly
the same form as in standard GR. To compare their mag-
nitudes, let us write

 

P�
�

PGR
�

�
�H2=’02��
�H2=’02�GR

in which we have used the fact that at the time of horizon
exit H � k should be the same in the two models. If we
further assume the same inflation potential, then [21] be-
cause the background expansion in our Æther model is
indistinguishable from that of GR, we have

 

P�
�

PGR
�

� 1; (80)
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that is, the power spectra in these two models are exactly
the same, in both the shape and the magnitude. It should be
noticed that if the background evolution, H, of the Æ-
model during the inflation is different from GR, then the
evolutions of ’ will also be different because of the scalar
field equation of motion; as a result the slow-roll parame-
ters at the horizon crossing are generally different in these
two models and so will be the spectral indices.

What is the fate of the vector and tensor modes of the Æ-
field perturbation? As shown in [16], the vector mode is
also sourceless unless exotic matter such as cosmological
defects exist. Hence, it should decay similarly all the way
up to the present and leave no traces in the CMB observ-
ables. As for the tensor modes, from Eqs. (29)–(33) one
can see that the contribution of the Æ-field to the tensor
modes lies only in 	�� and is independent of the model
parameter c4. Consequently, the power spectrum of the
tensor perturbations given in [16]

 P h � 	�1� c13�
1=2 H

2

2�2 (81)

is still valid here (note that what appears in this formula is
the true bare gravitational constant). Following the argu-
ment above again, we can show that

 

P�
h

PGR
h

�

�
1�

1

2
c14

�
�1� c13�

1=2: (82)

According to Eq. (38), c13 < 0 and c14 < 0, so the ampli-
tude of the gravitational-wave spectrum predicted in our
Æ-model is smaller than that arising in standard GR.
Although this may provide a discrimination between the
two models, the difficulty in observing the tensor spectrum
will be a great hurdle for the use of this discriminator: if
our Universe turns out to be described by the Æ-model,
then this spectrum is even more difficult to observe than in
GR.

D. The Æ-effects on late-time cosmology

We have seen in the above that in our Æ-model the
primordial scalar-mode power spectrum is exactly the
same as assuming standard GR and using the measured
value 	? in calculations. The next question is if possible
deviations from GR will emerge in the subsequent evolu-
tions of the perturbations. Interestingly, we find that the
answer is yes. The reason is that, although the Æ-pertur-
bation is sourceless during the inflationary era, in subse-
quent stages where the fluid anisotropic stresses are
nonzero it becomes sourced. To see the consequences
explicitly, we now write the Æ-field EOM within the
parameter space, Eq. (37), as

 �	�1� c13�k�~�
0 � 2H ~�� � 	�fa2
0 �

�� 2c13

3
k3 ~�:

During the inflationary epoch �f � 0 and H 0 �H 2 ’
0, thus the solution to the above equation is

 

~���� ’
A1

a
sin�csk�� �

A2

a
cos�csk��; (83)

where we have defined c2
s �

c13

3�1�c13��c1�c3�
which is positive

according to Eq. (38); A1;2 are integration constants.
Meanwhile, during this epoch the scale factor a undergoes
exponential growth, which means that ~� decays exponen-
tially and its initial value is washed out soon.

In the radiation-dominated epoch, a / � and �f �
�� ��� � 0 (here subscripts �;� denote photon and neu-
trino, respectively). Now the homogeneous part of the Æ-
field EOM becomes

 

~� 00 �
2

�
~�0 �

2

�2
~�� c2

sk2 ~� � 0 (84)

whose solution is

 

~� gen��� �
B1

�2 	cos�csk��csk�� sin�csk��
 �
B2

�2

	sin�csk��csk�� cos�csk��
; (85)

where B1;2 are integration constants and a subscript gen

means the general solution. We can see that in the limit
csk� & 1~�gen decays as ~�gen � 1=�2 and when csk�� 1
it decreases as ~�gen � B1 cos�csk��=�� B2 sin�csk��=�.
Meanwhile there is a particular solution of ~� which in-
volves a weighted integration of �	�fa2�0 over time. Deep
into the radiation-dominated epoch, the decaying general
solutions of ~� have become negligible and the growing
particular solution is still tiny, so we can reasonably take
the initial conditions of ~� as ~�ini � ~�0ini � 0 in our nu-
merical calculations. We have checked that, for the scales
we are interested in, this choice of initial conditions is
robust and the numerical results are not sensitive to (not
dramatically) different initial conditions, and in Fig. 1 we
have depicted the time evolution of ~� at different scales (or
different k) for the model � � �c13 � 0:2. It can be seen
there that, at early times ~� remains close to zero; later it
grows as �	�fa2�0 deviates significantly from 0, and fi-
nally when �	�fa2�0 becomes tiny in the matter-
dominated era it undergoes a (oscillatory) decay again.

Now what kind of signatures will this behavior of ~�
imprint on the perturbation evolution? In order to answer
this question, we find it useful to rewrite the total density
perturbation, pressure perturbation, heat flux, and aniso-
tropic stress (with the contributions from the Æ-field in-
cluded) as follows:

 	Xa2 � 	Xtra
2 � 	Xntra

2; (86)

 	Xpa2 � 	Xp
tra

2 � 	Xp
ntra

2; (87)

 	qa2 � 	qtra2 � 	qntra2; (88)

 	�a2 � 	�tra
2 � 	�ntra

2; (89)

where the quantities with subscript tr
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 	Xtra2 � 	?Xfa2; (90)

 	Xp
tra

2 � 	?X
p;fa2; (91)

 	qtra2 � 	?qfa2; (92)

 	�tra2 � 	?�fa2 (93)

are the tracking parts because they are exact rescalings of
the corresponding quantities for the fluid matter [we re-
mind that 	? � 	=�1� 1

2��], while those with subscript ntr

are the nontracking parts expressed as

 	Xntra2 � �	?�fa2 �
�

1� 1
2�
�1� c13�k�~�0 � 2H ~��;

(94)

 

	Xp
ntra

2 � �
1

3
�	?�fa2

�
1

3

�

1� 1
2�
�1� c13�k�~�0 � 2H ~��; (95)

 	qntra
2 � �

1

3

�� 2c13

1� 1
2�

k2 ~�; (96)

 	�ntra2 � c13k�~�0 � 2H ~�� �
1

2
�	?�fa2; (97)

only the measured value 	? appears in the final expres-
sions. It can be easily checked that the tracking and non-
tracking parts satisfy the energy-momentum conservation
equation separately by utilizing the Æ-field EOM. In par-

ticular, the nontracking part effectively represents a purely
perturbed contribution to the total energy-momentum ten-
sor that has no background counterparts. We also note that
	Xp

ntra
2 � � 1

3	Xntra2.
Taking the time derivative of Eq. (44), using Eq. (45) to

eliminate the 
0 term and canceling the X0 appearing there
with Eq. (47), one arrives at the following evolution equa-
tion of Z:

 k�Z0 �HZ� � 1
2	�X � 3Xp�a2 � 0 (98)

or equally

 k�Z0 �HZ� � 1
2	?�X

f � 3Xp;f�a2 � 0; (99)

that is, the nontracking part does not contribute to the
evolution of Z. In this subsection we work in the CDM
frame where the 4-acceleration A � 0, and thus �0CDM �
�kZ [18] (where � �X=� is the density contrast) which
means the growth of matter perturbation is not affected by
the nontracking part. However, since 	Xntra2, which is
nonzero at early times, appears in Eq. (44), the values of
	?X

fa2 and Z in this equation are slightly modified that
change the subsequent evolution of Z a little. These can be
seen in Fig. 2, where we have displayed the matter power
spectrum of the Æ-model for different choices of parame-
ters. Obviously the spectrum depends weakly on the pa-
rameters; furthermore, its shape is essentially the same as
that in the �CDM model so that the parameters will

FIG. 1 (color online). The evolution of the Æ-field perturba-
tion ~� versus the cosmic scale factor a. We have shown it for 3
different scales k � 0:1, 0.01, and 0:001 Mpc�1, respectively, as
indicated beside the curves. The model parameters are � � 0:2,
c13 � �0:2, which satisfy the constraints, Eq. (38).

FIG. 2 (color online). The matter power spectrum of the Æ-
model considered in this work. From top to bottom the curves
correspond to ��; c13� � �0:5;�0:5�, �0:2;�0:2�, and (0, 0)
(which is just �CDM), respectively. The other parameters com-
mon for all curves are 	bh

2 � 0:0223, 	ch
2 � 0:1054, and h �

0:732, where 	b;c are the fractional energy density of baryons
and CDM, and h � H0=�100 km=s=Mpc�. The differences
among these spectra are small although their parameters are
quite different.
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degenerate with the bias relating the matter power spec-
trum to the observed spectrum of galaxies. In addition to
that, there is also the degeneracy with respect to the neu-
trino masses, since the latter affects its anisotropic stress
and the time at which they become nonrelativistic. Taken
together this indicates that the data for P�k� will not place
very stringent constraints on the Æ-model.

From Eqs. (41)–(43), one can see that �, �0, �0 are also
influenced by the nontracking part, and because these
variable determine the CMB power spectrum, we could
expect the latter to be modified by the presence of the Æ-
field as well. This is correct, as shown Fig. 3, where we
have plotted the CMB spectra for different choices of the
model. Obviously the CMB power spectrum is changed by
the Æ-field, though this effect is not very strong and so it
might be difficult to place stringent limits on the parameter
space of the theory.

There are two points that need to be noticed. First, in this
work we are assuming that the recent cosmic acceleration
is caused by a cosmological constant, the anisotropic stress
of which is zero. If in contrast the dark energy has a
nonzero anisotropic stress (as in [26–28]) then the Æ-field
perturbation ~� probably will not decay at late times, and
this might lead to further modifications of the CMB power
spectrum. Second, when f�K� is not simply a linear func-
tion of K, the Æ-field will be sourced by the evolution of
the gravitational potential as well, and its effects will be
more intricate and interesting. Such new features may
appear in more complicated models like TeVeS [2,5] and
Æ-fields with noncanonical kinetic terms [6].

In total, these results indicate that within the parameter
space, Eq. (37), the background cosmology of our Æ-
model is the same as in GR, while the CMB and matter
power spectra differ slightly from the predications of GR.
In principle, these features could be used to constrain the
parameters � and c13 of the present model. This will
generally involve a full search of the parameter space
using, for example, the Markov chain Monte Carlo
method, which is beyond the scope of this work.
However, as we discussed above, the constraints from the
linear spectra may not be very stringent anyway.

IV. DISCUSSION AND CONCLUSION

In this paper we have studied the cosmology of the
Einstein-Æ theory. After presenting the general field equa-
tions for such theories in the CGI formalism, we focused
on a specific class of models described in Eq. (34), and
confined ourselves to the parameter space of models de-
scribed by Eq. (38) which pass the PPN and Čerenkov
constraints. This parameter space is known to have the
same locally and cosmologically felt gravitational con-
stants (	0 � 	1, which are different from the true bare
	) and this tracking behavior indicates that we can consider
its background expansion just by using the measured value
	? � 	0 and ignoring the presence of the Æ-field [since
the only effect of the Æther field is to track other matter
species, the model in Eq. (34) clearly cannot explain dark
energy. More general models, such as the f�K� proposed in
[6] and our Sec. II, may serve this purpose].

We find that it is a general feature that the tracking
behavior not only occurs at the background level but also
at the linear order in perturbation theory. For example, the
quantity Xp;� � p0�

�0� X
� tracks that of the other matter

species on superhorizon scales. This indicates that, what-
ever type of perturbation is generated during inflation, the
presence of Æ-field will not alter it. In particular, in the
single-field inflation model we consider, no isocurvature
perturbation is produced. This is an important character-
istic, and it would be interesting to see whether similar
behavior occurs for general, higher-order choices of f�K�.

We generalized the analysis of primordial power spectra
for the Æ-theory [16] to our model. For the parameter
ranges which satisfy local gravity bounds, we find that
the evolution of the large-scale gravitational potential, �,
is unmodified as compared with that in GR, and show that
the primordial power spectrum of � also has the same form
as in GR [cf. Eq. (79)]. If we assume that the bare gravi-
tational constants in GR and in the Æ-model are the same,
then the magnitudes of the spectra are different in these
two models. However, contrary to the discussion in [16],
we argue that we do not know the true bare 	, but only
know the measured value, 	? � 	0. In both GR and our Æ-
model, 	0 is equal to the cosmological value 	1, while in
the latter 	 � 	1. As a result, we show that with the same
inflationary potential the primordial power spectra of � in

FIG. 3 (color online). The CMB power spectrum of the Æ-
model considered in this work. At l� 10 from top to bottom the
curves correspond to ��; c13� � �0:5;�0:5�, �0:2;�0:2�, and (0,
0) (which is just �CDM), respectively. The other parameters
common for all curves are 	bh

2 � 0:0223, 	ch
2 � 0:1054, and

h � 0:732, where 	b;c are the fractional energy density of
baryons and CDM, and h � H0=�100 km=s=Mpc�.
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these two models should have the same shape and the same
magnitude. Meanwhile, we also find that the power spec-
trum of tensor perturbations in our model is smaller in
magnitude than is predicted in GR, and so currently we
cannot use it to distinguish between GR and the Æ-model.

For the late-time evolution of the perturbations, it is
shown that the Æ-field perturbation is driven by the evo-
lution of the anisotropic photon and neutrino stresses—the
		?��� ����a2
0 term in its propagation equation—
although it is sourceless during inflation. Therefore, it
decays away exponentially during the inflationary era,
grows again in the radiation-dominated epoch when
		?��

� ����a2
0 is significant, and finally diminishes
again, oscillating when 		?��� ����a2
0 eventually be-
comes negligible. As a result, the CMB and matter power
spectra are modified by the existence of the Æ-field. We
also remark that, depending on the nature of the dark
energy, it is possible that the Æ-field perturbation will
have nontrivial dynamics driven by the �	?�DEa2�0 term,
where �DE is the possible dark-energy anisotropic stress
[26].

We also note that there recently appeared a later paper
[29] which investigated in details the structure formation of
the model proposed in [6]. In their Sec. V the authors
considered a simple power-law model f�K� � ���K�n in
which n � 1 corresponds to our Lagrangian, Eq. (34) (ex-
cept for the c4 term). They obtained criteria for there to be a
growing mode in the evolution of the (scalar-mode) Æ-
field perturbation. However, their criteria cannot be applied
directly to the model we consider here. To see why, note
that in Eq. (32) of [29] the quantities 
, � also contain V
(their V is equivalently our ~�). However, by their argument
the V terms in 
, � are suppressed by a small quantity FK
(which in our notation is just F) and are ultimately ne-
glected from the Æ-field equation of motion, their Eq. (43).
In our model, there is no argument that F� 1 (its magni-
tude actually is 1) and so we can no longer neglect the ~�
terms appearing in �, 
. When these are taken into
account we obtain a different equation of motion, i.e., the
bis in Eq. (43) of [29] are different in our work, and
consequently the criteria for the existence of growing
modes are different as well. In addition, are the facts that
we have a c4 term in our Lagrangian and use a different
parameter space, Eqs. (37) and (38), which also contribute
to the differences between our results and those in [29]. As
an aside, we stress that the key relation in our work, c14 �
��, is a consequence of Eq. (37) and has nothing to do
with whether or not the Æ-gravity waves propagate super-
luminally. In fact, we could do our calculation dropping the
constraint that these waves propagate superluminally, and
in this case the perturbation dynamics might place some
constraints on the parameter space; for example, in some
portion of the parameter space the growth of ~� may be-
come unstable. In our work we choose the parameters
leading to superluminal gravity waves simply to avoid

constraints from Čerenkov radiation. There are still some
debates about this kind of choice; see, however, [10] for a
different and conservative point of view.

There are also other general differences between the EA
model we consider here and the GEA model of [29]. First,
for the static and weak-field limit, the c4 term and the
choice of parameter space, Eq. (37), are crucial for the
EA model to evade PPN tests [10]; in [29] there is no c4

term, but the nonlinearity in the Æther field Lagrangian
guarantees that the local gravitational tests are not a prob-
lem because at high densities the modification is negli-
gible. Second, as we have seen above, our conclusion that
the primordial power spectrum of density perturbation is
unmodified compared with GR relies on the fact c14 � ��
so that the background expansion during inflation in our
model is the same as in GR (again the c4 term is crucial
here). If the c4 term is not included, the local and cosmo-
logical gravitational constants are different, meaning that
the background evolution during inflation is different from
GR; as a result the background quantities at horizon cross-
ing, which determine the observables in inflationary mod-
els through the slow-roll parameters, may be different from
those in GR—this means that the EA model will predict
different shape of primordial density spectrum other than
GR [30]. For the GEA model considered in [29], again the
nonlinear f�K�makes the modifications to GR during early
times small enough to be neglected, and as such the pri-
mordial power spectrum is also the same as in GR. Note
however that in the latter case [29] the late time evolution
of vector-field perturbation is also modified in a complex
way, making the corresponding cosmological behaviors
different from ours.

So, in conclusion, although the background expansion of
our Æ-model is exactly the same as that in GR, the cos-
mological data on CMB and matter power spectra can be
used to constrain the Æ-model. However, the constraint is
not expected to be very stringent because the linear pertur-
bation spectra depend weakly on the model parameters.
Other considerations of the behavior in strong gravitational
fields, such as those studies of the compact stars or black
holes [13,14], would enable better constraints on the
present model to be obtained. Also, as general interests
for cosmology, studies in more complicated Æ-field
Lagrangian as those performed in [29,31] need to be ex-
plored thoroughly.
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