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We describe a new paradox for ideal fluids. It arises in the accretion of an ideal fluid onto a black hole,
where, under suitable boundary conditions, the flow can violate the generalized second law of thermo-
dynamics. The paradox indicates that there is in fact a lower bound to the correlation length of any real
fluid, the value of which is determined by the thermodynamic properties of that fluid. We observe that the
universal bound on entropy, itself suggested by the generalized second law, puts a lower bound on the
correlation length of any fluid in terms of its specific entropy. With the help of a new, efficient estimate for
the viscosity of liquids, we argue that this also means that viscosity is bounded from below in a way
reminiscent of the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to entropy
density. We conclude that much light may be shed on the Kovtun-Son-Starinets bound by suitable
arguments based on the generalized second law.
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I. INTRODUCTION

The use of general principles to investigate systems
whose microscopic makeup is unclear can be very reward-
ing. Sometimes this method gives information on a whole
class of systems. Among such principles, thermodynamics,
believed to be of universal applicability, stands out. An
instructive example of its use is the application of the
second law of thermodynamics to the problem of viscous
flow, for which it permits the inference that the two vis-
cosity coefficients must be positive without need to resort
to microscopic expressions for the latter [1].

In this work we use the generalization of the second law
of thermodynamics holding in the presence of black holes
[the generalized second law (GSL)] to reach further con-
clusions about the shear viscosity coefficient of an arbi-
trary fluid. We do this by describing a new paradox for
ideal fluid flow in the presence of a black hole. This
indicates that the correlation length of a real fluid cannot
be arbitrarily small. By implication the energy-momentum
tensors describing systems which display macroscopic
fluid behavior must be subject to a restriction: the shear
viscosity, a function of the thermodynamic state of the
system, cannot be arbitrarily small. Thereby the GSL
opens an alternative macroscopic approach to the recently
proposed lower bound on viscosity [2,3].

The GSL is a unique law of physics that bridges ther-
modynamics and gravity. It is rooted in the understanding
that a black hole, basically a pure gravity entity, is endowed
with well-defined entropy [4–6] proportional to its surface
area. The GSL [4,7] then claims that the sum of the entropy
of all black holes and the total ordinary entropy in the black
holes’ exterior never decreases. While this formulation is
reminiscent of the ordinary second law, the GSL is excep-
tional in that it relates ordinary entropy—a rather elusive
object from the mechanical viewpoint—and the surface
area of the black hole (formally the area of its horizon)
whose evolution is quite mechanical in nature. From this

point of view it is little surprise that the GSL has provided
unexpected information on entropy.

An example is the upper bound on the entropy of weakly
self-gravitating thermodynamic systems [the universal
bound on entropy (UBE) [8,9]]. While in particular cases
the bound can be verified directly, it is the GSL which
really makes understanding of the bound in generic situ-
ations easy. However, the GSL gives more than just a
simpler way to see some results derivable by other means.
At the microscopic level the GSL represents a piece of the
yet to be established theory of quantum gravity. In particu-
lar, this law permits, in principle, to draw conclusions that
from the microscopic viewpoint would only be derivable
from a fundamental theory combining quantum mechanics
with gravity. For example, the GSL gives an indication of
the number of particle species in nature [9,10]. In another
example, the GSL reveals an a priori bound on the strength
of the electromagnetic interaction [11].

Let us now describe the ideal fluid paradox revealed by
invoking the GSL. We assume the existence of physical
fluids with arbitrarily small shear viscosity � at fixed
values of some two thermodynamic variables, say the
entropy and the energy densities, s and �, respectively.
(In this work we consider only simple fluids, so the values
of s and � completely determine the thermodynamic state
of the system.) Here ‘‘physical’’ means, among other
things, that the fluid satisfies the GSL; this could, in
principle, be checked by considering the fluid at the micro-
scopic level, but we shall not go into such detail.

The assumption that the fluid has arbitrarily small vis-
cosity allows us to describe its flow as ideal fluid flow,
possibly with shocks (the zero viscosity limit of a given
flow can be nontrivial; see Refs. [1,12]). It turns out, as we
shall show, that for sufficiently slow accretion of the fluid
onto the black hole the overall entropy decreases and the
GSL is violated. The realizability, in principle, of such
slow accretion flows will be demonstrated, so that the small
viscosity assumption engenders a paradox.
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Of course, ideal fluid paradoxa exist already in non-
relativistic physics, for example, the famous d’Alembert
paradox. This maintains that an ideal fluid with no bounda-
ries exerts no force whatsoever on a body moving through
it with constant velocity. In particular, there is no lift force,
so swimming or flying would be impossible in such a fluid.
Thus the established fact that swimming is possible in any
fluid implies that every real fluid must have nonzero vis-
cosity. There is however an essential difference between
the d’Alembert paradox and the paradox described in this
work. D’Alembert’s paradox says nothing about the actual
magnitude of �. In contrast, our paradox implies, as we
shall see, the existence of a lower bound on � for given s
and �.

This conclusion is in concord with the recent ingenious
conjecture of Kovtun, Starinets, and Son (KSS) [2,3] (see
also Ref. [13]). Based on holographic calculations of the
viscosity coefficient for certain strongly coupled quantum
field theories with gravity duals, they suggested that the
viscosity � of a general, possibly nonrelativistic, fluid is
subject to the universal restriction

 

�
s
�

@

4�
: (1)

Currently this bound is considered a conjecture well sup-
ported for a certain class of field theories—see the detailed
discussion in Ref. [14] and the references therein. In the
sequel we discuss the relation between the ideal fluid
paradox presented in Sec. II and the KSS bound. We also
argue that a frequent objection to the validity of the KSS
bound is likely to be ruled out by the GSL.

Our paper is structured as follows. In Sec. II we show
explicitly that the slow accretion of a truly ideal fluid onto a
Schwarzschild black hole leads to a contradiction with the
GSL. One escapes from the paradox by recognizing that
every fluid must have a nonvanishing correlation length
which restricts the range of applicability of the ideal fluid
paradigm. In Sec. III we obtain a lower bound on the
correlation length and a generic estimate of the viscosity
of real fluids, which together bound the viscosity to entropy
density ratio from below. Although this is not yet the KSS
bound, we consider there the connection between it and the
UBE, and argue that the GSL provides a natural frame for
elucidation of the origin of the former. In the Sec. IV we
summarize our results and arguments. The realizability, in
principle, of the slow accretion flow assumed in Sec. II is
demonstrated in the Appendix.

Unless otherwise stated, we work in units with c � @ �
k � 1, where c is speed of light and k is Boltzmann’s
constant. Our metric signature is ��;�;�;��.

II. IDEAL FLUID PARADOX

In the present section we consider ideal fluid flow into a
spherical black hole. For some flows, we demonstrate that
it is possible for the GSL to be violated so that the total

entropy of the system decreases. It follows that the as-
sumption of a perfect continuum down to an arbitrarily
small scale is not consistent with the GSL.

A. Entropy balance in accretion onto a black hole

Consider a flow, not necessarily spherically symmetric,
in which fluid is absorbed by the black hole. The rate of
change of the total entropy S of the system is the sum of the
rate of change of the entropy of the black hole exterior,
Sext, and that of the black hole entropy SH:

 

dS
dt
�
dSext

dt
�
dSH
dt

: (2)

Here and below we use Schwarzschild coordinates
�x0; x1; x2; x3� � �t; r; �;��, with r � rH where rH is the
Schwarzschild radius.

We first calculate dSext=dt. Let the fluid’s proper entropy
density be s. Since the fluid is assumed ideal, there is no
dissipative contribution to the entropy current density
which is thus purely convective, and must take the form
sU�, where U� is the fluid four velocity. The fluid can
carry entropy into the hole leading to a decrease of Sext.
The explicit expression for this comes from the entropy
balance equation [1,15,16],

 @��
�������
�g
p

sU�� � 0; (3)

where g � �r4sin2� stands for the determinant of the
Schwarzschild metric g��.
dSext=dt of the black hole exterior (r > rH) is thus

 

d
dt

Z
rH
sU0 �������

�g
p

drd�d� � �
Z
rH
drd�d�@r�sUr �������

�g
p

�

�
Z
r�rH

sUr �������
�g
p

d�d�: (4)

We have not included a contribution from the outer bound-
ary of the domain of integration because we intend to
specialize to stationary flows. In any such situation the
entropy flow into the hole per unit t time is given by the
right-hand side (r.h.s.) of Eq. (4). The expression is non-
positive because Ur � 0 for infalling matter. We have
assumed that the flow is differentiable, and that it contains
no shocks; otherwise there exists an additional contribution
to dSext=dt associated with the entropy generation in the
shocks [1].

Let us now consider the second term of the r.h.s. in
Eq. (2). The absorption of the fluid by the black hole
increases the latter’s mass M, producing an increase in
the black hole entropy given through energy conservation
by

 TH
dSH
dt
�
dM
dt
� �

dEext

dt
; (5)

where TH is the black hole temperature, and M is its mass.
We shall now write down the flux of energy into the black
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hole. Let �t � �1; 0; 0; 0� be the Killing vector associated
with the stationarity of the black hole. Then the energy-
momentum tensor of the fluid, T��, must obey

 ��t�T
���;� � 0; (6)

or equivalently

 @��
�������
�g
p

T�0 � � 0: (7)

Since T0
0
�������
�g
p

is minus the energy density of the fluid,

 TH
dSH
dt
� �

dEext

dt
�
d
dt

Z
rH
T0

0

�������
�g
p

drd�d�

� �
Z
rH
drd�d�@r�Tr0

�������
�g
p

�

�
Z
r�rH

Tr0
�������
�g
p

d�d�: (8)

The energy-momentum tensor of the ideal fluid is given
by

 T�� � ��� p�U�U� � pg��; (9)

where � is the energy density and p is the pressure in the
comoving frame. Consider now the normalization condi-
tion U�U� � �1, written as

 U2
0 � �U

r�2 � g�1
rr �1� g���U

��2 � g���U
��2	: (10)

Since
�������
g��
p

U� and ���������g��
p U� are physical velocity compo-

nents, they should be bounded at r � rH. Hence since U�

is future and inwardly pointed, and grr ! 1 as r! rH, we
can infer from the last equation that U0 � Ur at the hori-
zon. Combining all the above we find

 

dSH
dt
�

1

TH

Z
r�rH
��� p��Ur�2

�������
�g
p

d�d�: (11)

Thus dSH=dt > 0 in harmony with Hawking’s area theo-
rem [17].

We observe from Eqs. (4) and (11) that while the (nega-
tive) rate of change of Sext is proportional to the first power
of Ur, the (positive) rate of change of the black hole
entropy is proportional to the second power of Ur. Thus
for sufficiently small Ur�rH�, the total entropy of the
system will decrease, in violation of the GSL. Explicitly
we have

 

dS
dt
� �

Z
r�rH
jUrj

�������
�g
p

d�d�
�
s�
jUrj��� p�

TH

�
; (12)

where we stress that at the horizonUr is never positive. We
observe that when the accretion velocity Uac (the suitable
mean value of jUrj over the horizon) obeys

 Uac <
sTH
�� p

; (13)

the total entropy decreases and the GSL is broken. We now

proceed to search for such flows. We first reconsider known
explicit solutions.

B. Validity of the GSL for the Bondi flow

The above formulae apply for a generic, not necessarily
spherically symmetric, accretion flow onto the black hole,
in particular, it may have nonvanishing U� and U�. As an
example, consider the well-known Bondi flow (see
Ref. [18] and references therein). Bondi flow starts from
rest at infinity and is spherically symmetric. For a poly-
tropic equation of state,

 p � Kn�; (14)

where � is the adiabatic exponent, the accretion velocity is
given by Uac 
 1 for � � 5=3 and Uac 
 0:782 for � �
5=3 [18]. It follows that Bondi flow will obey the GSL if
the following condition holds:

 

s
�� p �

�
4�rH; � � 5=3;
�0:782�4�rH; � � 5=3:

(15)

We have used the usual expression TH � �4�rH��1 for the
Schwarzschild black hole.

The above conditions would seem to obtain for any fluid
with positive pressure thanks to the UBE [8]. This bound
states that the entropy Sb of a generic, weakly self-
gravitating, thermodynamic system satisfies

 

Sb
Eb

< 2�Rb; (16)

where Eb is the body’s total energy, while Rb is its linear
size. Our experience is that the inequality here is usually a
strong one.

Now the minimal size of a parcel of fluid consistent with
the fluid description is its correlation length l. For a gas, l is
the mean-free path, while for a liquid it is typically the
intermolecular distance. Applied to such a parcel the UBE
tells us that (see Sec. III for more details)

 s=� < 2�l; (17)

where we have passed from the total entropy and energy to
their densities by dividing by the parcel’s proper volume.
Again, this bound will in most cases be a strong inequality.
Since the continuum description down to accretion at the
black hole makes sense only if l� rH, we may conclude
that the inequalities (15) will always hold with at least 1
order of magnitude difference between the r.h.s. and the
left-hand side (l.h.s.) of the equations. In the above argu-
ment we have tacitly assumed that p > 0. Negative pres-
sure is often discussed in cosmology (dark energy); the
functioning of the GSL in the face of dark energy is fraught
with subtleties [19].

Thus Bondi flow satisfies the GSL by virtue of the UBE.
Clearly, this happens because the accretion velocity ap-
proaches the speed of light, Uac � 1. We now turn to
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examples of slow ideal fluid accretion flows that do violate
the GSL.

C. Paradox in slow accretion flow of ideal fluid

It is clear from the previous analysis that the GSL holds
for any accretion flow of ideal fluid with Uac � 1. We
expect such flows whenever spherical accretion starts
from a distance ri from the black hole large compared to
rH (for Bondi flow ri � 1). But what is Uac in the limit
ri ! rH? We now show that Uac vanishes in that limit,
thereby giving an example of ideal fluid flow that violates
the GSL.

We study steady, spherically symmetric accretion flow
which starts at r � ri with the initial flow and sound
velocities, ui and ai, specified there. We assume that the
relevant initial conditions are physically realizable; see the
Appendix for the discussion of this assumption. Following
Ref. [18] we introduce u 
 �Ur > 0. The continuity and
the Euler equations can be written as

 u0 �
D1

D
; n0 � �

D2

D
; (18)

where a prime denotes @=@r, n is the baryon number
density, and

 D �
u2 � �1� 2M=r� u2�a2

un
; (19)

 D1 �
1

n

�
�1� 2M=r� u2�

2a2

r
�
M

r2

�
; (20)

 D2 �
2u2=r�M=r2

u
; (21)

with a the local sound velocity. Obviously D�r � rH� �
�u=n��1� a2� is always positive due to the causality con-
straint a2 < 1 (sound velocity is smaller than velocity of
light) [18]. Here we consider only flows with Uac > 0 so
u � 0 at the horizon.

In Bondi flow D becomes negative at large r which
signifies that there exists the so-called sonic radius rs
such that D�r � rs� � 0. As is clear from Eqs. (18), where
D stands in the denominator, the sonic radius is a special
though regular point of the Bondi flow, which in other
situations could signify the presence a shock. By contrast,
here we shall choose a range of initial parameters for the
flow which ensure that D�r � ri�> 0, so that there is no
sonic point. We assume initial parameters for the flow
satisfying

 1�
2M
ri
� 1; a2

i � 1; (22)

 

�
1�

2M
ri

�
a2
i < u2

i � 1�
2M
ri
: (23)

It is easy to see from Eq. (19) that D�ri� is indeed positive.

We do not need to derive the explicit form of the flow in
order to findUac. It suffices to consider the conservation of
the Bernoulli integral along the streamlines. The relativis-
tic version of the Bernoulli equation reads [18]

 

�
�� p
n

�
2
�
1�

2M
r
� u2

�
� const: (24)

Assuming for simplicity the polytropic equation of state
(14) one finds the following relation [18]

 

�� p
n

� m
�

1�
a2

�� 1� a2

�
; (25)

where m is the baryon mass. The above relation allows us
to rewrite the Bernoulli equation as

 

�
1�

a2

�� 1� a2

�
2
�
1�

2M
r
� u2

�
� const: (26)

Evaluating the above equation first at r � rH and then at
r � ri, equating the results, using inequalities (22) and
(23) and assuming that at the horizon a2 remains much
smaller than unity (which we have verified numerically),
we find that

 Uac �

�����������������
1�

2M
ri

s
� � � � ; (27)

where the ellipsis stands for subleading terms. The above
expression holds for any K and �, the latter assumed to be
not too close to unity.

Actually, the use of the polytropic equation is not essen-
tial. Using Eq. (25) directly we would find

 Uac �
n�rH����ri� � p�ri�	
n�ri����rH� � p�rH�	

�����������������
1�

2M
ri

s
: (28)

If we may assume that there are no abrupt changes in ���
p�=n throughout the flow, we recover a result of form
Eq. (27). We may conclude that an ideal fluid accretion
flow which starts close to the horizon with initial parame-
ters complying with inequalities (22) and (23) can have
arbitrarily small Uac. According to the criterion (13) it will
thus incur a violation of the GSL.

Of course for the above argument to be convincing, we
must still demonstrate that it is possible for a flow to start
near the horizon with sufficiently small velocity (and sound
speed). In the Appendix we show in detail that a cord
which respects fundamental physical constraints can be
used to bring objects to rest arbitrarily near the horizon.
One can envision the setting up of the initial conditions for
the fluid we require at r � ri by this means.

D. How to remove the paradox?

The above violation of the GSL raises a paradox. In the
real world the GSL cannot be violated. This law has been
shown to follow from fundamental concepts in quantum
theory and classical gravity [20]. Can the paradox be
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removed without calling on new physics just for the
occasion?

An obvious solution would be to call on Hawking’s
radiance to generate entropy that would at least compen-
sate for the decrement of total entropy pointed out in
Sec. II C. After all, in free Hawking emission the thermal
radiation entropy creation rate exceeds the associated rate
of decrease of the black hole entropy [21]. But there exists
reasons to reject this as the resolution of our problem. The
Hawking radiation is capable of preventing a violation of
the GSL that would arise if high entropy radiation of the
same nature, i.e., electromagnetic, were injected into a
black hole with TH above the effective radiation tempera-
ture [21]. Its efficacy here is related to the principle of
detailed balance in equilibrium (in fact, for incoming
thermal radiation at temperature TH the Hawking radiation
exactly balances the entropy decrement). Now detailed
balance refers to modes of the same physical system.
There is no detailed balance between radiation and fluid
modes. Thus if entropic radiation were injected alongside
the fluid accretion, the Hawking radiation might prove
incapable of compensating for the entropy decreases of
the two kinds.

The above discussion also suggests we should look for a
way out of the paradox that hinges on the physics of the
fluid itself. In our discussion in Sec. II C we assume that
one can deposit the fluid at an arbitrarily small distance
from the horizon at an arbitrary velocity. Since the physical
paradigm used is that of fluids, one should, as a matter of
principle, demand that the said distance is still larger than
the correlation length l at which the hydrodynamic descrip-
tion first becomes applicable.

To be in the Schwarzschild spacetime a small proper
length l� M away from the horizon at rH � 2M corre-
sponds to the Schwarzschild coordinate r � 2M�M�l;
here �l � 1 and is given explicitly by

 �l 

l2

8M2 : (29)

Let us thus substitute 2M�M�l for ri in our expression
(28):

 jUrj 


�����������������
1�

2M
ri

s



l
4M

: (30)

Thus the correlation length limits the smallness of the
accretion velocity Uac.

With Eq. (30) the expression in square brackets in
Eq. (12) takes the form

 �s� 2�l��� p�	; (31)

where we used the expression for the black hole tempera-
ture. In order for the GSL to be obeyed the above factor
must be nonpositive. This is actually guaranteed by the
fluid version of the UBE, Eq. (17), as long as the pressure p
is nonnegative (see Sec. III for more details). This removes

the paradox. The moral of the discussion is that a paradox
arises if one relies on the continuum description of a fluid
down to an arbitrarily small scale, that is if one takes the
notion of ideal fluid literally. To be rid of paradoxa one
must take cognizance of the finite correlation length of any
physical fluid, and must accept that the entropy capacity of
fluid matter is limited according to bound (17).

III. GSL AS FRAMEWORK FOR ELUCIDATING
THE KSS BOUND

The paradox uncovered in Sec. II C and its resolution in
Sec. II D clearly show that the ideal fluid paradigm is
inconsistent. In particular, the picture of a fluid as a perfect
continuum is shown to be physically unacceptable: the
fluid in question must have a nonvanishing correlation
length. The medium is a fluid only over scales exceeding
the correlation length.

It turns out that finiteness of the correlation length is
incompatible with the vanishing of various transport coef-
ficients like shear viscosity and heat conductivity, another
feature of the ideal fluid paradigm. For a gas there is a
simple way to see this. The usual estimates of the men-
tioned transport coefficients [22] have them proportional to
the mean-free path of the gas’s molecules. But in a gas the
mean-free path and correlation length are the same thing.
Thus the finite correlation length forces the transport co-
efficients of the gas, in particular, the shear viscosity, to be
nonvanishing. We shall see in the sequel that the same
conclusion applies generally to any liquid as well. Thus a
fluid can be fully compatible with the GSL only if it is
dissipative to some extent (and thus not ideal). Another
way of putting this is that a fluid with arbitrarily small
shear viscosity is unphysical.

A. Lower bound on correlation length

How large must the correlation length l be?
Microscopically speaking it must obviously be at least as
large as the intermolecular distance. But can we say some-
thing without delving into the structure of the fluid? Let us
approach this question in the spirit of Wilson’s work on the
renormalization group [23]. We consider some thermody-
namic system with the typical linear size R. Because the
system is macroscopic (by definition), one can represent
any extensive thermodynamic variable as some quantity
times the system’s volume V. For example, one can write
the entropy as S � sV and the energy as E � �V. Now
decrease R. For sufficiently small R, already comparable
with the system correlation length l, the system ceases to
be macroscopic, and extensivity is generally lost. This
means that the expressions for the entropy and energy
densities themselves become dependent on R. The
system is no longer a continuum. Can one set a lower
bound on the correlation radius l purely from macroscopic
considerations?
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The standard answer to the above question would be in
the negative. But, surprisingly, the true answer is yes. As
we have seen, for a macroscopic system the UBE can be
restated in the form (17), which immediately leads to the
inequality

 l *
s

2��
: (32)

The main point here is that a macroscopic system with size
much smaller than s=2�� would violate the UBE; thus the
correlation length cannot be much smaller. We emphasize,
again, that l may easily be much larger than the minimal
scale (32). The above result answers the following ques-
tion: given a macroscopic system with given entropy and
energy densities, what is its minimal possible correlation
length? It shows that macroscopic quantities do ‘‘know’’
about the minimal correlation length of the system.

B. Lower bound on shear viscosity

We mentioned earlier that a nonvanishing correlation
length l ensures that the transport coefficients of a gas
(which are proportional to l) do not vanish. For example,
for shear viscosity one has the order of magnitude estimate
[22]

 �� �la; (33)

where the speed of sound a is of the order of molecular
speed [24]. The above estimate together with Eq. (32) give
that �=s is subject to the inequality

 

�
s

*
a

2�
: (34)

Let us show that the estimate (33), and thus the bound
(34), must hold also for liquids sufficiently far from a
critical point. In this preliminary treatment we neglect
heat conductivity and bulk viscosity. We note that, for
any fluid, density perturbations at scale much larger than
l generate sound waves. On the other hand, perturbations
with scale much smaller than l are not coherent and pro-
duce no sound. Furthermore, one can still use hydrody-
namics asymptotically to describe the evolution of
perturbations with scale l. Then the demand that there is
no well-defined sound at smaller scales gives the asymp-
totic condition that at scale l the wave decay time��l2=�,
as found from hydrodynamics [1], should be comparable
with the wave period �l=a. This produces the estimate
(33) for liquids.

Alternatively, the results (33) and (34) can be recovered
by considering a sound wave already propagating through
the liquid. Its Fourier components with reduced wave-
lengths near or below l should decay over a distance
comparable to l since we cannot have macroscopic flow
at those smaller scales. Now from the macroscopic point of
view, the decay must be caused by transport processes
controlled by the viscosities or heat conductivity.

According to fluid theory [1], a sound wave of wavelength
	 penetrates a distance of order �a�	=2��2=� into the
liquid before damping out. According to the above argu-
ment, for �	=2�� & l this penetration length should be l,
which gives Eq. (33) again.

For relativistic fluids the above consideration should be
modified slightly. Here the wave decay time includes ��
p instead of � [16], which leads to

 �� ��� p�la: (35)

For most realistic fluids p � �=3, see [25], and �� p�
�, so this modification is not essential for the order of
magnitude estimate of �, see Sec. III C for an example.

The above estimates, however, must fail sufficiently
close to a critical point. Both � and l diverge at the critical
temperature with the power law � / l� holding in the
vicinity of the critical point. Here � is much less than 1
[26]. This is incompatible with Eq. (33) because both � and
a are finite at the critical point. The reason for the failure of
the estimate is complications in the asymptotic matching
procedure above, related to the difference of the critical
exponents of the various quantities involved. Another issue
is that near a critical point the static correlation length l
becomes different from the scale beyond which hydrody-
namics applies.

Nevertheless, sufficiently far from the critical point the
estimate (33) seems to produce remarkably good results, as
shown by Fig. 1 for a number of pure liquids. (The only
resounding failure is glycerol, one of the most viscous
fluids known. The problem with it may be that l is much
larger than the intermolecular separation, which we rou-
tinely used as an estimator for l.) This fact is remarkable
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log η
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H2 O

HgE
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G

FIG. 1. Plot of log10 of experimental viscosities of 11 pure
liquids (data taken mostly from Ref. [38]) vs log10 of the
estimates from Eq. (33) with l identified with the average
intermolecular separation. Both viscosities and estimates are in
SI units (mPa s). Nonstandard symbols are ‘‘M’’ for methane,
‘‘P’’ for propane, ‘‘A’’ for acetone, ‘‘E’’ for ethanol, ‘‘U’’ for
undecane (C11H24), ‘‘Ni’’ for nitrobenzene (phenil-NO2) and
‘‘G’’ for glycerol (C3H8O3). A repeated symbol correspond to
viscosities at several pressures and temperatures. The solid line
is the locus of � � �al; the dotted lines demarcate the region
where the viscosity lies within a factor of 3 of �al.
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because it allows one to reach conclusions on the magni-
tude of viscosity—quite possibly of practical value—even
for liquids for which no microscopic theory is available.

Let us now turn to the lower bound on the viscosity-
entropy density ratio (34). It evidently holds if the estimate
(33) works. Note that Eq. (34) will most often be a strong
inequality, particularly for nonrelativistic systems, for
which the UBE is known to be a very liberal bound.
Thus the bound (34) is generally valid far from a critical
point. On the other hand, near the critical point the bound
(34) holds trivially because its l.h.s. diverges while its r.h.s.
remains finite. Thus the divergence of shear viscosity at the
critical point [26] only strengthens the bound.

The considerations in this subsection provide a strong
argument in favor of the existence of a generic lower bound
on the viscosity-entropy density ratio. The reformulation of
the arguments with regard to the other transport coeffi-
cients, including thermal conductivity, is left for future
work.

C. Quark-gluon plasma

It was the challenge presented by the quark-gluon
plasma (QGP) which motivated the activity leading to the
formulation of the KSS bound. As a practical use of our
estimate (33), let us apply it to the QGP. Quantum chro-
modynamics (QCD) predicts the existence of such a form
of matter where the usually confined quarks and gluons are
essentially free forming a fireball with a typical size
�10 fm. The transition from the hadronic state of matter
to the QGP occurs at densities of 1–10 GeV=fm3. QCD
lattice calculations predict that the transition should take
place at a critical temperature Tc � 160 MeV, and that the
speed of sound for a QGP above T 
 300 MeV is about
a� 0:3c (see Ref. [27] and further references therein).

Measurements on the QGP at Brookhaven’s relativistic
heavy ion collider indicate that the ratio of energy density 

to entropy density s is roughly proportional to the QGP
temperature T (see, e.g., Fig. 3 in Ref. [28]). Specifically,
for the high energy results of relativistic heavy ion collider
one has

 



s
’ 0:8kT: (36)

Using this and estimate (33) we have

 

k�
s@
�
k
al

s@c2 ’
0:8kTal

@c2 
 0:2; (37)

where in the last step we assumed a� 0:3c at kT �
500 MeV, l� 0:3 fm corresponding to a number density
n� 40=fm3, and employed @c 
 200 MeV fm.

Our estimate for the QGP viscosity is thus in harmony
with the KSS bound (1). Moreover, it is in quite reasonable
agreement with the experimental data which require a
shear viscosity to entropy density ratio as low as �=s �
0:2 [29–32].

D. KSS bound—a tightened entropy bound for fluids

We draw attention to the similarity between inequality
(34) with c and @ restored, namely

 

�
s

*
a=c
2�

@; (38)

and the conjectured KSS bound (1). At first sight this
inequality seems to fall well below the KSS bound since
in many cases a� c. However, we must keep in mind that,
especially in such nonrelativistic circumstances, we expect
the inequality to be a strong one. The minimum �=s may
thus be well above the literal bound (38), and not neces-
sarily at variance with Eq. (1). For relativistic media a� c,
and there is no difference to speak of between bounds (1)
and (38). Thus arguments based on the UBE, and ulti-
mately on the GSL, seem to suggest a raison d’être (reason
for being) for the mysterious KSS bound.

Before proceeding we wish to provide an alternative
viewpoint. The KSS bound Eq. (1) is usually interpreted
as saying that a fluid cannot be too perfect. However, in the
form

 s � 4��; (39)

the bound is really an entropy bound, specifically an upper
bound on the entropy density of an arbitrary fluid (we
return to the use of units with c � @ � 1 as in the previous
sections). Clearly the above bound is reminiscent of the
UBE, Eq. (16), and its fluids version, Eq. (17).

But at least for nonrelativistic fluids, the KSS bound is a
tighter entropy bound by orders of magnitude than the
UBE. Restoring the speed of light c we introduce the
variable �0 � lc� (l being, again, the correlation length,
either the mean-free path for a gas, or, typically, the
intermolecular separation for a liquid) which has the di-
mensions of viscosity. Thus Eq. (17) gives s < 2��0.
Using the estimate (33) we have �=�0 � a=c. It follows
that for nonrelativistic fluids Eq. (39) is indeed a much
tighter entropy bound than Eq. (17). Thus the KSS bound
can be viewed as a tightened version of the UBE in guise of
Eq. (17) which is available for the class of systems exhib-
iting macroscopic fluid behavior.

Both the ideal fluid paradox of Sec. II C and the inter-
pretation of the KSS bound as an entropy bound for fluids
suggest the GSL as a natural frame for investigating rela-
tions between entropy bounds. Because the UBE is ob-
tained in the most transparent way via the GSL, one may
hope that the KSS bound should likewise be obtainable
most simply with help of the GSL. We turn now to con-
siderations in this direction.

E. Where does the KSS bound come from?

First we remark that it is not clear how to obtain the KSS
bound directly from microscopic physics. Inspection of the
Green-Kubo formula [33] for the viscosity in terms of
fluctuations shows no apparent connection of the viscosity
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and the entropy. Such consideration affords no special
status to the ratio �=s, at least not from the viewpoint of
nongravitational physics. On the other hand, the KSS con-
jecture emerged from holographic type arguments that
connect quantum field theory with gravity. It might thus
turn out that a derivation of the KSS bound requires use of
the still nonexistent theory of quantum gravity. But even if
this were true, one need not loose heart. There is general
agreement that black hole entropy, and the GSL which
hinges on it, reflect some aspect of quantum gravity.

The KSS is not universally accepted. Many objections to
it rely on scenarios where very many particle species are
supposed to exist in nature (see Ref. [14] for an example
and references). These are the same objections raised
against the validity of the UBE (see Ref. [9] for referen-
ces). In fact, any entropy bound whatsoever invites attacks
of this sort, for if the number of species that may show up is
unlimited, the entropy can be made as large as desired
while keeping parameters like energy or total particle
number fixed. Although it is formally true that with
many species available, the KSS bound must fail, this
does not detract from its heuristic usefulness; one is often
interested on the entropy of a specific system, one whose
particle content is fixed ahead of time. It should also be
mentioned that many particle scenarios, if not arbitrarily
legislating particle proliferation, conjure up fine-tuned or
baroque setups to beget the required large number of
species of quasiparticles or excitations. This aspect con-
siderably decreases the appeal of the species proliferation
arguments.

Both of the above considerations make it clear that a
ground up approach to deriving the KSS bound is unlikely
to succeed. Alternative, indirect approaches are needed. A
point in favor of employing the GSL to investigate the
origin of the KSS bound is that the GSL ‘‘knows’’ the
actual number of species in nature [9,10]. For example,
black hole entropy, which plays a crucial role in the GSL,
should in principle depend on the number of elementary
fields, yet all derivations endow it with a fixed coefficient
which may be thought as determined by the actual number
of species. This feature would act to neutralize the above
mentioned argument against the validity of the KSS
bounds.

IV. SUMMARY AND OUTLOOK

We have worked out the expression for the rate of
change of the total entropy of a system consisting of a
Schwarzschild black hole and ideal fluid which can accrete
onto the hole. The well-known Bondi flow is the case of
fast accretion with velocity near to the speed of light; for it
the GSL is always obeyed due to the UBE. For sufficiently
slow accretion velocity the flow violates the GSL. The
question of whether flow with the required small accretion
velocity is a realistic option is answered in the affirmative
by a critical revision, in the Appendix, of the venerable

argument [34] claiming that it is impossible to adiabati-
cally lower mass to near the black hole horizon.

Since it is known from microscopic considerations [20]
that any physical system should comply with the GSL, the
above result would constitute a serious paradox if the ideal
fluid is a continuum, as usually considered. We find, how-
ever, that the paradox can be defused if one takes into
account that the continuum picture must break down at
some level by virtue of the fluid having a nonvanishing
correlation length. An auxiliary role in the nullification of
the paradox is played by the universal entropy bound. It
gives a lower bound on the correlation length in relation to
the fluid’s entropy density.

The lower bound on the correlation length of an arbitrary
thermodynamic system in terms of its (macroscopic) en-
tropy and energy densities is an unexpected and thought-
provoking aspect of the UBE. It makes it clear that the
GSL, though a macroscopic law, knows about the micro-
scopic structure of matter. The lower bound must rank as
one of the most impressive consequences of the extension
of the second law of thermodynamics to include black
holes.

The breakdown of the continuum description of a fluid
has momentous consequences: discreteness of matter and
thermal fluctuations necessarily engender nonideal behav-
ior parameterized by the viscosity and heat conduction
coefficients. We have shown that one can expect the ex-
istence of a universal lower bound on the viscosity of an
arbitrary fluid. Our argument yields a seemingly novel
estimate for the viscosity of a fluid far from the critical
region; this estimate is shown to be better than an order of
magnitude estimate for a range of pure liquids. In addition,
the estimate works reasonably well for the quark-gluon
plasma, which viscosity was a subject of much study lately
[29–32].

Together with the lower bound on the correlation length,
the viscosity estimate yields a lower bound on viscosity per
unit entropy density which may be expressed in terms of
the sound velocity of the fluid. The appearance of the speed
of sound here, in contrast to the (implicit) speed of light in
the original KSS arguments, may signify that the KSS
argument can be improved, or may perhaps disclose that
the field theories considered by KSS as representatives of
strongly coupled fluids are not sufficiently generic—in all
these theories the sound velocity is comparable with the
speed of light. An additional issue is whether the bound can
be extended to other transport coefficients.

If there is indeed a lower bound on the ratio of viscosity
to entropy density for an arbitrary fluid, then it is likely to
be rooted in some very basic principle of physics. We have
shown that the generalized second law of thermodynamics,
combining as it does gravity with thermodynamics, can be
such a principle. Starting from it, one can anticipate that
the viscosity to entropy ratio of an arbitrary fluid obeys a
certain lower bound. In particular, the GSL incorporates
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physics that weakens the recent objections [14] to the
bound’s very existence. On the basis of the above, we
propose that the use of the GSL may lead to a clarification
of the KSS bound’s origin. Although we have made no
concrete progress towards reaching a final sharp inequality,
we have given for the first time physical arguments indi-
cating that this elusive bound, whose existence is some-
times disputed, indeed exists.
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APPENDIX: EQUILIBRIUM OF MATTER NEAR A
BLACK HOLE AND REALIZABILITY OF SLOW

ACCRETION FLOWS

Gibbons [34] claimed that one cannot lower a rope to
near a black hole at an arbitrarily small velocity, without it
being torn at some finite distance from the horizon. The
conclusion was based upon the assertion that the stresses
that arise in the rope become so strong that they violate the
weak energy condition [35,36] which must be obeyed by
the energy-momentum tensor of physical matter. Here we
reexamine the problem and show that, in fact, the energy
condition need not be violated and thus that adiabatic
lowering down to the horizon is, in principle, possible.

In the stationary state of some matter in the vicinity of a
spherical black hole, the energy-momentum tensor obeys

 0 � T��;� �
1�������
�g
p

@�T��
�������
�g
p

�

@x�
�

1

2

@g��
@x�

T��; (A1)

where we used the symmetry of T�� [15]. Below we
concentrate on configurations for which T�� is diagonal.
Using the same coordinates as in Sec. II A, the � � 0
component of the above equations is satisfied automati-
cally, while the radial component gives
 

1

r2

@�Trrr
2�

@r
�

MT0
0

r2�1� 2M=r�
�

MTrr
r2�1� 2M=r�

�
T�� � T

�
�

r
� 0: (A2)

The above equation gives a linear relation between the
different components of the stress tensor which need not,
a priori, respect the weak energy condition. As an ex-
ample, consider a thin spherical shell in equilibrium. For
the shell the contribution of Trr in the above equation is
negligible. This can be seen by noting that Trr vanishes at
the shell boundaries, and as a result its values within the
shell vanish together with the ratio of shell thickness to
radius. Far from the hole, where the shell is describable by

the classical linear elasticity theory, the maximal value of
Trr is found to be proportional to the square of the above
ratio. So the thin shell is basically supported by the tan-
gential stresses T�� and T�� , which must be equal because of
spherical symmetry. Equation (A2) gives jT�� j=jT

0
0 j �

M=�2r� 4M�. Now the weak energy condition would
demand jT�� j=jT

0
0 j< 1. It is thus clear that a stationary

thin shell would violate the condition at r < 5M=2. Thus
a physical thin shell, i.e., one obeying the energy condition,
cannot support itself arbitrarily close to the horizon (see
Ref. [37] for the more detailed discussion).

Reference [34] argued that the rope cannot be in equi-
librium with its lower end arbitrarily close to the black
hole, similarly to the thin shell above. Here we wish to
correct this conclusion. We shall assume that the rope
fibers can be considered radial, such as in the case of a
conical rope filling the portion of space defined by some
solid angle. Since the rope can only support stresses along
its fibers, the general form of its energy-momentum tensor
is T�� � diag���; S; 0; 0	, and Eq. (A2) gives

 

@�r2S�
@r

� �
M��� S�
1� 2M=r

: (A3)

The above linear equation can be used to express the
stress S�r� in terms of the rope density � and the boundary
condition at the lower end of the rope, r � r0, which is
defined by the load. The solution can be written as a sum
S�r� � S1�r� � S2�r�, where S1�r� describes the stresses
caused by the load, while S2�r� describes the stresses
caused by the rope’s own weight. The expression for
S1�r� (the solution for a weightless rope) expresses the
‘‘constancy of the tension’’ along the rope:

 S1�r� �
r2

0

�����������������������
1� 2M=r0

p
r2

���������������������
1� 2M=r

p S�r0�; (A4)

where S�r0� is determined by the weight of the load; for a
point mass m we have r2

0

�����������������������
1� 2M=r0

p
S�r0� � �m. Note

that S1�r� is negative, as befitting a tension. The ‘‘con-
stancy of the tension’’ gives monotonically decreasing
jS1�r�j as one moves out because the rope cross section
increases with r by the assumed symmetry of the fibers.

The expression for S2�r� (the solution without the load)
describes how the force caused by the rope above some r
balances the weight of the rope below:

 S2�r� � �
1

r2
���������������������
1� 2M=r

p Z r

r0

dr0
M��r0������������������������

1� 2M=r0
p : (A5)

For definiteness we shall consider below the case of the
rope with a constant density �0 where integration gives
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S2�r� � �
M�0

r2
���������������������
1� 2M=r

p �
r
���������������������
1� 2M=r

p
� r0

�����������������������
1� 2M=r0

q

�M ln
r�M� r

���������������������
1� 2M=r

p
r0 �M� r0

�����������������������
1� 2M=r0

p �
: (A6)

We now show that the above solution does not violate
the weak energy condition jSj=�0 � 1, and, in particular,
that no violation occurs even when the rope’s end is
arbitrarily close to the horizon. By choosing sufficiently
large �0 we may always disregard S1�r�, so it is sufficient
to show that maxjS2�r�j=�0 � 1. It is easy to see from
Eq. (A5) that the maximum of jS2�r�j � �S2�r�, at given
�0 and M, grows as r0 decreases. This just means that the
maximal stress is bigger the closer the lower end of the
rope is from the horizon. Therefore, it is enough to show
that maxjS2�r�j=�0 � 1 for r0 which is infinitesimally
close to rH � 2M. In general, jS2�r�j, vanishing as it is at
both endpoints, r � r0 and r � 1, has a unique maximum
at r� 2 �r0;1�. It is easy to see numerically that in the
limit r0 ! rH the point r� also tends to rH. Defining 
 

�1� 2M=r��1=2 we find analytically

 

�����������������
1�

2M
r0

s
�

8
3

3
� . . . ;

maxjS2�r�j
�0


 1� 4
2 � . . . ;

(A7)

where 
� 1 and the dots stand for subleading terms. It
follows from the above that the weak energy condition is

obeyed for any r0 > rH. Thus, at least from the viewpoint
of the energy conditions, it is possible in principle to lower
a body adiabatically all the way down to the horizon by
means of a suitably constructed rope.

Our result is at variance with that of Gibbons [34]. The
discrepancy arises because he missed a term when calcu-
lating a certain 4-divergence [Eq. (5) in Ref. [34]]. By
taking this term into account, the main result, Eq. (8) in
Ref. [34], now reads

 �
dT

T � �
�

dV
V
: (A8)

Here T � SA is the tension, A the rope’s cross section,� �
�A the energy per unit proper length of the rope, and V ������������������
�KaKap

is the norm of the timelike Killing field Ka (the
spacetime is taken to be stationary). In the original deriva-
tion, the term T in the denominator of the l.h.s. of Eq. (A8)
is absent. The corrected Eq. (A8) is indeed in accord with
our Eq. (A3). Observing that in the Schwarzschild geome-
try V �

���������������������
1� 2M=r

p
and further A�1dA=dr � 2=r for the

case of a conical rope, one easily checks that Eq. (A8)
reduces to our Eq. (A3).

Our analysis demonstrates that no problem of principle
militates against the creation of the boundary conditions
required for the slow accretion flow considered in Sec. II C.
A suitably designed rope could be used to deposit parcels
of fluid at rest near the horizon.
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