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One of the possible low-energy consequences of string theory is the addition of a Chern-Simons term to
the standard Einstein-Hilbert action of general relativity. It can be argued that the quintessence field
should couple to this Chern-Simons term, and if so, it drives in the linearized theory a parity-violating
interaction between the gravito-electric and gravitomagnetic fields. In this paper, the linearized spacetime
for Chern-Simons gravity around a massive spinning body is found to include new modifications to the
gravitomagnetic field that have not appeared in previous work. The orbits of test bodies and the precession
of gyroscopes in this spacetime are calculated, leading to new constraints on the Chern-Simons parameter
space due to current satellite experiments.
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I. INTRODUCTION

The study of modifications of the theory of general
relativity has been of interest ever since Einstein first
formulated general relativity in 1915. Particularly interest-
ing are modifications that introduce terms to the Einstein-
Hilbert action that are second order in the curvature, as
such modifications represent high-energy corrections to the
Einstein-Hilbert action that might arise in quantum gravity.
Chern-Simons gravity is an example of such a second-
order modification of the Einstein-Hilbert action.

Chern-Simons modifications to gravity were first con-
sidered in 2� 1 dimensions [1]. References [2,3] inves-
tigated the structure of these theories in 3� 1 dimensions
and showed how they could arise as a low-energy conse-
quence of string theory. Reference [4] considered some
early-universe implications of such theories. Refer-
ences [5] investigated how Chern-Simons terms might
participate in leptogenesis. Reference [6] renewed the in-
vestigation of Chern-Simons gravity, working out the lin-
earized equations of the theory and their implications for
gravitational waves. Most recently, Refs. [7] solved the
linearized Chern-Simons field equations around a collec-
tion of spinning point masses. In much of the work on
Chern-Simons gravity, the Chern-Simons term is coupled
to a scalar field (as detailed below), and this scalar field is
assumed to be spatially homogeneous but time varying.
This assumption can be motivated by arguments analogous
to those that have been made suggesting that the quintes-
sence field should be coupled to the Chern-Simons term of
electromagnetism [8].

Chern-Simons gravity has thus far eluded constraints
from Solar System tests of weak-field gravity because it
is indistinguishable from general relativity for all space-
times that possess a maximally symmetric two-
dimensional subspace and for all conformally flat space-

times [2]. Therefore, the Schwarzschild spacetime as
well as the Robertson-Walker spacetime are also solutions
of the Chern-Simons gravitational field equations.
Distinguishing Chern-Simons gravity from general relativ-
ity requires considerations of spacetimes that are not
spherically symmetric, such as the spacetime around a
spinning body. To this end, Refs. [7] investigated the
Chern-Simons modifications to the motion of bodies
around a spinning point mass and found that the motion
was indistinguishable from that in general relativity.

In this paper we take further steps to link Chern-Simons
gravity to current and forthcoming experimental tests of
weak-field gravity. We assume, as in other recent work,
that the scalar field coupled to the Chern-Simons term is
time varying but spatially homogeneous. We then deter-
mine the spacetime around an extended spinning mass and
find that it differs from the spacetime around a spinning
point mass. We determine the orbits of test particles and the
precession of gyroscopes moving in this spacetime and find
that the Chern-Simons modification does lead to observ-
able deviations from the predictions of general relativity.
These deviations allow us to evaluate constraints to the
Chern-Simons parameter space from current satellite ex-
periments, as well as those regions to be probed with
forthcoming experiments.

The paper is organized as follows. Section II defines the
theory and derives the gravitational field equations.
Section III considers the linear theory and derives the
gravitomagnetic equations of motion (the Chern-Simons
Ampère’s law). Section IV discusses the solution for the
gravitomagnetic field around a spinning massive body. In
Sec. V, we consider the orbital precession of test bodies in
this spacetime, as well as the orbital precession of gyro-
scopes, and we determine the regions of the Chern-Simons
gravity parameter space that are probed with the LAGEOS
and Gravity Probe B satellites. We conclude briefly in
Sec. VI. Appendix A shows how the Chern-Simons
Lagrangian we work with may be derived from a string-
theory action, and Appendix B outlines the derivation of
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the gravitomagnetic vector potential around a spinning
sphere.

II. CHERN-SIMONS GRAVITY

We consider the theory defined by the action
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where Lmat is the Lagrangian density for matter, g � det
g�� is the determinant of the metric g��, R is the Ricci
scalar (with the convention R���� � ����;� � � � � for the
Riemann tensor), and R ~R is a contraction of the Riemann
tensor and its dual:

 R ~R � R���	 ~R���	; (2)

where the dual of the Riemann tensor is defined by
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where 
���� is the Levi-Civita tensor, including a factor of�������
�g
p

. Finally, ‘ is a new length scale, a parameter of the
theory, and �2 � 8
G, where G is Newton’s constant.
Throughout this paper we take Greek indices to range
from 0 to 3. Appendix A shows how such an action may
arise in string theory. This action is different from the
action considered in Ref. [6] in that here � is a dynamical
scalar field with a canonical kinetic term, so the ‘ parame-
ter is required to make the action dimensionless.

The equation of motion for � is given by

 �� �
dV
d�
�

1

12
‘R ~R: (4)

The gravitational field equations take the form

 G�� �
2
3‘�

2C�� � ��
2T��; (5)

where G�� is the Einstein tensor, T�� is the stress-energy
tensor for the scalar field and the matter Lagrangian, and
we refer to C�� as the Cotton-York tensor,1
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Appendix A provides an alternative expression for the
Cotton-York tensor.

Reference [6] notes that if � is a nondynamical field (a
Lagrange multiplier), the theory cannot accommodate a
spacetime with a nonzero R ~R because the Cotton-York
tensor would have a nonzero divergence. However, if � is a
dynamical field, then the theory can indeed accommodate
spacetimes with nonzero R ~R since we have

 �
2

3
‘�2r�C�� �

‘�2

12
�@���R ~R � ��2r�T���; (7)

where T��� is the stress-energy tensor for �. We see that
whereas the scalar-field stress-energy and the Cotton-York
tensors are separately conserved when R ~R � 0, the diver-
gence of the scalar-field stress-energy tensor is precisely
balanced by the divergence of the Cotton-York tensor for
nonzero R ~R due to the novel coupling between the scalar
field and gravity.

III. THE CHERN-SIMONS GRAVITOMAGNETIC
EQUATIONS

We begin with a perturbation to the flat metric [using
signature �� ����],

 g�� � ��� � h��; (8)

and compute the linearized Einstein and Cotton-York ten-
sors,

 Glinear
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where � is the flat-space d’Alembertian and the comma
denotes partial differentiation. Since we will require below
only the gravitomagnetic fields, we will be primarily inter-
ested in the time-space components of the linearized field
equations.

In this paper, we suppose that the scalar field depends
only on cosmic time, � � ��t�, the assumption being that �
is either a quintessence field or some other field that some-
how echoes the arrow of time associated with the cosmic
expansion. This choice implies that the field equations are
not Lorentz invariant in the Solar System since @�� points
in the cosmic time direction and couples to local gravity
through the Cotton-York tensor [Eq. (6)]. We note that a

1We note that this definition differs from the usual expression
for the four-dimensional Cotton-York tensor (see Ref. [6]).
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nonzero R ~R will source spatial variations in � through
Eq. (4). By restricting � to be spatially homogenous, we
are effectively treating � as a nondynamical field, and we
leave a full dynamical treatment to future work. Finally, we
neglect corrections due to the motion of the Earth with
respect to the rest frame of the cosmic microwave
background.

We work with the trace-reversed metric perturbation,

 

�h�� � h���
1
2���h; (11)

and impose the Lorenz-gauge condition, @� �h�� � 0, to
obtain the linearized time-space field equations,

 Glinear
0i � 2

3‘�
2Clinear

0i � ��2T0i; (12)

with

 Glinear
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2�
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4

0
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j� �hk0; (14)

where the dot denotes differentiation with respect to time
and Latin indices are purely spatial and range from 1 to 3.
The stress-energy tensor for ��t� is diagonal, so it does not
contribute to the time-space field equations.

Let t� be a unit vector in the coordinate time direction,
and then define the 4-vector potential of this linearized
theory,

 A� � �
1
4

�h��t
� � �1

4
�h�0: (15)

We consider a source with mass density �, mass current ~J
and negligible pressure, so we can express the matter
stress-energy tensor as

 T�� � 2t��J�� � �t�t�; (16)

where J� � �T��t� � ���; ~J�. In general relativity, the
time-space components of the linearized field equations
take the form

 @�@�Ai � �4
GJi; (17)

which is (nearly) identical to Maxwell’s equations for the
vector potential in Lorenz gauge (@�A� � 0). Given our
definition of A�, the Lorenz-gauge condition for A� is
implied by our earlier gauge choice for �h��.

The classically ‘‘physical’’ fields (i.e., those that enter
into the geodesic equation) ~E and ~B are given by

 Ei � @iA0 � @0Ai; (18)

 Bi � 
0ijk@jAk; (19)

where we have defined 
0ijk � 1. Two of the Maxwell
equations,

 

~r � ~B � 0; (20)

 

~r
 ~E � �
@ ~B
@t
; (21)

are a direct consequence of the way in which the ~E and ~B
fields are defined in terms of the vector potential, and so
these two equations will be the same in Chern-Simons
gravity. Gauss’s law, which follows from the time-time
component of the field equation, is now

 

~r � ~E � 4
G��� ��� (22)

where �� is the energy density of the scalar field ��t� and is
uniform throughout the Solar System. Since �� cannot be
larger than the mean cosmological energy density, it must
be negligible compared to the density of the source �, and
we do not consider it further. The only significant modifi-
cation will be to Ampère’s law, which, for Chern-Simons
gravity, is now given by

 

~r
 ~B�
@ ~E
@t
�

1

mcs
� ~B � 4
G ~J; (23)

where we have defined mcs � �3=�‘�2 _��.
Given the metric perturbation represented by the grav-

itomagnetic potential and neglecting the time variation of
the metric, slowly moving particles travel on geodesics
such that a ‘‘Lorentz force law’’ of the form,

 ~a � � ~E� 4 ~v
 ~B; (24)

is obtained. Therefore, as in electrodynamics, only the
physical fields, and not the potentials, have physical
relevance.

We furthermore note that R ~R can be expressed in terms
of gravito-electric and gravitomagnetic fields as

 R ~R � �16�@iEj��@kBl���ik�jl � �il�jk�: (25)

Unlike the case with Maxwell fields [9], it is not sufficient
for the fields to have a nonvanishing ~E � ~B in order to have a
nontrivial coupling between gravity and the scalar field.
The best example of a gravitational source which produces
a nonvanishing R ~R is a spinning, spherical body.

IV. GRAVITOMAGNETISM DUE TO A SPINNING
SPHERE IN CHERN-SIMONS GRAVITY

We are now in a position to calculate the gravitomag-
netic field in Chern-Simons gravity for a spinning body.
Appendix B provides details of the calculation.

We consider a homogeneous rotating sphere, and so the
mass current is

 

~J � �� ~!
 ~r	��R� r�; (26)

where R is the radius of the rotating body, � is its density,
~! is its angular velocity, r is the distance from the origin,

and � is the Heaviside step function. As detailed in
Appendix B, the field equation, Eq. (23), is rewritten as
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an equation for ~A and is solved by imposing the condition
that the metric be continuous everywhere and that the
gravitomagnetic field be finite and well behaved at the
origin; the resulting vector potential is given in
Appendix B. We note that in deriving this solution we
have assumed that the time derivative of mcs is negligible.
The gravitomagnetic field is then obtained by taking the
curl of ~A and may be written as ~B � ~BGR � ~BCS, where

 

~BGR �
4
G�R2

15

(
�5� 3 r2

R2� ~!� 3 r2

R2 r̂
 �r̂
 ~!�; r� R;
R3

r3 �2 ~!� 3r̂
 �r̂
 ~!�	; r� R

(27)

is the gravitomagnetic field inside and outside a spinning
sphere in general relativity, and

 

~BCS � 4
G�R2fD1�r� ~!�D2�r�r̂
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 ~!�g; (28)

is the new contribution in Chern-Simons gravity. Inside the
sphere (r � R),
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and outside the sphere (r � R)

 D1�r� �
2R
r
j2�mcsR�y1�mcsr�;

D2�r� � mcsRj2�mcsR�y1�mcsr�;

D3�r� � mcsRj2�mcsR�y2�mcsr�;

(30)

where j‘�x� and y‘�x� are spherical Bessel functions of the
first and second kind. We see that the Chern-Simons terms
alter the components of the gravitomagnetic field along the
rotation axis ~! and r̂
 �r̂
 ~!�, and they also introduce a
new component perpendicular to the plane defined by ~!
and ~r. In other words, while in general relativity a toroidal
mass current implies a poloidal gravitomagnetic field, the
parity violation introduced in Chern-Simons gravity intro-
duces a toroidal component to the gravitomagnetic field.
Something similar occurs in Chern-Simons electromagne-
tism [9], although the detailed fields differ since the r2 ~B
term in Eq. (23) is simply ~B in the electromagnetic theory.

The Chern-Simons addition to Ampère’s law, Eq. (23),
changes that equation from a first-order differential equa-
tion for ~B to a second-order differential equation. As a
result, the Chern-Simons modification to the gravitomag-
netic field cannot, in general, be obtained by perturbing
around the general-relativistic result, as the solution in

Eq. (28) shows. In Chern-Simons gravity, the gravitomag-
netic field oscillates with distance outside the source, and
the amplitude of the oscillating field is not necessarily
smaller than the general-relativistic gravitomagnetic field.
Still, we expect from Eq. (23) that as mcs ! 1, the
general-relativistic solution should be recovered. This oc-
curs since the oscillatory terms vanish as mcs ! 1, and so
the effects on geodesics of these new terms will vanish.

If we take ~! to lie in the ẑ direction, then the Chern-
Simons gravitomagnetic field has a nonzero azimuthal
component B�. Since B� � 0, one cannot find a coordi-
nate transformation that causes both Ar and A� to vanish.
This is at odds with claims (see, e.g., Ref. [10]) that a
metric for stationary axisymmetric spacetimes in Chern-
Simons gravity can always be found with ht� � htr � 0. In
general relativity, one can always find a coordinate system
for which Ar � A� � 0 for a stationary axisymmetric
spacetime sourced by rotating perfect fluid. However, the
proof of this statement assumes time-reversal invariance of
the fundamental equations. This invariance implies that the
metric components possess the same symmetries as the
source, namely, invariance under a transformation that
takes t! �t and �! ��. In that case, Ar and A� must
be zero to keep the line element invariant under the same
transformation. In Chern-Simons gravity, time-reversal in-
variance is explicitly broken by the rolling of the scalar
field, _� � 0, and it is straightforward to verify that our
solution for ~A, given in Appendix B, implies that Ar and A�
are both odd under time reversal. Consequently, the line
element has the same symmetry as the source even though
Ar and A� are nonzero.

Inspection of our solution for the vector potential given
in Appendix B shows that it differs from the solution for a
pointlike mass-current dipole (i.e., a gravitomagnetic di-
pole) obtained by Alexander and Yunes (AY) [7]. When
applied to a single spinning source, the metric given by
Refs. [7] corresponds to a vector potential

 

~AAY � ~AGR �
4
G�R3

mcsR

�
2R3

15r3 ~!�
R3

5r3 r̂
 �r̂
 ~!�
�
:

(31)

This vector potential is an exact solution to Eq. (23) outside
of a spinning sphere, and we can see that every term in ~AAY

also appears in our solution for ~A. The additional oscilla-
tory terms in our solution constitute a homogeneous solu-
tion to Eq. (23), but without these terms, ~A would not be
continuous across the surface of the sphere. Furthermore,
only these oscillating terms contribute to ~BCS because
~r
 ~AAY �

~r
 ~AGR. The inclusion of oscillatory terms
results in a Chern-Simons gravitomagnetic field that differs
from general relativity, so we may use observations of the
motion of test bodies in the Earth’s gravitomagnetic field to
constrain Chern-Simons gravity.
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V. ORBITAL AND GYROSCOPIC PRECESSION

A. Orbital precession

In order to investigate how the Chern-Simons gravito-
magnetic field will affect the motion of test particles
around the Earth, we will use what are known as the
Gaussian perturbation equations [11,12]. Details of how
these equations are applied to gravitomagnetic forces are
discussed in Ref. [13]; here we give only a brief introduc-
tion. The Gaussian perturbation equations give the time
variation of the Keplerian orbital elements in the presence
of a perturbing force. In our case we take the gravitomag-
netic force, �4 ~v
 ~B, as a small perturbing force and
approximately solve the equations given in Ref. [13]. We
will concentrate on analyzing the secular (nonperiodic)
time variation of the longitude of the ascending node,2

�, but note that other Keplerian elements will also vary
due to the terms introduced by Chern-Simons gravity. The
time variation of � has been well studied since, in general
relativity, it is connected with the Lense-Thirring drag [15],

 

_�GR �
2GL

a3�1� e2�3=2
; (32)

where L is the magnitude of the angular momentum of the
central body, a is the semimajor axis of the orbit of the test
body, and e is the orbit’s eccentricity. Finally, in order to
evaluate the secular perturbations, we approximate the
orbit of the test body as circular (i.e., e � 0, a good
approximation for current measurements), and we average
the perturbing force over one orbital period to obtain

 

_�CS

_�GR

� 15
a2

R2 j2�mcsR�y1�mcsa�; (33)

where _�CS is the precession due to ~BCS. The total preces-
sion is _�GR �

_�CS. We note that _�CS is an even function
of mcs.

Recent measurements of laser ranging data to the
LAGEOS I and LAGEOS II satellites have measured _�
to within 10% of its value in general relativity [16].
Requiring that the Chern-Simons contribution does not
exceed 10% of the general relativity result, we find that
we can place a lower limit to the Chern-Simons mass,
jmcsj * 0:001 km�1, as shown in Fig. 1.

The Laser Relativity Satellite (LARES) mission [17]
proposes to deploy a new laser ranging satellite and is
predicted to measure _� to within 1% of its value in general
relativity. With this improvement the bound on mcs is
increased by a factor of roughly five.

B. Gyroscopic precession

The Earth’s gravitomagnetic field will also cause a
precession of gyroscopes moving in the spacetime. A
gyroscope will undergo precession due to two torques.
One is known as the geodetic precession and is indepen-
dent of the Earth’s gravitomagnetic field. The other torque
is due to a coupling to the gravitomagnetic field and results
in a rate of change of the spin of a gyroscope given by [18]

 

_~S � 2 ~B
 ~S; (34)

where ~S is the angular momentum of the gyroscope.
NASA’s Gravity Probe B (GPB) mission is currently

attempting to measure this gyroscopic precession [19].
GPB consists of a satellite, in a polar orbit at an altitude
of about 640 km, that contains four drag-free gyroscopes
and a telescope. The gyroscopes are initially oriented such
that their spins are aligned parallel to the optical axis of the
telescope, which is pointing within the plane of the
orbit. The telescope points towards a guide star, allowing
a measurement of the precession of the direction of the
spins of the gyroscopes. Geodetic precession results in an
annual precession in the North-South direction of about
6600 milliarcseconds (mas) whereas the general-
relativistic gravitomagnetic field causes an annual East-
West precession of around 42 mas [19].

With the Chern-Simons expression for the gravitomag-
netic field, given in Eq. (28), it is straightforward to cal-
culate the resulting gyroscopic precession for a polar orbit

FIG. 1 (color online). The ratio _�CS= _�GR for the LAGEOS
satellites orbiting with a semimajor axis of a 
 12 000 km. A
10% verification of general relativity [16] (the shaded region)
leads to a lower limit on the Chern-Simons mass of jmcsj *

0:001 km�1. A 1% verification of the Lense-Thirring drag will
improve this bound on mcs by a factor of roughly five.

2The longitude of the ascending node is defined to be the angle
between a stationary reference line and the line connecting the
origin of the coordinate system and the point where the orbiting
body intersects the XY reference plane as it is moving upwards
(see Ref. [14]).
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(applicable to GPB). Relative to the general relativity
result, we find

 

_�CS

_�GR

� 15
a2

R2 j2�mcsR��y1�mcsa� �mcsay0�mcsa�	; (35)

where _� � j
_~Sj=j ~Sj � _�GR � _�CS is the rate at which the

angle of axis � changes in time due to the gravitomagnetic
field. We note that _�CS is an even function of mcs.

It was initially projected that GPB would achieve a
percent-level measurement of the gravitomagnetic contri-
bution to _�GR. However, since its launch in 2004, it has
encountered several unexpected complications that will
degrade the precision of the tests of gravity [20], although
the extent of the degradation has yet to be reported. In
Fig. 2, we plot Eq. (35) for a GPB detection of the grav-
itomagnetic precession to within 10% of its value in gen-
eral relativity.

We have idealized the Earth to be a sphere of constant
density throughout this work, when in reality, it is an oblate
spheriod with layers that have different mean densities.
However, we expect that the nonspherical corrections
would affect both the general relativity and Chern-
Simons calculations similarly and, to the accuracy we
require, are negligible when we consider the ratio between
general relativity and Chern-Simons results. Furthermore,
it is easy to generalize our results to spheres with layered
density profiles because ~B depends linearly on �. We
replaced our model of a homogeneous Earth with a model
of the core and mantle and we found that the amplitudes of

the oscillations in _�CS and _�CS were not affected. We
conclude that our constraints onmcs are not sensitive to the
details of the density profile of the Earth.

VI. CONCLUSIONS

The addition of a Chern-Simons term to the action for
gravity is of interest as it may arise as a low-energy limit of
string theory. The theory and formalism of this modifica-
tion of gravity have been worked out in a number of
previous papers, and some of the early-Universe conse-
quences of such a term have been investigated. However,
there has been little work on tests of such modifications in
the present Universe.

In this paper, we have calculated the linear-theory space-
time around a spinning massive body, finding new correc-
tions that were overlooked in previous work. The
gravitomagnetic field in Chern-Simons gravity differs
from that in general relativity in two ways: (1) there is an
oscillating component, and (2) there is a toroidal compo-
nent to the gravitomagnetic field that arises as a conse-
quence of the parity-breaking nature of the theory and that
has no counterpart in ordinary general relativity.

We then determined the precession of orbits of test
particles in this spacetime and also of gyroscopes moving
in this spacetime. We showed that current constraints from
the LAGEOS satellites restrict the inverse Chern-Simons
mass parameter m�1

cs to be less than roughly 1000 km,
corresponding to a mass constraint mcs * 2

10�22 GeV. This bound may be improved by a factor of
5–10 by future observations.

The mass parameter mcs is related to the more funda-
mental parameters ‘ and _� of the theory through mcs �
�3=�8
G‘ _��, where ‘ is a length parameter that enters
into the Chern-Simons Lagrangian, and _� is presumably
related to the time variation of the quintessence field. In
principle, a precise constraint to ‘ can be derived once the
precise nature of the field (a quintessence field?) � and its
time evolution are specified. We leave such model building
for future work.
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APPENDIX A: A STRING INSPIRED DERIVATION
OF THE CHERN-SIMONS FIELD EQUATIONS

The effective 4-D string action for heterotic and type II
string theory can be written as [2,21]

FIG. 2 (color online). The ratio _�CS= _�GR for Gravity Probe B
in a polar orbit at an altitude of approximately 640 km. A 10%
verification of general relativity (the shaded region) leads to a
lower limit on the Chern-Simons mass of jmcsj * 0:01 km�1, an
order of magnitude improvement over the LAGEOS result.
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 S �
Z

d4x
�������
�g
p

�
�

1

2�2 R� �H���H��� � � � �

�
; (A1)

where R is the Ricci scalar,H��� is the Kalb-Ramond (KR)
three-form field strength, and � is a constant with units of
length squared. We are neglecting numerous terms, includ-
ing Gauss-Bonnet terms, dilaton terms, and matter terms,
some of which depend on compactification. The Kalb-
Ramond field is written in differential-form notation as

 H � 1
3dB�!L; (A2)

where B is a two-form field (known as the KR field) and
!L is the Lorentz-Chern-Simons term. The Lorentz-
Chern-Simons three-form can be written in terms of the
spin connection ! as [22]

 �!L���� �
1

2
Tr
�
!���d!���	 �

4

3
!��!��!�		

�
; (A3)

where the trace is over the suppressed vector indices of the
spin connections. We then have the identity,

 dH � 1
6 Tr�R ^R�; (A4)

associated with the KR field strength, where R is the
Riemann tensor and the trace is over the tensor indices;
the right-hand side is also known as the Hirzebruch density.
Taking the Hodge dual of the Hirzebruch density, we
obtain

 

1

6
�Tr�R ^R� �

1

4!

����R����R���� � �

1

12
R ~R:

(A5)

Let us now consider the equation of motion for the two-
form KR field. We can rewrite the action involving B as

 SB /
Z
H ^ �H�!L ^

�!L

/
Z 1

9
dB ^ �dB�

1

3
dB ^ �!L �

1

3
!L ^

�dB: (A6)

On variation of this action with respect to B, we have the
equation of motion,

 d �H � 0: (A7)

Therefore the equation of motion for the KR two-form field
shows that �H is closed. In other words, at least locally,
there exists a pseudoscalar b (the KR axion, or sometimes
called the universal axion) such that

 H � �db: (A8)

Noting that ��d�d� � ��, we have the equation of mo-
tion for b,

 �b � ��dH � �1
6
�Tr�R ^R� � 1

12R
~R: (A9)

Varying the action given by Eq. (A1) with respect to the
metric we obtain [3]3

 �G�� � �2�f6H�
��H

��� � g��H���H���

� 4r��H����R������g; (A10)

where G�� is the usual Einstein tensor. Given that the
equation of motion for the two-form field B allows us to
write H � �db, we have

 H��� � 
����r�b: (A11)

We can rewrite the field equation as

 �G�� � �2�12�T��b �
1
3r��H

����R������	; (A12)

where T��b is the canonical stress-energy tensor for the
pseudoscalar field b. We will now show that the last term is
actually the Cotton-York tensor.

Using the Bianchi identities for the Riemann tensor, we
first note that we have the identity,

 r� ~R���j�j�� � 
��j���r�R
j��
�: (A13)

With this, it is straightforward to show that

 r���r�b	
�����R������ � 2r���r�b	 ~R
���j�j��� � 2C��;

(A14)

where C�� is the Cotton-York tensor defined in Eq. (6).
Choosing � � ‘2=12 and taking b! ��=‘ so that in the
absence of the Cotton-York tensor we regain general rela-
tivity sourced by a canonical scalar field �, the equations of
motion are

 G�� �
2‘�2

3
C�� � ��2T��� ; (A15)

 �� � � 1
12‘R

~R: (A16)

We can see that these field equations are identical to
Eqs. (4) and (5) with vanishing scalar potential.

APPENDIX B: CALCULATION OF THE VECTOR
POTENTIAL

In Lorenz gauge (@�A� � 0) the Chern-Simons
Ampère’s law, Eq. (23), can be written,

 �

�
~A�

1

mcs

~B
�
� �4
G ~J; (B1)

where we have neglected the time variation in _� in order to

3The sign of the last term in this equation is different in
Ref. [3]. The sign given here makes the divergence of the
right-hand side vanish as required by the Bianchi identity.
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place mcs inside the d’Alembertian operator. We are deal-
ing with a stationary source, and so � � r2. We may
invert Eq. (B1) to obtain

 

~A�
1

mcs

~r
 ~A � G
Z ~J
j ~r� ~r0j

d3r0: (B2)

We can write this as

 

�
I �

1

mcs

~r

�
~A � G

Z ~J
j ~r� ~r0j

d3r0; (B3)

where I is the identity matrix. Multiplying both sides of
the equation by �I � �1=mcs�

~r
	, we obtain

 

~A�
1

m2
cs

~r
 ~r
 ~A � G
�
I �

1

mcs

~r

�Z ~J
j ~r� ~r0j

d3r0:

(B4)

Noting that ~r
 ~r
 ~A � �r2 ~A in Lorenz gauge, we
have

 r2 ~A�m2
cs
~A � ~S; (B5)

where

 

~S � m2
csG

�
I �

1

mcs

~r

�Z ~J
j ~r� ~r0j

d3r0: (B6)

We recognize this as the inhomogeneous Helmholtz equa-
tion. For a rotating homogeneous sphere, the mass current
is given by

 

~J � �� ~!
 ~r	��R� r�; (B7)

where � is the density, ! is the angular velocity, R is the
radius, and � is the Heaviside step function.

The most general Green’s function for the inhomoge-
neous Helmholtz equation is

 G� ~r; ~r0� � �
cos�mcsj ~r� ~r0j� � ~� sin�mcsj ~r� ~r0j�

4
j ~r� ~r0j
; (B8)

where ~� is a constant. However, the second term (that is
proportional to ~�) remains constant for j ~r0 � ~rj � m�1

cs ,
implying that the influence of the source does not decrease
with distance (for distances r� m�1

cs ), which we interpret
as unphysical. We therefore set ~� � 0. We then use multi-
pole expansions for the Green’s function,
 

�
cos�mcsj ~r� ~r0j�

4
j ~r� ~r0j

� mcs

X
‘;m

j‘�mcsr<�y‘�mcsr>�Y�‘m�r̂
0�Y‘m�r̂�; (B9)

where j‘�x� and y‘�x� are, respectively, spherical Bessel
function of the first and second kind, Y‘m�r̂� is a spherical

harmonic, and the subscript < (> ) means the argument is
the lesser (greater) of r or r0. The solution for ~A is then
obtained by integrating,

 

~A �
Z

d3r0G�~r; ~r0� ~S� ~r0�; (B10)

where all vectors are expanded in a Cartesian basis.
The resulting expression for ~A may be split into a

general-relativistic and a Chern-Simons term, ~A � ~AGR �
~ACS, where

 

~AGR � �
4
G�

3
R3�r̂
 ~!� 


(
r
R �

1
2�

3
10 �

r
R�

2	; r � R;
R2

5r2 ; r � R

(B11)

is the gravitomagnetic vector potential in general relativity,
and
 

~ACS � �
4
G�R3

mcsR
�C1�r� ~!� C2�r�r̂
 ~!

� C3�r�r̂
 �r̂
 ~!�	; (B12)

with
 

C1�r� � �
r2

5R2 �
1

3
�

2

m2
csR2 �

2R
r
y2�mcsR�j1�mcsr�;

C2�r� �
mcsr

m2
csR2 �mcsRy2�mcsR�j1�mcsr�;

C3�r� �
r2

5R2 �mcsRy2�mcsR�j2�mcsr�;

(B13)

inside the sphere, and

 C1�r� �
2R3

15r3 �
2R
r
j2�mcsR�y1�mcsr�;

C2�r� � mcsRj2�mcsR�y1�mcsr�;

C3�r� �
R3

5r3 �mcsRj2�mcsR�y2�mcsr�;

(B14)

outside the sphere. We note that this solution for ~A is finite
at the origin and continuous across the boundary of the
sphere, so it produces a finite ~B at the origin and a con-
tinuous metric. Taking the curl of this solution for ~A yields
the expressions for ~B given in Section IV.

Thus far, we have not discussed any boundary conditions
on the gravitomagnetic field ~B at the surface of the sphere.
The field equations for ~B imply two such boundary con-
ditions, and we will now prove that the continuity of ~A
guarantees that these two boundary conditions are satisfied.
The first boundary condition follows from ~r � ~B � 0; as in
electromagnetism, this condition implies that the compo-
nent of ~B that is perpendicular to the surface must be
continuous. The second boundary condition follows from
the Chern-Simons version of Ampère’s law:
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~r
 ~B�
1

mcs
r2 ~B � 4
G ~J: (B15)

Integrating this equation over a surface with vanishing area
that is perpendicular to the surface of the sphere and
contains the boundary implies that the components of
� ~B� �1=mcs�

~r
 ~B	 that are parallel to the sphere’s sur-
face must be continuous across the boundary.

Generally, the continuity of ~A would not imply continu-
ity of its curl. However, our ~A is a solution to Eq. (B2),
which may be rewritten as

 

~A�
1

mcs

~B � ~AGR: (B16)

Since ~A and ~AGR are both continuous across the surface of
the sphere, this equation implies that ~B is also continuous
across the surface of the sphere. Furthermore, taking the
curl of this equation shows that ~r
 ~B is continuous
provided that ~B and ~r
 ~AGR are continuous. Taking the
curl of Eq. (B11) confirms that ~r
 ~AGR is continuous
across the surface of the sphere. Therefore, we have shown
that the continuity of ~A implies that both ~B and ~r
 ~B are
also continuous, which guarantees that both boundary
conditions on ~B are satisfied by our solution.
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