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Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation
from charged black holes using only covariant gauge and gravitational anomalies. The reliability and
universality of the anomaly cancellation approach to Hawking radiation is also discussed.
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I. INTRODUCTION

Hawking radiation is an important quantum effect in
black hole physics. Specifically, it arises in the background
spacetime with event horizons. The radiation has a spec-
trum with Planck distribution giving the black holes one of
its thermodynamic properties that make it consistent with
the rest of physics. Hawking’s original result [1] has since
been rederived in different ways thereby reinforcing the
conclusion to a certain extent. However, the fact that no
one derivation is truly clinching has led to open problems
leading to alternative approaches with fresh insights.

An anomaly in quantum field theory is a breakdown of
some classical symmetry due to the process of quantization
(for reviews, see [2–4]). Specifically, for instance, a gauge
anomaly is an anomaly in gauge symmetry, taking the form
of nonconservation of the gauge current. Such anomalies
characterize a theoretical inconsistency, leading to prob-
lems with the probabilistic interpretation of quantum me-
chanics. The cancellation of gauge anomalies gives strong
constraints on model building. Likewise, a gravitational
anomaly [5,6] is an anomaly in general covariance, taking
the form of nonconservation of the energy-momentum
tensor. There are other types of anomalies but here we
shall be concerned with only gauge and gravitational
anomalies. The simplest case for these anomalies which
is also relevant for the present analysis, occurs for 1� 1
dimensional chiral fields.

Long back Christensen and Fulling [7] reproduced
Hawking’s result by exploiting the trace anomaly in the
energy-momentum tensor of quantum fields in a
Schwarzschild black hole background. The use of anoma-
lies, though in a different form, has been powerfully res-
urrected recently by Robinson and Wilczek [8]. They
observed that effective field theories become two dimen-
sional and chiral near the event horizon of a Schwarzschild
black hole. This leads to a two dimensional gravitational
anomaly. The existence of energy flux of Hawking’s radia-
tion is necessary to cancel this anomaly. The method of [8]
was soon extended to charged black holes [9] by using the
gauge anomaly in addition to the gravitational anomaly.

Further advances and applications of this approach may be
found in a host of papers [10–25], including a recent
review [26].

The approach of [8,9] is based on the fact that a two
dimensional chiral (gauge and/or gravity) theory is anoma-
lous. Such theories admit two types of anomalous currents
and energy-momentum tensors; the consistent and the co-
variant [2–4]. The covariant divergence of these currents
and energy-momentum tensors yields either the consistent
or the covariant form of the gauge and gravitational anom-
aly, respectively [2–6,27,28]. The consistent current and
anomaly satisfy the Wess-Zumino consistency condition
but do not transform covariantly under a gauge transfor-
mation. Expressions for the covariant current and anomaly,
on the contrary, transform covariantly under gauge trans-
formation but do not satisfy the Wess-Zumino condition.
Similar conclusions also hold for the gravitational case,
except that currents are now replaced by energy-
momentum tensors and gauge transformations by general
coordinate transformations. In [8,9] the charge and the
energy-momentum flux of the Hawking radiation is ob-
tained by a cancellation of the consistent anomaly.
However the boundary condition necessary to fix the pa-
rameters are obtained from a vanishing of the covariant
current at the event horizon.

In this paper we generalize the method of [8,9] by
presenting a unified description totally in terms of cova-
riant expressions. This discussion is specifically done for
Hawking radiation from charged black holes. The charge
flux is determined by a cancellation of the covariant gauge
anomaly while the energy-momentum flux is fixed by
cancellation of the covariant gravitational anomaly.
These are the only inputs. Also, we show that the analysis
of [8,9] is resilient and the results are unaffected by taking
more general expressions for the consistent anomaly which
occur due to peculiarities of two dimensional spacetime.

II. GENERAL DISCUSSION ON COVARIANT AND
CONSISTENT ANOMALIES

Here we briefly summarize some results on anomalies
highlighting the peculiarities of two dimensional space-
time. First, the consistent gauge anomaly as taken in [8,9]
is considered,
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where ���� corresponds to left(right)-handed fields, re-
spectively. Here g�� is the two dimensional (r� t) part of
the complete Reissner-Nordstrom metric given by [8,9]

 ds2 � f�r�dt2 �
1

f�r�
dr2 � r2d�2

�d�2�: (2)

so that �g � � detg�� � 1 and d�2
�d�2� is the line ele-

ment on the �d� 2� sphere. The gauge potential is defined
as A � � Q

r dt.
Now a word regarding our conventions. As is evident

from (1) the antisymmetric tensor ���� differs from its
numerical counterpart ��� (�01 � ��01 � 1) by the factor�������
�g
p

. Since here
�������
�g
p

� 1, the two get identified.
Henceforth we shall always use ���, omitting the

�������
�g
p

factor.
The current J� in (1) is called the consistent current and

satisfies the Wess-Zumino consistency condition.
Effectively this means that the following integrability con-
dition holds [2,27];

 

�J��x�
�A��y�

�
�J��y�
�A��x�

: (3)

The covariant divergence of the consistent current yields
the consistent anomaly. The structure appearing in (1) is
the minimal form, since only odd parity terms occur.
However it is possible that normal parity terms appear in
(1). Indeed, as we now argue, such a term is a natural
consequence of two dimensional properties.

To fix our notions, consider the interaction Lagrangian
for a chiral field  in the presence of an external gauge
potential A� in 1� 1 dimensions,

 L I � � 
�
1� �5

2

�
��A

� : (4)

Using the property of two dimensional �-matrices,

 �5�
� � ������; (5)

it is found that A� couples as a chiral combination �g�� �
����A�. Note that the usual flat space identity (5) holds due
to the specific structure of the two dimensional metric.
Hence the expression for the anomaly in (1) generalizes to

 r� �J� � @� �J� � �
e2

4�
@	���

	
 � g	
�A
�: (6)

This is a nonminimal form for the consistent anomaly
dictated by the symmetry of the Lagrangian, and has
appeared earlier in the literature [6]. It is clear that if J�

is a consistent current then �J�, which is given by

 

�J � � J� �
e2

4�
A� (7)

is also a consistent current since the extra piece satisfies the
integrability condition (3).

It is possible to modify the new consistent current (7), by
adding a local counterterm, such that it becomes covariant,

 

~J � � �J� 	
e2

4�
A	��	� � g	��: (8)

The current ~J� yields the gauge covariant anomaly,

 r� ~J� � �
e2

4�
�	
F	
: (9)

Note that the covariant current (8) does not satisfy the
Wess-Zumino consistency condition since the counterterm
violates the integrability condition (3). Moreover the gauge
covariant anomaly (9) has a unique form dictated by the
gauge transformation properties. This is contrary to the
consistent anomaly which may have a minimal (1) or
nonminimal (6) structure.

Now we will concentrate our attention on the gravity
sector. If we omit the ingoing modes the energy-
momentum tensor near the horizon will not conserve,
while there is no difficulty in the region outside the hori-
zon. The analysis [8,9] for obtaining the flow of energy-
momentum tensor was done by using the minimal form of
the consistent d � 2 anomaly [3,5,6,28], for right-handed
fields,

 r�T
�
� �

1

96�
�
�@�@	�	�
; (10)

Here we consider the general form for d � 2 consistent
gravitational anomaly. It is worthwhile to point out that the
consistent gravitational anomaly and the consistent gauge
anomaly are analogous satisfying similar consistency con-
ditions. This is easily observed here by comparing (10)
with (1) where the affine connection plays the role of the
gauge potential. We therefore omit the details and write the
generalized anomaly by an inspection of (6) on how to
include the normal parity term. The result is

 r� �T�� �
1

96�
@�@	���
� � g
���	�
� �A�: (11)

The covariant energy-momentum tensor, on the other
hand, has the divergence anomaly,

 r� ~T�� �
1

96�
���@

�R � ~A�: (12)

This is called the covariant anomaly as distinct from the
consistent anomaly (10).

III. COVARIANT GAUGE ANOMALY AND
CHARGE FLUX

The current is conserved outside the horizon so that
r� ~J�

�o� � @� ~J�
�o� � @r~Jr�o� � 0. Near the horizon there

are only outgoing (right-handed) fields and the current
becomes (covariantly) anomalous (9),
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The solution in the different regions is given by

 

~J r
�o� � co; (14)

 

~J r
�H� � cH �

e2

2�
�At�r� � At�r���; (15)

where co and cH are integration constants.
The current is now written as a sum of two contributions

from the two regions, ~J� � ~J�
�o���r� r� � �� �

~J�
�H�H,

where H � 1���r� r� � ��. Then by using the con-
servation equations, the Ward identity becomes
 

@� ~J� � @r~Jr

� @r

�
e2

2�
AtH

�
� ��r� r� � ��




�
~Jr�o� � ~Jr�H� �

e2

2�
At

�
: (16)

To make the current anomaly free the first term must be
canceled by quantum effects of the classically insignificant
ingoing modes. This is the Wess-Zumino term induced by
these modes near the horizon. Effectively it implies a
redefinition of the current as ~J0r � �~Jr � e2

2�AtH� which
is anomaly free provided the coefficient of the delta func-
tion vanishes, leading to the condition,

 co � cH �
e2

2�
At�r��: (17)

The coefficient cH is fixed by requiring the vanishing of the
covariant current at the horizon. This yields cH � 0 from
(15). Hence the value of the charge flux is given by

 co � �
e2

2�
At�r�� �

e2Q
2�r�

: (18)

This is precisely the current flow of the Hawking black-
body radiation with a chemical potential [9].

IV. COVARIANT GRAVITATIONAL ANOMALY
AND ENERGY-MOMENTUM FLUX

In the presence of a charged field the classical energy-
momentum tensor is no longer conserved but gives rise to
the Lorentz force law, r� ~T�� � F��~J�. The correspond-
ing anomalous Ward identity for covariantly regularized
quantities is then given by,

 r� ~T�� � F��~J� � ~A�; (19)

where ~A� is the covariant gravitation anomaly (12). Since
the current ~J� itself is anomalous one might envisage the
possibility of an additional term in (19) proportional to the
gauge anomaly. Indeed this happens in the Ward identity
for consistently regularized objects [9]. Such a term is

ruled out here because there is no such covariant piece
with the correct dimensions, having one free index.

For the metric (2) the covariant anomaly is purely time-
like ( ~Ar � 0) while,

 

~A t � @r ~Nr
t ; ~Nr

t �
�ff00 � �f

0�2

2 �

96�
: (20)

Next, the Ward identity is solved for the � � t component.
In the exterior region there is no anomaly and the Ward
identity reads

 @r ~Trt�o� � Frt~J
r
�o�: (21)

Using (14) this is solved as

 

~T r
t�o� � ao � coAt�r�; (22)

where ao is an integration constant. Near the horizon the
anomalous Ward identity, obtained from (19), reads

 @r ~Trt�H� � Frt~J
r
H � @r ~Nr

t ; (23)

Using ~Jr�H� from (15) yields the solution

 

~T r
t�H� � aH �

Z r

r�
dr@r

�
coAt �

e2

4�
A2
t � ~Nr

t

�
: (24)

Writing the energy-momentum tensor as a sum of two
combinations ~T�� � ~T���o���r� r� � �� �

~T���H�H we
find
 

r� ~T�t � @r ~Trt � co@rAt�r� � @r

��
e2

4�
A2
t � ~Nr

t

�
H
�

�

�
~Trt�o� � ~Trt�H� �

e2

4�
A2
t � ~Nr

t

�
��r� r� � ��:

(25)

The first term is a classical effect coming from the Lorentz
force. The second term has to be canceled by the quantum
effect of the incoming modes. As before, it implies the
existence of a Wess-Zumino term modifying the energy-
momentum tensor as ~T0�t � ~T�t � ��

e2

4�A
2
t � ~Nr

t �H� which
is anomaly free provided the coefficient of the last term
vanishes. This yields the condition

 ao � aH �
e2

4�
A2
t �r�� � ~Nr

t �r��: (26)

where the integration constant aH is fixed by requiring that
the covariant energy-momentum tensor vanishes at the
horizon. From (24) this gives aH � 0. Hence the total
flux of the energy-momentum tensor is given by

 ao �
e2

4�
A2
t �r�� � ~Nr

t �r��: (27)

Since f�r�� � 0 we find from (20) that ~Nr
t �r�� �

�
�f0�2jr�

192� . Using the surface gravity of the black hole � �
2�

 �

�f0�jr�
2 , the final result is expressed in terms of the
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inverse temperature 
 as

 ao �
e2Q2

4�r2
�

�
�

12
2 : (28)

This is just the energy flux from blackbody radiation with a
chemical potential [9].

V. GENERALIZED CONSISTENT ANOMALY AND
FLUX

Here we show that the conclusions of [8,9] remain
unaffected by taking the general form of the consistent
anomaly (6) and (11). Instead of repeating their analysis
we just point out the reasons for this robustness.

For static configuration and for the specific choice of the
potential (Ar � 0), it is clear that the normal parity term in
(6) vanishes. Likewise the normal parity term in the coun-
terterm (8) also vanishes since only the � � r component
in J� is relevant. Hence, effectively the same structures of
the consistent (gauge) anomaly and the counterterm relat-
ing the consistent and covariant currents, as used in [9], are
valid. Since these were the two basic inputs the results
concerning the charge flux associated with Hawking radia-
tion remain intact.

Identical conclusions also hold for the gravitational case.
Although not immediately obvious, a little algebra shows
that the normal parity term in At (11) vanishes. Hence the
energy-momentum flux (given by Trt ) remains as before.

VI. DISCUSSIONS

This work was based on [9] but with a different proce-
dure and emphasis. The flow of charge and energy mo-
mentum from charged black hole horizons were obtained
by a cancellation of the covariant anomalies. Since the
boundary condition involved the vanishing of the covariant
current at the horizon, all calculations involved only co-
variant expressions. Neither the consistent anomaly nor the
counterterm relating the different currents, which were
essential inputs in [9], were required. Consequently our
analysis was economical and, we feel, also conceptually
clean. We would here like to mention that the interplay of

covariant versus consistent anomalies, as occurring in [8–
10], has been specifically discussed in the appendix of [15].

It should be pointed out that the flux is identified with
Jr
�o� or Trt�o� which are the expressions for the currents

exterior to the horizon. Here these currents are anomaly
free implying that there is no difference between the co-
variant and consistent expressions. Actually the germ of
the anomaly lies in this difference [2,27]. Hence it becomes
essential, and not just desirable, to obtain the same flux in
terms of the covariant expressions. In other words the
Hawking flux must yield identical results whether one
uses the consistent or the covariant anomalies. But the
boundary condition must be covariant. This is consistent
with the universality of the Hawking radiation and gives
further credibility to the anomaly cancellation approach.

It was shown [8,9], performing a partial wave decom-
position, that physics near the horizon is described by an
infinite collection of massless (1� 1) dimensional fields,
each partial wave propagating in spacetime with a metric
given by the ‘‘r� t’’ sector of the complete spacetime
metric (2). This simplification, which effects a dimensional
reduction from d-dimensions to d � 2 is also exploited
here. It is however noted that greybody factors have not
been included. In that case dimensional reduction will not
yield the real Hawking radiation for d > 2. For instance it
is known [29] that for d � 4 reduction to d � 2 and keep-
ing only the s-wave (i.e. l � 0) reduces the Hawking flux
with respect to its 2d value.

A reason in favor of working with covariant anomalies is
the fact that their functional forms are unique, being gov-
erned solely by the gauge (diffeomorphism) transformation
properties. This is not so for consistent anomalies. They
can and do have normal parity terms, apart from the odd
parity ones. In fact, the special property (5) of two dimen-
sions yields a natural form for this anomaly which has
normal parity terms. Our observation that the results of
[8,9] are still valid lend further support to this scheme of
deriving Hawking radiation. The present approach can be
easily extended to other (e.g. rotating) black holes with
Kerr-(Newman) metric.
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