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We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition
that this theory has identical parametrized post-Newtonian parameters as those for general relativity,
which is the main difference from the previous research. In contrast with previous study, we allow
superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having
a spin-0 ‘‘horizon’’ inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed
by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large
enough for black holes to be significantly different from Schwarzschild black holes with respect to
Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also
discuss whether or not the above features can be seen in more generic vector-tensor theories.
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I. INTRODUCTION

Identifying the contents of dark energy and dark matter
is one of the most important subjects in cosmology. It is
frequently argued that gravitational theories are an alter-
native to dark energy and dark matter. Recently, tensor-
vector-scalar (TeVeS) theories have attracted much atten-
tion since they do not only explain galaxy rotation curves
but also satisfy many constraints from solar experiments
[1]. Although a deficiency in explaining the mismatch
between luminous and dynamical masses in clusters of
galaxies by TeVeS has been pointed out [2], resolution of
this problem by considering a generalized vector-tensor
theory has also been reported [3]. Moreover, these vector
fields might explain an accelerated expansion of the uni-
verse [3,4] and might be important in inflationary scenarios
[5,6]. The origin of such a vector field is argued in [7].

However, it is nontrivial whether or not these theories
satisfy the constraints by strong gravity tests. Notice the
result for scalar-tensor theories where compact objects
have strong deviations from those in general relativity
(GR) even in the cases that satisfy weak field tests [8].
To study vector fields in a general form is difficult. For
example, results in TeVeS are still limited to special cases
such as [9]. Thus, as a first step, it is important to inves-
tigate a simplified model which is tractable and instructive
for general cases. One such useful model would be
Einstein-Aether (EA) theory [10], where all parametrized
post-Newtonian (PPN) parameters [11] can be the same as
those in GR [12]. EA theory is a vector-tensor theory, and
TeVeS can be written as a vector-tensor theory which is the
extension of EA theory [13]. In EA theory, strong gravita-
tional cases including black holes have been analyzed to
some extent [14–18].

Nevertheless, the analysis of black holes has been lim-
ited to the case in which the event horizon coincides with

the spin-0 horizon [15], and this case does not necessarily
satisfy weak fields tests. Thus, it is interesting to ask
whether or not significant differences from the
Schwarzschild black hole appear when weak fields tests
are satisfied. For this reason, we argue black holes with the
case in which the EA theory has identical PPN parameters
as in GR.

This paper is organized as follows. In Sec. II, we explain
EA theory and summarize constraints located by previous
research. In Sec. III, we mention our method of analyzing
black holes. In Sec. IV, we show the results and compare
them with the Schwarzschild black hole. In Sec. V, con-
sequences and future subjects are discussed. In the
Appendix, we summarize basic equations. We use units
in which c � 1 and follow the sign conventions of Misner,
Thorne, and Wheeler [19], e.g., ��;�;�;�� for metrics.

II. EINSTEIN-AETHER THEORY

A. Action and basic equations

We consider the following action [17]:

 I �
1

16�G

Z
d4x

�������
�g
p

L; (2.1)

 L � R� Kab
cdrau

crbu
d � ��u2 � 1�; (2.2)

 Kab
cd :� c1g

abgcd � c2�
a
c�

b
d � c3�

a
d�

b
c � c4u

aubgcd;

(2.3)

where ua is a vector field and u2 :� uaua. ci (i � 1, 2, 3, 4)
are theoretical parameters in EA theory. � is a Lagrange
multiplier ensuring the vector field ua to be unit timelike
vector everywhere.

Varying this action with respect to � and ua, we have

 u2 � 1 � 0; (2.4)

 c4 _umraum �rmJma � �ua � 0; (2.5)
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where

 Jam :� Kab
mnrbun; (2.6)

 _u b :� uarau
b: (2.7)

Multiplying Eq. (2.5) by ua, we have

 � � c4 _u2 � uarmJ
m
a: (2.8)

Varying the action with respect to the metric, we have

 Gab � rm�Jm�aub� � J�a
mub� � J�ab�um�

� c1�raumrbu
m �rmuar

mub� � c4 _ua _ub

� �uaub �
1

2
gabLu; (2.9)

where

 L u :� Kab
cdrau

crbu
d: (2.10)

B. Present constraints in EA theory

If we assume the weak field and slow-motion limits in
EA theory [12], we have to take Newton’s gravitational
constant as

 GN �

�
1�

c1 � c4

2

�
�1
G; (2.11)

to reproduce Newtonian gravity correctly. For all the PPN
parameters to coincide with those in GR, we have

 c2 �
�2c2

1 � c1c3 � c2
3

3c1
; c4 � �

c2
3

c1
: (2.12)

If we assume Friedmann-Robertson-Walker space-time
and the Aether is aligned with a cosmological rest frame,
the cosmological gravitational constant is given by [20]

 Gcosmo � G
�

1�
c� � 3c2

2

�
�1
; (2.13)

where c� :� c1 � c3. Using primordial 4He abundance,
we have

 jGcosmo=GN � 1j< 1=8: (2.14)

From the maximum mass of neutron stars �2M	
[21,22], we have c1 � c4 
 0:5� 1:6, depending on equa-
tion of state [18].

In [23], the sound modes are analyzed by expanding the
metric and the Aether around the Minkowski metric. As in
the case in GR, we have two spin-2 modes. As peculiar to
EA theory, there are three wave modes. Two correspond to
a transverse spin-1 mode, and one corresponds to a longi-
tudinal spin-0 mode. The squared speeds of them are
summarized as

 �s0�
2 �

c13

3�c1 � c3��1� c13�
; (2.15)

 �s1�
2 �

c1�2c1 � c
2
1 � c

2
3�

2�1� c13�c13�c1 � c3�
; (2.16)

 �s2�
2 �

1

1� c13
; (2.17)

where we eliminate c2 and c4 with Eq. (2.12).
For these sound velocities to be equal to or larger than

the photon velocity, or, to ensure stability against linear
perturbation in Minkowski (or Friedmann-Robertson-
Walker) background and linearized energy positivity, we
have [5,23–25]

 0< c� < 1; 0< c� :� c1 � c3 <
c�

3�1� c��
:

(2.18)

Radiation damping was also analyzed in [26,27], which
almost restricts c� as a function of c� based on the
observation of, say, B1913� 16 [28].

III. ANALYSIS IN A SINGLE-NULL COORDINATE
SYSTEM

Our purpose in investigating black holes in EA theory is
not to give a further restriction but to understand generic
features of vector-tensor theories under the condition that
weak gravity tests are satisfied. This is the main difference
from the previous research [15], which investigates black
holes with the parameters [29]

 c2 �
��c1 � c3�

2�c1 � c4� � 2�c3 � c4�

�c1 � c4��3c3 � 4c4 � c1� � 2
(3.1)

and c3 � �c4, or c3 � �2c4 � c1, or c3 � �c1. In these
parameters, qualitative differences from Schwarzschild
black holes have been shown. It is nontrivial whether or
not this is true even for the case which satisfies weak
gravity tests.

From this point of view, we take the following strategy.
(i) We assume (2.12) since the constraints by the solar
experiments are severe. (ii) We assume (2.18). Otherwise,
a naked singularity appears outside the event horizon in
general. As for other constraints, notice that (2.14) is
satisfied if (2.12) is satisfied. Constraints from neutron stars
and from radiation damping are related to strong gravity
tests at least partially. For the above reasons, we do not
impose these constraints. Thus, we have two theoretical
parameters �c�; c�� with the condition (2.18).

We write a static and spherically symmetric line element
in a single-null coordinate system as,

 ds2 � �N�r�dv2 � 2B�r�dvdr� r2d�2: (3.2)

In this coordinate, the vector field takes the form of
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 u � a�r�@v � b�r�@r: (3.3)

b�r� � 0 means that the Aether is not aligned with the
timelike Killing field, which is inevitable because of the
event horizon. From Eq. (2.4),

 � Na2 � 2Bab � �1: (3.4)

We can eliminate � with Eq. (2.8). Then, from the
Einstein and Aether equations, we obtain basic equations,
which can be written schematically as

 N0 � f1�B;N; a; a
0�; (3.5)

 B0 � f2�B;N; a; a0�; (3.6)

 a00 � f3�B;N; a; a0�; (3.7)

where the prime denotes the derivative with respect to r.
Here, we have eliminated b with Eq. (3.4). The explicit
form is summarized in the Appendix.

The boundary condition at the horizon rh is N�rh� � 0.
We set B�rh� � 1. We can also set rh � 1 since there is no
scale in the present theory. In this sense, it is assumed that
the area coordinate r is normalized by the horizon radius
below.

If we use a rescaling freedom of v as dv0 � B�1�dv, the
asymptotic form of the metric is written as

 ds2 � �
N�1�

B�1�2
dv02 � 2dv0dr� r2d�2: (3.8)

Thus, the boundary condition at spatial infinity for the
asymptotic flatness is

 N�1� � B�1�2: (3.9)

We should require

 b�1� � 0; (3.10)

for the Aether to be aligned with the timelike Killing field.
Then, by Eq. (3.4), we have

 a�1� �
1

B�1�
: (3.11)

We can determine the pair of ah :� a�rh� and a0h :� a0�rh�
as shooting parameters, one of which is fixed by (3.11).
Thus, there remains one freedom. Fixing this freedom is
done as follows.

Even in the spherically symmetric case, there is a spin-0
mode. Then, we can define the effective metric for a spin-0
mode as

 g�0�ab � gab � ��s0�
2 � 1�uaub: (3.12)

We call the horizon associated with this metric as the spin-
0 horizon. The freedom mentioned above is fixed by the
requirement that the regularity at the spin-0 horizon which
is inside the event horizon.

However, since the asymptotic observer is insensitive to
the regularity at the spin-0 horizon, we permit the singu-
larity at the spin-0 horizon. For this reason, we leave one
freedom. In concrete terms, we obtain ah iteratively for
some a0h, which is regarded as a free parameter. We use the
Bulirsch-Stoer method in our numerics [30].

IV. PROPERTIES OF SOLUTIONS

A. Mass and Hawking temperature of EA black hole

We show several asymptotically flat solutions in
Figs. 1(a)–1(c) for c� � 0:4 and c� � 0:1. In the figures,
we have selected five solutions. The differences of these
solutions are the changing boundary value a0h, ranging
from �1 to 1, as denoted in the figures. Figure 1(a) shows
that we can determine an ah that satisfies the asymptotic
condition (3.11) for various values of a0h. We also show
B�r� in Fig. 1(b). Since B�r� � const � 1 for a
Schwarzschild black hole, it indicates that there are differ-
ences in physical quantities from those for Schwarzschild
black holes. Figure 1(c) shows a ‘‘mass’’ function. In AE
theory, it is important to distinguish different notions of
mass. If we define the mass function m�r� by

 m�r� :�
r

2G

�
1�

N

B2

�
; (4.1)

we can interpret m�1� as ADM mass MADM. As we can
see, m�r� monotonically decreases. Our calculation sug-
gests that this is generic. This is not surprising since energy
conditions are not necessarily satisfied in EA theory [25].

Since Fig. 1 shows that the deviation from the
Schwarzschild black hole is largest for the smallest value
of a0h, it is natural to ask whether or not there is a lower
limit a0h;crit below which there is no regular solution. We
show the relation a0h and MADM for various values of c�
and c� in Fig. 2(a). Typically,MADM is smaller than that of
a Schwarzschild black hole by about 10%, which is con-
sistent with the result in [15]. Here, we obtain ah iteratively
to satisfy Eq. (3.9) for each a0h. For a0h < a0h;crit, we cannot
find an appropriate value of ah. a0h;crit depends on c� and
c�. As a0h approaches a0h;crit, dMADM=da0h tends to diverge.
Since we obtain solutions numerically, it is nontrivial
whetherMADM is bounded or not from below. In particular,
it is important to reveal the positivity of MADM. However,
since the energy conditions are not guaranteed [25], we
cannot prove it at present.

For MADM, the difference caused by the change of c� is
not clear. We can define total energy Mtot by GNMtot �
GMADM since the gravitational constant we feel is different
from that in GR as seen in Eq. (2.11). We also exhibit the
relation a0h �Mtot in Fig. 2(b). This figure shows the
differences caused by the change of c�. Mtot decreases as
c� increases as similar to c�.

If we contemplate these diagrams from a different view-
point, we notice that the horizon radius of black holes in
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EA theory is larger than that of a Schwarzschild black hole
for fixed GMtot (or GMADM). Therefore, one might think
that black holes in EA theory have larger entropy.

However, since we have the Lorentz violating field, it is
nontrivial to establish black hole thermodynamics [31,32].
Thus, the comparison of the black hole entropy, which is

to
t

FIG. 2 (color online). (a) a0h vs GMADM and (b) a0h vs GMtot for several sets of c� and c�. Physical quantities are normalized by the
horizon radius rh. Notice that there is a lower limit a0h;crit below which there is no regular solution. Near a0h;crit, GMADM, and GMtot

depend on a0h remarkably.

FIG. 1 (color online). Field configurations for c� � 0:4 and c� � 0:1. Denoted numbers in each figure, ranging from �1 to 1,
represent the values of a0h. We normalize the quantities Gm and r by the horizon radius rh. The solution with the smallest a0h has largest
deviation from a Schwarzschild black hole.
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crucial to discuss the stability of black holes, belongs
among our future tasks.

It is also important to reveal what happens at the critical
point, a0h � a0h;crit. The key point is the factor ��1� Na2�

in the denominator in (A4). For a0h � a0h;crit, ��1� Na2�

becomes zero at finite r. Thus, solutions disappear. We also
show the a0h dependence of Hawking temperature TH for
c� � 0:6 and c� � 0:1 in Fig. 3. From this diagram, it is
supposed that TH diverges for the solution at a0h � a0h;crit.
Thus, It is intriguing to consider an evaporation process of
such black holes.

B. ISCO of EA black hole

We shall turn to more realistic problems. We consider
the possibility of distinguishing black holes in EA theory
from Schwarzschild black hole by observation. In
Ref. [18], the innermost stable circular orbit (ISCO) for
neutron stars in EA theory was analyzed. The result is that
the deviation from the Schwarzschild black hole is at most
several percent. But this is not necessarily the case in the
present situation, as shown below. The differences occur
since we have the freedom parametrized by a0h and the
Aether is not static. These facts will be important if we
consider observations such as Constellation-X [33], which
tracks the motion of individual elements near black holes.

From an equation for timelike geodesics for a unit mass
particle, we have effective potential V as

 V�r� �
N

B2

�
L2

r2 � 1
�
; (4.2)

where L is the angular momentum normalized by the
horizon radius.

We show the typical configurations of V in Fig. 4 for EA
theory (with c� � 0:6, c� � 0:1, and a0h � 0:78 ’ a0h;crit)
and for GR (Schwarzschild black hole), where the angular
momentum of the test particle L is fixed as L � 1:5. We
find that a potential minimum exists even for L � 1:5 in
EA theory.

We show the dependence of rISCO (normalized by rh) on
a0h in Fig. 5(a). Notice that rISCO � 3 for the Schwarzschild
black hole. Therefore, the difference is nearly 10% for a0h ’
a0h;crit. It is also impressive to write the ISCO normalized by
GMtot (or GMADM), which is shown in Fig. 5(b). In this
case, we can find the difference from the Schwarzschild
black hole (rISCO=GMADM � 6) is more than 20%.

Finally, let us comment on the parameter region of
�c�; c�� in which black hole solutions exist. We obtained
solutions even for c�, c� > 1, which seems to conflict with
the previous results [15]. However, since we do not assume
regularity at the spin-0 horizon against the case in [15], it is
not inconsistent. The qualitative properties are the same as
in other parameter regions, although quantitative differ-
ences from Schwarzschild black holes become larger for
large �c�; c�� as we expect from Fig. 2. These features are
the same as in [15] where the consistency with the weak
gravity tests are not necessarily imposed.

FIG. 4 (color online). The potential V for EA theory (c� �
0:6, c� � 0:1, and a0h � 0:78 ’ a0h;crit) and for a Schwarzschild
black hole where the angular momentum of the test particle L
(normalized by rh) is fixed by L � 1:5. There is a potential
minimum in EA theory while there is none for a Schwarzschild
black hole.

FIG. 3 (color online). Hawking temperature TH (normalized
by rh) for c� � 0:6 and c� � 0:1 suggesting that TH diverges
for the solution at a0h;crit.
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V. CONCLUSION AND DISCUSSION

We have reanalyzed black hole solutions in EA theory
while assuming that all the PPN parameters are the same as
those for GR, resulting in two theoretical parameters c�
and c�. This is a main difference from the previous study
[15]. As another difference, we do not assume regularity at
the spin-0 horizon since this is inside the event horizon.
Interestingly, we find a0h;crit below which there is no regular
black hole solution. Near a0h;crit, the deviation of black hole
mass Mtot (or MADM) and ISCO rISCO from those for the
Schwarzschild black hole becomes large.

These results are instructive for other cases. If we con-
sider the case with rotation, freedom of the vector field is
added to (3.3). Then, it also contributes the kinetic term of
the vector field, enhancing the differences from the vacuum
solution. This would also be true in other vector-tensor
theories. For this reason, it is important to consider rota-
tional black holes in vector-tensor theories, if we are to
constrain them.

Although we have revealed many properties of EA black
holes, some important problems remain to be investigated.
One is the positivity of the energy, which is necessary for
the stability of the system. Related to this, to establish the
black hole thermodynamics is also important. As a con-
sistency check, we should also perform the linear pertur-
bation for the black holes [34].

The other is whether or not regular spin-0 horizon
happens as a result of gravitational collapse. In [17], it is
shown that regular spin-0 horizon happens if we consider a
gravitational collapse of a massless scalar field. Thus, it is
important to investigate this feature in a general case. It is
also interesting to investigate the critical behavior of such a
system [35]. Of course, these are not problems particular
only to EA theory but also issue confronting in more
generic vector-tensor theories. Thus, it is desirable to in-
vestigate them in a unified way.
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APPENDIX: BASIC EQUATIONS FOR EINSTEIN-
AETHER SYSTEM

The equation for N is

 

X6

i�0

Hiai � 0; (A1)

where

 H6 � c���3c� � c��N
2 � 2�3c� � c��rNN

0

� �3c� � c��r2N02;

H5 � 2c�rN��3c� � c��N � �3c� � c��rN
0�a0;

H4 � �12�c� � c��B�r�2 � 2��3c���2� c��

� c��6� c���N � 2�3c���2� c��

� ��6� c��c��rN0 � �3c� � c��c�r2N2a02;

H3 � �2c��3c� � c��r2N0a0;

H2 � �c�a
2��3c� � c� � 2�3c� � c��r

2Na02�;

H1 � �2c��3c� � c��ra0;

H0 � �3c� � c��c�r
2a02:

(A1) is the quadratic equation for N0 (notice H6). If we
solve (A1) about N0, we obtain the equation which satisfies
asymptotically flatness as

FIG. 5 (color online). The a0h dependence of the innermost stable circular orbit (ISCO) for EA theory with c� � 0:6 and c� � 0:1.
(a) ISCO normalized by rh. (b) ISCO normalized by GMtot and GMADM.
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 N0 �

P3
i�0 hia

i � 2
���
3
p ����

X
p

�3c� � c��c�ra3 ; (A2)

where

 h3 � �c��3c� � c��N; h2 � c��c� � 3c��rNa
0;

h1 � 3c��c� � 2� � �c� � 6�c�; h0 � c��3c� � c��ra0;

X � ��3c2
��c� � 1� � �c� � 3�c2

� � c�c��6� 4c� � c2
���a

2 � c���3c2
� � 2c�c� � c2

��B
2

� 2c��c� � c� � c�c��N�a
4 � c�c

3
�N

2a6 � c��3c
2
��c� � 1� � c��c� � 4�c� � c

2
��raa

0

� c��3c2
��c� � 1� � c��c� � 2�c� � c2

��rNa
3a0 � c�c

3
�r

2a02:

Notice the denominator in (A2). For c� � 3c�, we should use (A1).
The equation for B is

 B0 �
B
P8
i�0 gia

i

Y
; (A3)

where

 g8 � �c��3c2
��c� � 1� � c��c� � 2�c� � c2

��N��3c� � c��N
2 � 2�3c� � c��rNN0 � �3c� � c��r2N02�;

g7 � 2c��3c
2
��c� � 1� � c��c� � 2�c� � c

2
��rN

2��3c� � c��N � �3c� � c��rN
0�a0;

g6 � �f12�3c3
��c� � 1� � c��c� � 1�c2

� � c
3
� � c

2
�c��4c� � 5��B2N � ��c3

��12� c�� � c�c2
��12� 19c� � 3c2

��

� 9c3
��4� 9c� � 5c2

�� � 3c2
�c��20� 33c� � 8c2

���N
2 � 4��3c3

� � c�c
2
��3� 9c� � 2c2

��

� 9c3
��1� 3c� � 2c2

�� � 3c2
�c��5� 12c� � 4c2

���rNN
0 � c��27c3

��c� � 1� � 21c2
�c� � c

3
�

� c�c
2
��7� 5c���r

2N02 � c���9c3
��c� � 1� � 3c2

�c� � c���5� c��c
2
� � c

3
��r

2N3a02g;

g5 � �2c�rNf�27c3
��c� � 1� � c3

� � c�c
2
��13� 5c�� � 3c2

�c���13� 6c���N � 2�18c3
��c� � 1�

� 3c2
���5� c��c� � c

3
� � c�c

2
��4� 3c���rN0ga0;

g4 � 12�9c3
��c� � 1� � c3

� � c�c
2
���11� 3c�� � c

2
�c���19� 12c���B

2 � �c3
��12� c��

� 9c3
��12� 19c� � 7c2

�� � c�c
2
��132� 65c� � 9c2

�� � 3c2
�c��76� 79c� � 16c2

���N � 2���c� � 6�c3
�

� c�c
2
��66� 31c� � 5c2

�� � 27c3
��2� 3c� � c

2
�� � 3c2

�c��38� 37c� � 6c2
���rN

0 � c��45c3
��c� � 1�

� 3c3
� � 3c2

�c���13� 4c�� � c�c2
��9� 7c���r2N2a02;

g3 � �2c�rf�9c3
��c� � 1� � c3

� � c�c
2
��1� c�� � 3c2

�c���3� 2c���N � ��27c3
��c� � 1� � c3

�

� 3c2
�c��5� 2c�� � c�c

2
���11� 5c���rN

0ga0;

g2 � �c�f27c3
��c� � 1� � c3

� � c�c
2
���17� 5c�� � 3c2

�c���15� 8c�� � ��63c3
��c� � 1� � 3c3

�

� 3c2
�c��11� 4c�� � c�c

2
���27� 11c���r

2Na02g;

g1 � �2c���27c3
��c� � 1� � 3c2

��13� 6c��c� � c
3
� � c�c

2
��13� 5c���ra0;

g0 � �c��27c3
��c� � 1� � 21c2

�c� � c
3
� � c�c

2
��7� 5c���r

2a02;

Y � 12�c2
��c� � 1� � c��c� � 2�c� � c

2
��ra

2f2��3c��c� � 1� � c��Na
2 � �3c��c� � 1� � c���N

2a4 � 1�g:

The equation for a is

 a00 �

P13
i�0 fia

i

c�r��1� Na2�Y
; (A4)

where
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 f13 � 2c�c
4
�N

3��3c� � c��N
2 � 2�3c� � c��rNN

0 � �3c� � c��r
2N02�;

f12 � 4c�c4
�rN

4��3c� � c��N � �3c� � c��rN0�a0;

f11 � c2
�N

2f�24c�c��c� � c��B
2N � �9c3

��c� � 1� � 7c3
� � c�c

2
��17� 7c�� � 3c2

�c���5� 8c���N
2

� 2�9c3
��c� � 1� � c��13� 5c��c2

� � 7c3
� � 3c2

�c��1� 4c���rNN0 � �9c3
��c� � 1� � 3c2

��5� 12c��c�

� 7c3
� � c�c

2
��17� 3c���r

2N02 � 2c��3c� � c��c
2
�r

2N3a02g;

f10 � c2
�rN

2f�9c3
��c� � 1� � 15c3

� � 3c2
�c��9� 4c�� � c�c2

��3� 5c���N2 � 16c���2c�c� � c2
�

� c2
���3� 6c���rNN0 � ��9c3

��c� � 1� � 3c2
�c� � c���5� c��c2

� � c
3
��r

2N02ga0;

 f9 � c�N��12�3c3
��c� � 1� � c��3� 7c��c

2
� � 3c3

� � c
2
�c��3� 4c���B

2N � 2��18� 13c��c
3
�

� 3c2
�c���6� 7c�� � c�c2

��18� 37c� � 3c2
�� � 9c3

��2� 5c� � 3c2
���rNN

0 � 6c���3c3
��c� � 1�

� 7c�c
2
� � c

3
� � c

2
�c���5� 9c���r

2N02 � 3c��3c
3
��c� � 1� � c���5� c��c

2
� � 3c3

�

� c2
�c���11� 20c���r

2N3a02 � 2N2f2�9c3
��c� � 1�2 � c3

��3� 5c�� � c�c
2
��3� 10c� � 2c2

��

� 3c2
�c���5� c� � 3c2

��� � c���9c3
��c� � 1� � 3c2

�c� � c���5� c��c2
� � c

3
��r

3N0a02g�;

f8 � c�rNa
0f12�3c3

��c� � 1� � c��c� � 1�c2
� � c

3
� � c

2
�c��4c� � 5��B2N � 2�c3

���6� 7c��

� c�c2
��6� 23c� � c2

�� � 9c3
��2� 5c� � 3c2

�� � 3c2
�c��10� 25c� � 12c2

���N
2 � 12�3c3

��c� � 1�2

� c3
� � c�c

2
��1� 10c�� � c

2
�c��5� 4c� � 13c2

���rNN
0 � 4c�c��9c

2
��c� � 1� � 6c�c�

� c2
��3� c���r

2N02 � c���9c3
��c� � 1� � 3c2

�c� � c���5� c��c2
� � c

3
��r

2N3a02g;

 f7 � c��24�3c3
��c� � 1� � c��3� 4c��c2

� � 3c3
� � c

2
�c��3� c���B2N � 2c��27c3

��c� � 1� � c2
���48� 5c��

� c�c���96� 47c� � c
2
�� � 3c2

���16� 5c� � 4c2
���rNN

0 � �c3
��12� c�� � c�c

2
��12� 13c� � c

2
��

� 9c3
���4� 3c� � c2

�� � 3c2
�c��20� 13c� � 8c2

���r
2N02 � 4c���9c3

��c� � 1� � 2c3
� � c�c

2
��29� c��

� 6c2
�c���6� 7c���r

2N3a02 � 2N2f�9c3
��2� c�� � c�c

2
���18� 21c� � c

2
�� � 9c3

��2� 5c� � 3c2
��

� 3c2
�c���6� 5c� � 4c2

�� � c��45c3
��c� � 1� � c3

� � 3c2
�c���11� 2c�� � c�c2

��13� 5c���r3N0a02g�;

f6 � c�ra0f�48c��3c2
��c� � 1� � �c� � 3�c2

� � 2c�c���3� 2c���B2N � 4c���27c3
��c� � 1�

� 6c2
��10� 7c��c� � 4c3

� � c�c
2
��37� c���N

2 � 8�c3
��3� 2c�� � 9c3

���1� c2
��

� c�c2
���3� 8c� � 2c2

�� � 3c2
�c��5� 2c� � 3c2

���rNN
0 � c��27c3

��c� � 1� � 21c2
�c� � c

3
�

� c�c
2
��7� 5c���r

2N02 � 2c��27c3
��c� � 1� � c3

� � 3c2
�c���7� 2c�� � c�c

2
��7� 3c���r

2N3a02g;

 f5 � �2�18��c� � 4�c3
� � c

2
�c���12� 7c�� � c�c2

��12� 5c� � c2
�� � c

3
���4� 3c� � c2

���B
2

� ��c3
���72� 30c� � c

2
�� � 9c3

��8� 10c� � c
2
� � c

3
�� � c�c

2
��216� 150c� � 23c2

� � c
3
��

� 3c2
�c��72� 70c� � 11c2

� � 2c3
���rN

0 � c���6� 5c��c
3
� � c�c

2
��66� 119c� � 7c2

��

� 27c3
��2� 3c� � c2

�� � 3c2
�c��38� 65c� � 40c2

���r
2N2a02 � Nf�2c3

���36� 9c� � c2
��

� 18c3
��4� 5c� � c

3
�� � c�c

2
���216� 126c� � 16c2

� � c
3
�� � 3c2

�c���72� 66c� � 6c2
� � c

3
��

� c2
��63c3

��c� � 1� � 45c2
�c� � c

3
� � c�c

2
��19� c���r3N0a02g�;

f4 � �2c�ra
0f�6�9c3

��c� � 1� � c3
� � c�c

2
��3c� � 11� � c2

�c���19� 12c���B
2 � ��6� 7c��c

3
�

� c�c2
��66� 73c� � 7c2

�� � 9c3
��6� 11c� � 5c2

�� � 3c2
�c��38� 55c� � 22c2

���N

� 6��c3
� � c

2
�c���19� 8c�� � c�c2

���11� 2c� � c2
�� � 3c3

���3� 2c� � c2
���rN

0

� 2c�c��27c2
��c� � 1� � 18c�c� � ��9� c��c

2
��r

2N2a02g;
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 f3 � c�f�36c3
� � 84c2

�c� � 27c3
�c� � 60c�c

2
� � 39c2

�c
2
� � 9c3

�c
2
� � 12c3

� � 13c�c
3
� � c

4
� � c�c

4
�

� 2�4c3
��3� c�� � 18c3

��6� 7c� � c2
�� � c�c

2
��132� 110c� � 3c2

�� � 3c2
�c��76� 80c� � 31c2

���r
2Na02

� 2c���27c3
��c� � 1� � c3

� � 3c2
�c��5� 2c�� � c�c

2
���11� 5c���r

3N0a02g;

f2 � c�ra0fc4
� � c�c

2
��144� 41c� � 7c2

�� � 9c3
��16� 19c� � 3c2

�� � 3c2
�c��96� 71c� � 12c2

��

� 2c���45c3
��c� � 1� � c3

� � 3c2
�c��9� 2c�� � c�c

2
���17� 3c���r

2Na02g;

f1 � �c����36� c��c3
� � 9c3

��12� 13c� � c2
�� � c�c

2
��36� 35c� � 11c2

�� � 3c2
�c��60� 51c� � 20c2

���r
2a02;

f0 � �c2
��27c3

��c� � 1� � 21c2
�c� � c

3
� � c�c

2
��7� 5c���r3a03:

If we remove N0 from (A3) and (A4), we can write them as
the form in (3.6) and (3.7). Since it is too tedious, we do not
perform it. From (A2) to (A4), we obtain the asymptotic
form for r! 1 as

 N�r� � B�/�2 �
N1

r
� � � � ; (A5)

 B�r� � B�1� �
B1

r2 � � � � ; (A6)

 a�r� �
1

B�1�
�
a1

r
� � � � ; (A7)

where N1, B1, and a1 are constants.
We should be careful about ��1� Na2� in the denomi-

nator in (A4) since (3.9) and (3.11) show that ��1� Na2�
asymptotically approaches zero. However, since ��1�
Na2� / 1=r for r! 1, this is canceled by r in the de-
nominator in (A4).
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